RU2542625C1 - Способ определения пространственного положения подводного трубопровода методом магнитометрической съемки - Google Patents

Способ определения пространственного положения подводного трубопровода методом магнитометрической съемки Download PDF

Info

Publication number
RU2542625C1
RU2542625C1 RU2013135688/06A RU2013135688A RU2542625C1 RU 2542625 C1 RU2542625 C1 RU 2542625C1 RU 2013135688/06 A RU2013135688/06 A RU 2013135688/06A RU 2013135688 A RU2013135688 A RU 2013135688A RU 2542625 C1 RU2542625 C1 RU 2542625C1
Authority
RU
Russia
Prior art keywords
coordinates
magnetometers
module
carrier
pipeline
Prior art date
Application number
RU2013135688/06A
Other languages
English (en)
Other versions
RU2013135688A (ru
Inventor
Владимир Викторович Небабин
Руслан Рашитович Кучумов
Станислав Игоревич Голубин
Андрей Викторович Кошурников
Владислав Христофорович Кириаков
Original Assignee
Общество с ограниченной ответственностью "Научно-исследовательский инстиут природных газов и газовых технологий-Газпром ВНИИГАЗ"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Научно-исследовательский инстиут природных газов и газовых технологий-Газпром ВНИИГАЗ" filed Critical Общество с ограниченной ответственностью "Научно-исследовательский инстиут природных газов и газовых технологий-Газпром ВНИИГАЗ"
Priority to RU2013135688/06A priority Critical patent/RU2542625C1/ru
Publication of RU2013135688A publication Critical patent/RU2013135688A/ru
Application granted granted Critical
Publication of RU2542625C1 publication Critical patent/RU2542625C1/ru

Links

Images

Landscapes

  • Geophysics And Detection Of Objects (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

Изобретение относится к трубопроводному транспорту и может быть использовано для определения пространственного положения подводного трубопровода. В способе измеряют модуль вектора индукции магнитного поля Земли (ВИМПЗ) при помощи магнитометров, установленных совместно с точкой приема сигнала на одном вертикальном носителе, буксируемом за судном. Определяют градиент модуля ВИМПЗ и осуществляют совместную обработку магнитометрических данных и координат магнитометров. Координаты магнитометров определяют расчетным путем на основании измеренных координат и углов наклона носителя с учетом рассчитанных поправок на деформацию носителя. В процессе совместной обработки магнитометрических данных и координат магнитометров определяют x, y, z координаты в точках пересечения траектории движения вертикального носителя с трубопроводом, найденных по аномальным значениям модуля ВИМПЗ. По упомянутым координатам судят о пространственном положении трубопровода. Техническим результатом является повышение точности определения местоположения локальных объектов. 3 ил.

Description

Изобретение относится к области магнитной съемки и может быть использовано для определения пространственного положения подводного трубопровода, в частности, в условиях засыпки его в траншее грунтом.
Известен способ бесконтактного выявления наличия и местоположения дефектов металлических трубопроводов (патент РФ №2264617, G01N 27/82, опубл. 20.11.2005), включающий измерение над трубопроводом в заданных точках в процессе перемещения векторов магнитного поля в прямоугольных координатах, по крайней мере, двумя трехкомпонентными датчиками. Составляют тензор градиентов магнитного поля. Путем матричного преобразования проводят обработку полученной информации. По результатам обработки определяют фоновое значение и отклонения от этого значения, по отличию которых на заданную критериальную величину от фонового значения судят о наличии и местоположении дефектов металлических трубопроводов и строят магнитограмму с указанием местоположения дефектов. В случае линейного протяженного объекта, в частности, трубопровода, к недостаткам данного метода можно отнести необходимость в выборе зафиксированной базы датчиков, привязанной к оси сооружения с заданным шагом, что очень труднодостижимо в условиях съемки на акватории при неустойчивых погодных условиях.
Наиболее близким к предлагаемому способу (прототипом) является способ морской магнитной съемки (патент РФ №2390803, G01V 3/08, опубл. 27.05.2010), в котором синхронно измеряют модуль вектора индукции магнитного поля Земли (ВИМПЗ) при помощи двух скалярных магнитометров, размещенных в отдельных гондолах. Определяют градиент модуля ВИМПЗ и интегрируют его по пройденному пути. Осуществляют низкочастотную фильтрацию результатов интегрирования. Дополнительно измеряют модуль ВИМПЗ при помощи двух дополнительных скалярных магнитометров, размещенных в отдельных гондолах, буксируемых за судном таким образом, чтобы система из четырех магнитометров не находилась в одной плоскости. Синхронно с измерениями модуля ВИМПЗ измеряют координаты магнитометров. В процессе совместной обработки магнитометрических данных и координат магнитометров определяют три ортогональные компоненты градиента модуля ВИМПЗ, а также приращение модуля ВИМПЗ относительно начальной точки измерения. Недостатком указанного способа является невысокая точность измерения модуля ВИМПЗ и невысокая точность определения местоположения локальных объектов. Причиной накапливающихся ошибок измерения является сложность системы измерения координат гондол (носителей), основанной в горизонтальной плоскости на данных гидролокатора, два приемника которого размещены за кормой судна и разнесены по фронту перпендикулярно курсу судна, а в вертикальной плоскости - на данных, полученных с датчиков глубины, которые размещаются в каждой гондоле. Пространственную конфигурацию указанной системы сложно реализовать при волнении поверхности воды в условиях неустойчивых погодных условий.
Решение инженерных задач требует измерения магнитного поля от локальных объектов с высокой точностью, при этом для повышения точности определения местоположения локальных объектов необходимо улучшать соотношение сигнал/шум при съемке магнитного поля. Следствием этого является необходимость, с одной стороны, увеличить полезный сигнал путем регулируемой длины вертикального носителя, а с другой стороны, уменьшить шум путем размещения магнитометров и точки приема сигнала на одном вертикальном носителе магнитометрической обработки с учетом углов наклона и деформаций носителя.
Задачей, на решение которой направлено предлагаемое изобретение, является создание способа, позволяющего получить данные измерений, обработка которых обеспечит возможность определения с высокой точностью пространственного положения локальных объектов, в частности, подводного трубопровода.
Техническим результатом, достигаемым при реализации способа, является повышение точности определения местоположения подводных локальных объектов, за счет размещения магнитометров и точки приема сигнала на одном вертикальном носителе и обработки магнитометрических данных с учетом координат и углов крена вертикального носителя.
Указанный технический результат достигается за счет того, что в способе определения пространственного положения подводного трубопровода методом магнитометрической съемки, включающем измерение модуля вектора индукции магнитного поля Земли (ВИМПЗ) при помощи магнитометров, установленных на носителе, буксируемом за судном, определение градиента модуля ВИМПЗ и совместную обработку магнитометрических данных и координат магнитометров, все магнитометры размещают совместно с точкой приема сигнала на одном вертикальном носителе. Координаты магнитометров определяют расчетным путем на основании измеренных координат вертикального носителя и измеренных углов наклона вертикального носителя с учетом рассчитанных поправок на деформацию вертикального носителя. Расчет координат каждого из магнитометров выполняют синхронно с измерением упомянутым магнитометром модуля ВИМПЗ. Магнитометрическую съемку осуществляют путем криволинейного перемещения вертикального носителя над трубопроводом, при этом измерение модуля ВИМПЗ выполняют в заданных предварительно точках пересечения траектории движения вертикального носителя с трубопроводом. В процессе совместной обработки магнитометрических данных и координат магнитометров определяют x, y, z координаты в точках пересечения траектории движения вертикального носителя с трубопроводом, найденных по аномальным значениям модуля ВИМПЗ. По упомянутым координатам судят о пространственном положении трубопровода.
На фиг.1 представлена схема размещения точки приема сигнала и магнитометров на вертикальном носителе:
- точка приема сигнала (1);
- передатчик беспроводной связи Bluetooth (2);
- буксировочный трос (3);
- поверхность воды (4);
- поплавок (5);
- инклинометр (6);
- магнитометр (7);
- вертикальный носитель (8).
На фиг.2 представлены магнитометрические данные до обработки, на фиг.3 - магнитометрические данные после обработки.
Способ осуществляют следующим образом.
Измеряют модуль ВИМПЗ и его градиент на акватории с учетом поправок на вариации магнитного поля Земли, регистрацию которых осуществляют посредством магнитовариационных станций, установленных на суше. Измерения выполняют с помощью магнитометров (7), закрепленных на вертикально погружаемом немагнитном вертикальном носителе (8). Буксировку носителя осуществляют немагнитным судном (шлюпка с пластиковым корпусом). Максимальная скорость буксировки не более 10 узлов. Расстояние между судном и носителем 20÷30 м. Вертикальный носитель выполнен в виде алюминиевой штанги с поплавком (5) для поддержания необходимой плавучести (верхушка штанги поднята над поверхностью воды на 0,5 м). Длину носителя можно увеличивать путем установки дополнительных секций длиной 2 м и изменять ее от 2 м до 10 м. На надводной части вертикального носителя размещена точка приема сигнала - антенна GPS (1) дециметрового диапазона для определения координат верхушки алюминиевой штанги и передатчик беспроводной связи Bluetooth (2) для передачи полученных данных на судно. Через каждые 2 м на вертикальном носителе размещены акселерометры-инклинометры (6) (точность 0,1 градус), с помощью которых измеряют углы наклона вертикального носителя. На погруженной в воду части вертикального носителя закреплены с равномерным шагом от 2 до 4 магнитометров, в зависимости от длины вертикального носителя. Длину вертикального носителя определяют по известным батиметрическим данным. Для измерений используют магнитометры МФ-03-Р (высокочувствительный магнитометр, выполненный на основе однокомпонентного феррозондового датчика в виде переносного прибора, предназначенный для измерения модуля ВИМПЗ и его составляющих). Одновременно с измерением модуля ВИМПЗ измеряют координаты верхней (надводной) части вертикального носителя, буксируемого за судном, и углы наклона вертикального носителя в условиях акватории. Формирование массива данных, состоящего из координат верхушки вертикального носителя, измерений модуля ВИМПЗ и углов наклона вертикального носителя, осуществляют в режиме реального времени с частотой 10 кГц. Сформированный массив данных каждые 0,1 с по каналу беспроводной связи Bluetooth передают и записывают на ПК, находящийся на судне. При этом с помощью ПК в соответствии с заданной программой осуществляют расчет поправок на деформацию вертикального носителя (движение точки приема сигнала относительно магнитометров). Синхронно с измерением модуля ВИМПЗ рассчитывают с помощью ПК координаты (система координат WGS 84) каждого из магнитометров. Затем выполняют топографическую привязку полученных данных о градиенте модуля ВИМПЗ к траектории движения вертикального носителя и определяют точки пресечения трубопровода с траекторией движения носителя по повышению значения модуля ВИМПЗ. Данные модуля ВИМПЗ, полученные с помощью верхнего магнитометра (по расположению на вертикальном носителе), принятые в качестве опорных, вычитают из показаний нижних магнитометров, а полученные при этом значения являются разностными характеристиками модуля ВИМПЗ относительно верхнего магнитометра. После чего выполняют известными методами математическое моделирование: просчитывают с шагом 0,1 м модели бесконечной горизонтальной трубы с диаметром, толщиной и заглублением согласно проектной или исполнительной документации. После этого полученные разностные характеристики модуля ВИМПЗ со второго, третьего и четвертого магнитометров (сверху вниз по расположению на носителе) в найденных точках пресечения траектории движения вертикального носителя с трубопроводом итерационно сравнивают с математическими моделями, полученными для разной глубины залегания трубы, что позволяет определить пространственное положение подводного трубопровода (x, y, z координаты в системе WGS 84) с необходимой точностью. Участок съемки подводного трубопровода отрабатывают движением судна над трубопроводом по криволинейной траектории, пересекающей направление трубопровода в точках, расстояние между которыми задают в зависимости от диаметра и длины трубопровода. Съемку магнитного поля и его градиента осуществляют на различных глубинах (их тем больше, чем больше вынос штанги), что позволяет с высокой точностью определить пространственное положение подводного трубопровода.
Предлагаемый способ осуществляли при определении пространственного положения магистрального газопровода на участке морского подводного перехода через Байдарацкую губу. Отрабатывали участок подводного перехода длиной около 75 км перемещением немагнитного судна по криволинейной траектории длиной 200 м с пересечением направления трубопровода в точках, расположенных через каждые 100 м. Для учета вариаций геомагнитного поля на Уральском (Ямальском) береговых участках были установлены магнитовариационные станции. На вертикальном носителе установили три магнитометра с шагом 60-80 см. Собственный шум магнитометров не превышал 0,2 пкТл, частотный диапазон - 1 кГц (-3 дБ). При проведении измерений использовали высокоточные многоканальные GNSS-приемники. Точность измерений в плане ± 10 мм + 1 мм/км, по высоте ± 20 мм + 1 мм/км, частота записи - 1 секунда. В качестве аналого-цифрового преобразователя использовали 4-канальный 24-разрядный AD7734, что позволило осуществить оцифровку всего диапазона входного сигнала (±100 пкТл) с точностью 0,19 пкТл. В процессе обработки полученных данных (фиг.2) показания верхнего магнитометра (по расположению на вертикальном носителе) принимали в качестве опорных и вычитали их из показаний двух других магнитометров. Полученные результаты (фиг.3) использовали для определения пространственного положения трубопровода на основе итерационного метода, что позволило обеспечить точность определения до 10 см на глубинах до 25 м.
Таким образом, предлагаемый способ позволяет обеспечить более точное определение трех ортогональных компонент градиента модуля ВИМПЗ при помощи системы магнитометров (от 2 до 4 магнитометров), расположенных друг над другом на вертикальном носителе на фиксированном расстоянии. Кроме того, возможность регулировать длину вертикального носителя в предлагаемом способе позволяет приблизить магнитометры к поверхности дна и увеличить соотношение сигнал/шум при измерении магнитного поля, что обеспечивает определение местоположения локальных объектов на дне с высокой точностью.

Claims (1)

  1. Способ определения пространственного положения подводного трубопровода методом магнитометрической съемки, включающий измерение модуля вектора индукции магнитного поля Земли (ВИМПЗ) при помощи магнитометров, установленных на носителе, буксируемом за судном, определение градиента модуля ВИМПЗ и совместную обработку магнитометрических данных и координат магнитометров, отличающийся тем, что все магнитометры размещают совместно с точкой приема сигнала на одном вертикальном носителе, координаты магнитометров определяют расчетным путем на основании измеренных координат вертикального носителя и измеренных углов наклона вертикального носителя с учетом рассчитанных поправок на деформацию вертикального носителя, причем расчет координат каждого из магнитометров выполняют синхронно с измерением упомянутым магнитометром модуля ВИМПЗ, магнитометрическую съемку осуществляют путем криволинейного перемещения вертикального носителя над трубопроводом, при этом измерение модуля ВИМПЗ выполняют в заданных предварительно точках пересечения траектории движения вертикального носителя с трубопроводом, а в процессе совместной обработки магнитометрических данных и координат магнитометров определяют x, y, z координаты в точках пересечения траектории движения вертикального носителя с трубопроводом, найденных по аномальным значениям модуля ВИМПЗ, и по упомянутым координатам судят о пространственном положении трубопровода.
RU2013135688/06A 2013-07-31 2013-07-31 Способ определения пространственного положения подводного трубопровода методом магнитометрической съемки RU2542625C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013135688/06A RU2542625C1 (ru) 2013-07-31 2013-07-31 Способ определения пространственного положения подводного трубопровода методом магнитометрической съемки

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013135688/06A RU2542625C1 (ru) 2013-07-31 2013-07-31 Способ определения пространственного положения подводного трубопровода методом магнитометрической съемки

Publications (2)

Publication Number Publication Date
RU2013135688A RU2013135688A (ru) 2015-02-10
RU2542625C1 true RU2542625C1 (ru) 2015-02-20

Family

ID=53281535

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013135688/06A RU2542625C1 (ru) 2013-07-31 2013-07-31 Способ определения пространственного положения подводного трубопровода методом магнитометрической съемки

Country Status (1)

Country Link
RU (1) RU2542625C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2786847C2 (ru) * 2021-03-29 2022-12-26 Общество с ограниченной ответственностью "Научно-производственное предприятие "Техносфера-МЛ" Способ определения пространственного положения трубопровода на участке подводного перехода

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107607034A (zh) * 2017-10-26 2018-01-19 湖南天羿领航科技有限公司 一种路灯杆用智能变形监测终端
CN112098909B (zh) * 2020-08-20 2023-08-25 西北工业大学 一种基于rov的磁场测量系统及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2264617C2 (ru) * 2001-05-23 2005-11-20 Горошевский Валерий Павлович Способ бесконтактного выявления местоположения и характера дефектов металлических сооружений и устройство для его осуществления
RU2390803C2 (ru) * 2008-07-15 2010-05-27 Открытое акционерное общество "Дальприбор" Способ морской магнитной съемки
RU2444767C1 (ru) * 2010-09-06 2012-03-10 Открытое акционерное общество "Авангард" Способ определения трасс прокладки подводных трубопроводов и устройство для его осуществления
RU2472178C1 (ru) * 2011-08-11 2013-01-10 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг) Способ и устройство для определения положения подводного трубопровода

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2264617C2 (ru) * 2001-05-23 2005-11-20 Горошевский Валерий Павлович Способ бесконтактного выявления местоположения и характера дефектов металлических сооружений и устройство для его осуществления
RU2390803C2 (ru) * 2008-07-15 2010-05-27 Открытое акционерное общество "Дальприбор" Способ морской магнитной съемки
RU2444767C1 (ru) * 2010-09-06 2012-03-10 Открытое акционерное общество "Авангард" Способ определения трасс прокладки подводных трубопроводов и устройство для его осуществления
RU2472178C1 (ru) * 2011-08-11 2013-01-10 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг) Способ и устройство для определения положения подводного трубопровода

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2786847C2 (ru) * 2021-03-29 2022-12-26 Общество с ограниченной ответственностью "Научно-производственное предприятие "Техносфера-МЛ" Способ определения пространственного положения трубопровода на участке подводного перехода

Also Published As

Publication number Publication date
RU2013135688A (ru) 2015-02-10

Similar Documents

Publication Publication Date Title
CN105823480B (zh) 基于单信标的水下移动目标定位算法
CN103926625B (zh) 一种利用地磁总场对水下磁目标高精度远距离的定位方法
CN112505750B (zh) 一种深拖多道地震拖缆姿态确定方法及处理终端
CN104535169B (zh) 一种基于光纤水听器阵列的噪声测量装置及测量方法
Guan et al. An effective method for submarine buried pipeline detection via multi-sensor data fusion
CN107063196B (zh) 基于压力计的海底沙波迁移观测装置及方法
CN110260044B (zh) 一种海底管道定位方法
CN102866384A (zh) 大型水下吊装结构物位置姿态实时测量装置
CN110309581B (zh) 一种水下潜标位置综合校准测量点快速优化布局方法
AU2014201354B2 (en) Systems and methods for measuring water properties in electromagnetic marine surveys
RU2542625C1 (ru) Способ определения пространственного положения подводного трубопровода методом магнитометрической съемки
Shili et al. An accurate localization method for subsea pipelines by using external magnetic fields
CN108761470B (zh) 一种基于拖缆形态方程解析的目标定位方法
RU2670175C1 (ru) Способ георадиолокационного исследования подводных линейных объектов
CN106980140B (zh) 一种水下目标磁法探测方法
US20130046472A1 (en) Method of determining the relative position of two detectors at the bottom of the sea
CN103744117A (zh) 河道水下根石非接触式水下探测方法
RU2440592C2 (ru) Способ морской гравиметрической съемки
RU2319179C1 (ru) Способ определения трассы прокладки кабеля
NO20121041A1 (no) Framgangsmate for bestemmelse av posisjonen for en detektor lokalisert pa havbunnen
CN201583670U (zh) 用于内陆和近海水域磁法勘察的数据采集系统
RU2559565C2 (ru) Способ определения пространственного положения протяженных объектов, расположенных на глубине, преимущественно расположенных под водой, и трассоискатель электромагнитный, преимущественно трассоискатель электромагнитный судовой для осуществления способа
Sun et al. Application of ground penetrating radar with GPS in underwater topographic survey
CN207473102U (zh) 一种用于水下目标磁法探测的测网
RU2436132C1 (ru) Измерительный комплекс для проведения георазведки

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner
PC41 Official registration of the transfer of exclusive right

Effective date: 20180920