RU2541348C1 - Способ построения геологической модели месторождений нефти и газа - Google Patents

Способ построения геологической модели месторождений нефти и газа Download PDF

Info

Publication number
RU2541348C1
RU2541348C1 RU2014100328/03A RU2014100328A RU2541348C1 RU 2541348 C1 RU2541348 C1 RU 2541348C1 RU 2014100328/03 A RU2014100328/03 A RU 2014100328/03A RU 2014100328 A RU2014100328 A RU 2014100328A RU 2541348 C1 RU2541348 C1 RU 2541348C1
Authority
RU
Russia
Prior art keywords
conditions
lithologic
core
structural
oil
Prior art date
Application number
RU2014100328/03A
Other languages
English (en)
Inventor
Екатерина Алексеевна Пономарева
Original Assignee
Екатерина Алексеевна Пономарева
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Екатерина Алексеевна Пономарева filed Critical Екатерина Алексеевна Пономарева
Priority to RU2014100328/03A priority Critical patent/RU2541348C1/ru
Application granted granted Critical
Publication of RU2541348C1 publication Critical patent/RU2541348C1/ru

Links

Images

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Abstract

Изобретение относится к построению геологической модели месторождений нефти и газа. Техническим результатом является повышение эффективности, достоверности геологоразведочных работ, поиска и разведки, разработки и эксплуатации месторождений нефти и газа. Способ включает изучение керна, литологическое расчленение разреза, построение литолого-стратиграфических колонок (с учетом текстурных и структурных диагностических признаков), интерпретацию материалов геофизического исследования скважин (ГИС), выделение изучаемого объекта и определение корреляционных зависимостей, выполнение картографических построений, палеореконструкцию условий осадконакопления исследуемого объекта с учетом отношений массовых содержаний естественных радионуклидов (тория и урана). При этом вначале описывают керн, изучая и выделяя литолого-структурные особенности коллекторских свойств пород, после чего проводят фотографирование керна в дневном и ультрафиолетовом свете, профильные и физико-химические исследования. Далее выполняют литологическое расчленение разреза с построением литолого-стратиграфических колонок, учитывая текстурные и структурные диагностические признаки. Затем интерпретируют материалы геофизических исследований скважин, анализируют и проверяют полученные результаты с выделенными корреляционными зависимостями, и выделяют детализированные объекты изучения. Далее методами картографических построений проводят анализ выявленных зависимостей, характеризующих изучаемый объект по геологическим, литологическим, петрофизическим, геохимическим, геофизическим, структурным, динамическим, тектоническим и др. признакам изучаемого объекта. На основе ранее полученной и обработанной информации формируют геологическую модель месторождения, применяя методы палеофациальных реконструкций условий осадконакопления с учетом массовых содержаний естественных радионуклидов (тория, урана), в модели выделяют границу перехода морских условий осадконакопления в континентальные «море - суша». 1 з.п. ф-лы, 1 пр., 2 ил.

Description

Способ предназначен для применения в нефтегазодобывающей отрасли: построения (и/или уточнения) двух-, трех-, четырехмерной геологической модели; уточнения палеофациальных условий осадконакопления, определенных с учетом соотношений массовых содержаний естественных радионуклидов тория и урана и определения границы «море - суша» на палеофациальной карте.
Известны работы [Глушков Д.В., Попов Н.А., Родионова А.Л. Современные технологии профильных исследований керна и интерпретации результатов исследований // Геология, геофизика и разработка нефтяных и газовых месторождений. 2010. №5. С.73-78], в которых описывают применение современных технологий профильных исследований керна и интерпретацию результатов исследований. Приводят результаты профильных методов исследования керна, такие как гамма-каротаж (спектральный гамма каротаж), плотностной каротаж, фотографирования колонки и срезов керна в дневном и ультрафиолетовом свете, измерения профильной проницаемости. Применение гамма-спектрометрии в комплексе исследований керна позволяет решать следующие задачи: уточнение привязки керна по глубине по данным скважинной и лабораторной спектрометрии; разделение аномалий гамма-активности, обусловленной глинистостью, полевошпатостью или повышенным содержанием урана (радия); оценку содержаний отдельных глинистых минералов или их ассоциаций (включая содержания разбухающей фазы) и прогноз их влияния на коллекторские свойства отложений; выделение доломитизированных разностей среди известняков; выделение зон трещиноватости, унаследованных зонами вторичной доломитизации, выяснение природы повышенной радиоактивности доломитов; оценку компонентного состава пород; определение содержания перлитовой фракции в терригенных отложениях; литологическое расчленение разрезов, выявление геохимических и геологических закономерностей, присущих изучаемому разрезу; выделение коллекторов.
Данная методика применяется только для исследования керна и определения типа отложений по уровню концентрации урана и тория, но не учитывает применение для палеореконструкций условий осадконакопления (осадкообразования) и выделения их границ по изучаемому объекту. Кроме того, недостаток данного способа заключается в отсутствии комплексности исследования всей геологической модели, не выполняются построения геологической модели, с учетом полученных параметров изучаемого объекта.
Наиболее близким по технической сущности и достигаемому результату к предлагаемому решению является способ построения геологической и гидродинамической модели месторождений нефти и газа [RU №2475646 С1, МПК Е21В 49/00, G06F 19/00 опубл. 20.02.2013 г.]. Он включает определение условий формирования пород по вещественному составу, а также по текстурным и структурным диагностическим признакам (литолого-фациальный анализ (ЛФА)), проведение минералого-петрографического анализа осадочных пород исследуемого объекта, интерпретацию материалов геофизического исследования скважин (ГИС), обработку данных методами многомерной математической статистики.
Недостаток способа-прототипа заключается в низкой достоверности полученных результатов, не учтен целый ряд параметров, влияющих на результат, при этом в способе не учитывается неполный вынос керна (менее 100%). Рассчитывать на достоверность полученных результатов при частичном выносе керна затруднительно, даже при проведении верификации (проверки) набором минерально-петрографических параметров с учетом методов многомерной статистики зависимостей между количественными и синтетическими показателями. Важно понимать, с какой глубины извлечен керн. Например, в описании керна интервал представлен однородным переслаиванием алевролита с аргиллитом, в этом случае определить принадлежность керна к определенной части интервала невозможно. Неизвестно в какой именно части интервала отбора керна извлекли образец - вверху, внизу, в середине или это раздробленный материал, не имеющий необходимых признаков для привязки. В тех случаях, когда керн вынесен не полностью или представлен частично, применение на практике литолого-фациального метода затруднительно. Полученные результаты о гранулометрическом составе, минералогической составляющей и математический анализ данных не дают полной картины геологической модели месторождений нефти и газа. Существует проблема путаницы керна при складировании, перекладке, отборе, утряски во время транспортировки до места складирования или изучения. Например, несоответствие «верха» и «низа» образцов или разрушения в связи с их хрупкостью.
Не исключено, что именно в отсутствующем или перепутанном образце керна, находятся необходимые и наиболее важные параметры для определения генетических зависимостей; факторов перехода фациальных условий осадконакопления и осадкообразования; построения геологической модели месторождений нефти и газа.
Задачей создания изобретения является разработка способа построения геологической модели месторождений нефти и газа свободного от недостатков прототипа.
Поставленная задача решается с помощью признаков, указанных в 1-м пункте формулы изобретения, общих с прототипом, таких как способ построения геологической модели месторождений нефти и газа, включающий определение условий формирования пород по вещественному составу, а также по текстурным и структурным диагностическим признакам (литолого-фациальный анализ (ЛФА)), проведение минералого-петрографического анализа осадочных пород исследуемого объекта, интерпретацию материалов геофизического исследования скважин (ГИС), установление фаций по комплексу диагностических признаков и отличительных существенных признаков, таких как определение условий формирования, выполняется для одновозрастных пород с различным литологическим составом и/или для изменения комплекса органических остатков в пределах одного (регионального или местного) стратиграфического подразделения, при этом перед литолого-фациальным анализом проводят фотографирование керна в дневном и ультрафиолетовом свете, профильные и физико-химические исследования, затем методом картографических построений осуществляют анализ выявленных зависимостей, характеризующих изучаемый объект по геологическим, литологическим, петрофизическим, геохимическим, геофизическим, структурным, динамическим, тектоническим признакам, на основании полученных результатов формируют двух-, и/или трех-, и/или четырехмерную геологическую модель, затем методом палеофациальных реконструкций уточняют геологическую модель с учетом массовых содержаний естественных радионуклидов, при этом определяют изменение отношений массовых содержаний естественных радионуклидов с глубиной в каждой исследуемой скважине изучаемого объекта, затем полученные результаты выносятся на палеофациальную карту выбранного стратиграфического горизонта, который определен в каждой скважине, затем на палеогеографической карте по всем полученным данным, в том числе радионуклидам, выделяют границы перехода морских условий осадконакопления в континентальные, таким образом, определяют границу «море-суша».
Согласно п.2. формулы изобретения по выделенным границам «море - суша» судят об условиях осадкообразования и осадконакопления, благоприятных и перспективных для аккумуляции углеводородов.
Технический результат от выше перечисленной совокупности существенных признаков состоит в детальном построении геологической модели месторождений нефти и газа, в отображении на палеогеографической карте границы «море-суша» с учетом соотношений массовых содержаний радионуклидов, позволяет расчленить геологический разрез по литологическому составу и определить структурные изменения, изучить корреляционные зависимости, а также повысить эффективность, достоверность геолого-разведочных работ, поиска и разведки, разработки и эксплуатации месторождений нефти и газа.
Создание модели состоит из последовательных этапов:
1. описывают керн, изучая и выделяя литолого-структурные особенности коллекторских свойств пород;
2. проводят фотографирование керна в дневном и ультрафиолетовом свете, профильные и физико-химические исследования;
3. выполняют литологические расчленения разреза с построением литолого-стратиграфических колонок, учитывая текстурные и структурные диагностические признаки;
4. интерпретируют материалы геофизических исследований скважин, анализируют, проверяют и коррелируют полученные результаты с выделенными корреляционными зависимостями и выделяют детализированные объекты изучения;
5. методами картографических построений проводят анализ выявленных зависимостей, характеризующих изучаемый объект по геологическим, литологическим, петрофизическим, геохимическим, геофизическим, структурным, динамическим, тектоническим и др. признакам изучаемого объекта;
6. на основе ранее полученной и обработанной информации формируют геологическую (двух- и/или трех- и/или четырехмерную) модель месторождения, применяя методы палеофациальных реконструкций условий осадконакопления с учетом массовых содержаний естественных радионуклидов (тория, урана). Ключевым этапом в построении палеофациальной модели является отображение результатов по соотношению массовых содержаний естественных радионуклидов тория и урана сначала с глубиной, а затем эти же соотношения по площади выбранного стратиграфического горизонта (четкого репера).
7. анализируя и проверяя все имеющиеся данные, полученные на предыдущих этапах, строят палеофациальную модель, при этом выделяют границы перехода морских условий осадконакопления в континентальные, то есть определяют границу «море - суша».
В способе предлагается использовать результаты соотношений массовых содержаний естественных радионуклидов (тория, урана) для определения границы перехода морских условий осадконакопления к континентальным. То есть выделять границы «море - суша», с дальнейшим построением палеофациальной реконструкции основанной на вышеописанном комплексе изучения объекта.
Пример конкретного выполнения
Построение геологической модели месторождений нефти и газа необходимо начинать с первичного описания и фотографирования керна. Далее выполняют детальное описание и сопоставление керна с каротажными диаграммами по данной скважине, повторно фотографируют керн в дневном и ультрафиолетовом освещении. Затем исследуют образцы с помощью профильных, люминесцентно-битуминологических, физико-химических исследований. Лабораторные исследования проводят комплексом стандартных (описание литолого-структурных особенностей и коллекторских свойств пород коллекторов; определение - пористости, газопроницаемости, объемной и минеральной плотности, удельного электрического сопротивления), углубленных (определение - коэффициента вытеснения нефти водой, гранулометрического состава, абсолютной газопроницаемости; исследование пластовых флюидов) и/или специальных (спектральный гамма-каротаж, профильные и физико-химические) исследований. Изучают образцы пород по вещественному составу, а также по текстурным и структурным диагностическим признакам, применяя литолого-фациальный анализ (ЛФА). Проводят минералого-петрографический анализ осадочных пород исследуемого объекта с выполнением, при необходимости, детальных фотографий внутренних структурных особенностей (растительных и/или животных остатков), применяя методы сканирующей электронной и растровой микроскопии. Интерпретируют материалы геофизического исследования скважин (ГИС), и устанавливают фации по комплексу диагностических признаков. Определение условий формирования выполняется для одновозрастных пород с различным литологическим составом и/или для изменения комплекса органических остатков в пределах единого (регионального или местного) стратиграфического подразделения.
Затем методом картографических построений осуществляют анализ выявленных зависимостей, характеризующих изучаемый объект по геологическим, литологическим, петрофизическим, геохимическим, геофизическим, структурным, динамическим, тектоническим признакам; на основании полученных результатов формируют двух-, и/или трех-, и/или четырехмерную геологическую модель, затем методом палеофациальных реконструкций уточняют геологическую модель с учетом массовых содержаний естественных радионуклидов, при этом определяют изменение отношений массовых содержаний естественных радионуклидов с глубиной в каждой исследуемой скважине изучаемого объекта (фиг.1), затем полученные результаты выносят на палеофациальную карту выбранного стратиграфического горизонта, который определен в каждой скважине, затем на палеографической карте по всем полученным данным, в том числе радионуклидам, выделяют границы перехода морских условий осадконакопления в континентальные, таким образом, определяют границу «море - суша» (фиг.2).
Изобретение иллюстрируется графиками и схемами, где
На фиг.1 - изменение отношения Th/U с глубиной и граничными значениями перехода морских и континентальных условий осадконакопления - граница «море - суша» по выбранному единому (региональному или местному) стратиграфическому подразделению в исследуемой скважине;
На фиг.2 - палеогеографическая схема по выбранному единому (региональному или местному) стратиграфическому подразделению, Условные обозначения: • - скважина; □ - район изучения; ▬ - континентальные отложения; ▪▪▪ - морские отложения; ----- - граница перехода морских отложений в континентальные с учетом массовых содержаний радионуклидов - граница «море - суша».
Изобретение найдет применение в нефтегазодобывающей отрасли для построения геологической модели месторождений нефти и газа. Получен новый результат, который позволяет отображать границу перехода границы континентальных условий осадкообразования к морским, тем самым дает возможность выделить границу «море - суша», используя комплексное изучение объекта с учетом данных соотношений массовых содержаний естественных радионуклидов урана и тория. Повышает эффективность, достоверность поиска и разработки залежей углеводородов, вследствие чего возрастает геолого-геофизическая изученность месторождений нефти и газа. Комплексное применение перечисленных приемов способа позволяет учитывать в совокупности геологические, литологические, петрофизические, геохимические, геофизические, структурные, динамические, тектонические и другие признаки изучаемого объекта.
Вышеперечисленные преимущества изобретения позволяют сократить финансовые, энергетические и временные затраты, понесенные на проведение геолого-разведочных работ при дальнейшем изучении геологических объектов.
Из описания и практического применения настоящего изобретения специалистам будут очевидны и другие частные формы его выполнения. Данное описание и примеры рассматриваются как материал, иллюстрирующий изобретение, сущность которого и объем патентных притязаний определены в нижеследующей формуле изобретения, совокупностью существенных признаков и их эквивалентами.

Claims (2)

1. Способ построения геологической модели месторождений нефти и газа, включающий определение условий формирования пород по вещественному составу, а также по текстурным и структурным диагностическим признакам (литолого-фациальный анализ (ЛФА)), проведение минералого-петрографического анализа осадочных пород исследуемого объекта, интерпретацию материалов геофизического исследования скважин (ГИС), и устанавливают фации по комплексу диагностических признаков, отличающийся тем, что определение условий формирования выполняется для одновозрастных пород с различным литологическим составом и/или для изменения комплекса органических остатков в пределах одного (регионального или местного) стратиграфического подразделения, при этом перед литолого-фациальным анализом проводят фотографирование керна в дневном и ультрафиолетовом свете, профильные и физико-химические исследования, затем методом картографических построений осуществляют анализ выявленных зависимостей, характеризующих изучаемый объект по геологическим, литологическим, петрофизическим, геохимическим, геофизическим, структурным, динамическим, тектоническим признакам, на основании полученных результатов формируют двух-, и/или трех-, и/или четырехмерную геологическую модель, затем методом палеофациальных реконструкций уточняют геологическую модель с учетом массовых содержаний естественных радионуклидов, при этом определяют изменение отношений массовых содержаний естественных радионуклидов с глубиной в каждой исследуемой скважине изучаемого объекта, затем полученные результаты выносятся на палеофациальную карту выбранного стратиграфического горизонта, который определен в каждой скважине, затем на палеогеографической карте по всем полученным данным, в том числе радионуклидам, выделяют границы перехода морских условий осадконакопления в континентальные, таким образом, определяют границу «море - суша».
2. Способ по п.1, отличающийся тем, что по выделенным границам «море - суша» судят об условиях осадкообразования и осадконакопления, благоприятных и перспективных для аккумуляции углеводородов.
RU2014100328/03A 2014-01-09 2014-01-09 Способ построения геологической модели месторождений нефти и газа RU2541348C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014100328/03A RU2541348C1 (ru) 2014-01-09 2014-01-09 Способ построения геологической модели месторождений нефти и газа

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014100328/03A RU2541348C1 (ru) 2014-01-09 2014-01-09 Способ построения геологической модели месторождений нефти и газа

Publications (1)

Publication Number Publication Date
RU2541348C1 true RU2541348C1 (ru) 2015-02-10

Family

ID=53287148

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014100328/03A RU2541348C1 (ru) 2014-01-09 2014-01-09 Способ построения геологической модели месторождений нефти и газа

Country Status (1)

Country Link
RU (1) RU2541348C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112444423A (zh) * 2020-11-20 2021-03-05 核工业北京地质研究院 一种铀多金属共伴生型矿床岩心取样方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2135766C1 (ru) * 1998-05-28 1999-08-27 Внедренческий научно-исследовательский инженерный центр "Нефтегазтехнология" Способ контроля за разработкой нефтяных залежей
RU2180128C1 (ru) * 2001-06-04 2002-02-27 Волож Юрий Абрамович Способ построения сейсмостратиграфической модели разреза среды
WO2009048776A2 (en) * 2007-10-12 2009-04-16 Schlumberger Canada Limited Coarse wellsite analysis for field development planning
RU2475646C1 (ru) * 2011-08-17 2013-02-20 Министерство образования и науки РФ Государственное образовательное учреждение высшего профессионального образования "Уральский государственный горный университет" Способ построения геологической и гидродинамической моделей месторождений нефти и газа

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2135766C1 (ru) * 1998-05-28 1999-08-27 Внедренческий научно-исследовательский инженерный центр "Нефтегазтехнология" Способ контроля за разработкой нефтяных залежей
RU2180128C1 (ru) * 2001-06-04 2002-02-27 Волож Юрий Абрамович Способ построения сейсмостратиграфической модели разреза среды
WO2009048776A2 (en) * 2007-10-12 2009-04-16 Schlumberger Canada Limited Coarse wellsite analysis for field development planning
RU2475646C1 (ru) * 2011-08-17 2013-02-20 Министерство образования и науки РФ Государственное образовательное учреждение высшего профессионального образования "Уральский государственный горный университет" Способ построения геологической и гидродинамической моделей месторождений нефти и газа

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112444423A (zh) * 2020-11-20 2021-03-05 核工业北京地质研究院 一种铀多金属共伴生型矿床岩心取样方法
CN112444423B (zh) * 2020-11-20 2022-12-20 核工业北京地质研究院 一种铀多金属共伴生型矿床岩心取样方法

Similar Documents

Publication Publication Date Title
Cui et al. Prediction of diagenetic facies using well logs–A case study from the upper Triassic Yanchang Formation, Ordos Basin, China
Rahimpour‐Bonab et al. Flow unit distribution and reservoir modelling in cretaceous carbonates of the Sarvak Formation, Abteymour Oilfield, Dezful Embayment, SW Iran
Enayati–Bidgoli et al. A geological based reservoir zonation scheme in a sequence stratigraphic framework: A case study from the Permo–Triassic gas reservoirs, Offshore Iran
Pontes et al. Flow pathways in multiple-direction fold hinges: Implications for fractured and karstified carbonate reservoirs
US20150233846A1 (en) System and method for identifying hydrocarbon potential in a rock formation using x-ray fluorescence
Ali et al. Hydrocarbon potential assessment of carbonate-bearing sediments in a meyal oil field, Pakistan: Insights from logging data using machine learning and quanti elan modeling
Ali et al. Prediction of Cretaceous reservoir zone through petrophysical modeling: Insights from Kadanwari gas field, Middle Indus Basin
Al-Mudhafar Geostatistical lithofacies modeling of the upper sandstone member/Zubair formation in south Rumaila oil field, Iraq
Mahgoub et al. Facies and porosity 3D models constrained by stochastic seismic inversion to delineate Paleocene fluvial/lacustrine reservoirs in Melut Rift Basin, Sudan
Hassan et al. Sedimentary facies analysis, seismic interpretation, and reservoir rock typing of the syn-rift Middle Jurassic reservoirs in Meleiha concession, north Western Desert, Egypt
Sechman et al. Direct and indirect surface geochemical methods in petroleum exploration: a case study from eastern part of the Polish Outer Carpathians
El-Qalamoshy et al. A multi-disciplinary approach for trap identification in the Southern Meleiha Area, North Western Desert, Egypt: integrating seismic, well log, and fault seal analysis
Fitch Heterogeneity in the petrophysical properties of carbonate reservoirs
Yasin et al. Seismic characterization of geologically complex geothermal reservoirs by combining structure-oriented filtering and attributes analysis
Solano et al. Characterization of fine-scale rock structure and differences in mechanical properties in tight oil reservoirs: An evaluation at the scale of elementary lithological components combining photographic and X-ray computed tomographic imaging, profile-permeability and microhardness testing
Fiser-Nagy et al. Lithology identification using open-hole well-log data in the metamorphic Kiskunhalas-NE hydrocarbon reservoir, South Hungary
RU2541348C1 (ru) Способ построения геологической модели месторождений нефти и газа
Corradi et al. 3D hydrocarbon migration by percolation technique in an alternate sand–shale environment described by a seismic facies classified volume
Aboubacar et al. A quadruple-porosity model for consistent petrophysical evaluation of naturally fractured vuggy reservoirs
Onajite Applied Techniques to Integrated Oil and Gas Reservoir Characterization: A Problem-Solution Discussion with Geoscience Experts
El-Bagoury Petrophysical and petrographical delineation for carbonate reservoir rocks in north Western Desert, Egypt
Balumi et al. Chemostratigraphy of unconventional shale reservoirs: A case study of the Niobrara Formation within the Denver-Julesburg basin
Harrington et al. Integration of rock fabrics and stratigraphy for petrophysical quantification of reservoir framework
Lobo et al. Methodology for Petrophysical and Geomechanical Analysis of Shale Plays. Case Study: La Luna and Capacho Formations, Maracaibo Basin.
Normando et al. A proposal for reservoir geostatistical modeling and uncertainty analysis of the Curimã Field, Mundaú Sub-Basin, Ceará Basin, Brazil