RU2540873C1 - ШТАММ БАКТЕРИИ Escerichia coli XL1-blue/pQS-G3, ПРОДУЦЕНТ ТЕРМОСТАБИЛЬНОЙ ЛИПАЗЫ БАКТЕРИИ Geobacillus stearothermophilus G3 - Google Patents

ШТАММ БАКТЕРИИ Escerichia coli XL1-blue/pQS-G3, ПРОДУЦЕНТ ТЕРМОСТАБИЛЬНОЙ ЛИПАЗЫ БАКТЕРИИ Geobacillus stearothermophilus G3 Download PDF

Info

Publication number
RU2540873C1
RU2540873C1 RU2013142983/10A RU2013142983A RU2540873C1 RU 2540873 C1 RU2540873 C1 RU 2540873C1 RU 2013142983/10 A RU2013142983/10 A RU 2013142983/10A RU 2013142983 A RU2013142983 A RU 2013142983A RU 2540873 C1 RU2540873 C1 RU 2540873C1
Authority
RU
Russia
Prior art keywords
lipase
strain
bacterium
coli
pqs
Prior art date
Application number
RU2013142983/10A
Other languages
English (en)
Inventor
Алексей Сергеевич Розанов
Сергей Евгеньевич Пельтек
Ксения Николаевна Сорокина
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт цитологии и генетики Сибирского отделения Российской академии наук (ИЦиг СО РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт цитологии и генетики Сибирского отделения Российской академии наук (ИЦиг СО РАН) filed Critical Федеральное государственное бюджетное учреждение науки Институт цитологии и генетики Сибирского отделения Российской академии наук (ИЦиг СО РАН)
Priority to RU2013142983/10A priority Critical patent/RU2540873C1/ru
Application granted granted Critical
Publication of RU2540873C1 publication Critical patent/RU2540873C1/ru

Links

Images

Landscapes

  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

Изобретение относится к области биотехнологии и представляет собой штамм Esherichia coli В-1298, депонированный в ФБУН ГНЦ ВБ «Вектор». Штамм получен трансформацией клеток бактерии E. coli XL1-blue ДНК плазмиды pQS-G3, разработанной на основе вектора pUC18 и содержащей репликон pMB1, ген устойчивости к ампициллину bla (кодирующий β-лактамазу), обеспечивающий отбор клеток с плазмидой, промотор лактозного оперона pLac, а также сконструированный ген, кодирующий гибридный белок, содержащий последовательность сигнального пептида внеклеточной протеазы OmpA бактерии E. coli и последовательность липазы Geobacillus stearothermophilus G3 без нативного сигнального пептида. Изобретение позволяет получать липазу, которая обладает высокой операционной стабильностью при температуре 50°C, что позволяет увеличить время эксплуатации в составе гетерогенных биокатализаторов переэтерификации триглицеридов. 4 ил., 3 пр.

Description

Изобретение относится к области биотехнологии и может быть использовано для получения термостабильных липаз, применимых в технологических процессах переработки жиров.
Липазы (EC 3.1.1.3) относятся к ферментам класса гидролаз, биологической функцией которых является расщепление триглицеридов до жирных кислот, воды и глицерина. Однако данные ферменты также могут катализировать ряд других реакций, например, переэтерификацию триглицеридов или расщепление эфиров с образованием спиртов. Многообразие свойств данных ферментов позволяет применять их в промышленности в качестве добавок к моющим средствам, для получения жиров специального назначения, а также в качестве высокоселективных катализаторов химических реакций органического синтеза [1, 2]. Применение липаз, обладающих региоселективностью, позволяет получать продукты с контролируемыми свойствами. Например, для получения жиров специального назначения в пищевой промышленности широко применяется переэтерификация пальмового масла и растительных масел с использованием термостабильных 1,3-специфичных липаз (полученных из грибов Rhizomucor miehei или Thermomyces lanuginosus) [3]. Стоит отметить, что в подобных технологических процессах используются исключительно термостабильные липазы, поскольку реакции с их участием протекают при высоких температурах (40-70°C), что вызывает термическую денатурацию фермента и, вследствие этого, потерю активности. Для повышения стабильности фермента и улучшения параметров технологического процесса липазы для подобных целей применяют в составе гетерогенных биокатализаторов [4].
В настоящее время описаны свойства ряда термостабильных липаз. В основном в промышленности используются липазы мицеллярных грибов, таких как, например, R. miehei или Т. lanuginosus, а также дрожжей (Candida antarctica и Candida rugosa) [5]. Также перспективными являются липазы, продуцируемые термофильными бактериями, относящиеся к родам Bacillus, Geobacillus, Burkholderia, Chromobacterium и Pseudomonas [6]. Как правило, бактериальные липазы имеют оптимум активности при 30-60°C и pH 6.0-9.0 [7]. В целом, липазы, продуцируемые бактериями рода Geobacillus, представляют наибольший интерес для применения, поскольку обладают высокой термостабильностью и операционной устойчивостью [8, 9].
Известен ряд рекомбинантных штаммов Е. coli, осуществляющих продукцию термостабильных липаз, полученных из бактерий рода Geobacillus. В работе [8] описаны свойства липазы бактерии Geobacillus sp. TW1, ген которой был встроен в плазмиду pET-GST и экспрессирован в штамме Е. coli BL21. Фермент обладает оптимумом активности при 40°C и pH 7.0-8.0, а при инкубации в течение 15 мин при температуре 50°C сохраняет 80% активности.
В работе [9] описана липаза с высокой операционной термостабильностью, полученная из штамма Geobacillus thermoleovorans YN, клонированная в составе вектора pCYTEX-LipA-6xhis и эксперссированная в клетках E. coli DH5α под контролем температуро-чувствительного промотора. При инкубации фермента в течение 30 мин при 50°C и pH 7.5-9.5 его активность оставалась неизменной вплоть до температуры 70°C, при которой происходило ее существенное снижение. Активность очищенной липазы была равна 3586 е.а./мг.
Наиболее близким аналогом предлагаемого изобретения - прототипом, является рекомбинантный штамм Е. coli, продуцирующий липазу ARM, полученную из бактерии Geobacillus sp. Полученный фермент отличается высокой термостабильностью, например, при 50°C и pH 8.0 время его полуинактивации составляет 90 мин. Липаза ARM обладает наибольшей активностью при pH 5.0-6.0. Для экспрессии липазы была разработана генетическая конструкция pTrcHis/ARM, где ген липазы встроен под контроль промотора tac. Плазмидная ДНК была трасформирована в клетки E. coli TOP 10. Биосинтез липазы индуцировали добавлением в среду изопропил-бета-d-тиогалактопиранозида (IPTG), затем полученный фермент выделяли с использованием аффинной хроматографии. Активность очищенной липазы составила 219.31 е.а./мг при 50°C и использовании в качестве субстрата оливкового масла (патент EP 2450458 A3, опубликован 27.06.2012 г.).
В целом, липаза ARM не обладает достаточной операционной стабильностью, что повышает себестоимость ее использования в составе гетерогенных биокатализаторов переэтерификации [10], а также имеет оптимум pH в кислых условиях. Также в составе конструкции pTrcHis/ARM, обеспечивающей экспрессию липазы, отсутствует нуклеотидная последовательность, кодирующая сигнальный пептид, что во многих случаях позволяет существенно повысить уровень экспрессии рекомбинантного белка [11].
Задачей изобретения является получение бактериального штамма-продуцента термостабильной липазы, обладающей высокой операционной стабильностью для применения в составе гетерогенных биокатализаторов в процессах переэтерификации растительных масел.
Поставленная задача решается предлагаемым штаммом Esherichia coli XL1-blue, содержащим рекомбинантную плазмиду pQS-G3, продуцирующим липазу из штамма Geobacillus stearothermophilus G3, выделенного из горячего источника Северного Прибайкалья. Липаза обладает высокой операционной стабильностью при температуре 50°C, что позволяет увеличить время ее эксплуатации в составе гетерогенных биокатализаторов переэтерификации триглицеридов. Штамм депонирован в «Коллекции бактерий, бактериофагов и грибов» Федерального бюджетного учреждения науки Государственный научный центр вирусологии и биотехнологии «Вектор» (ФБУН ГНЦ ВБ «Вектор») под номером B-1298.
Штамм получают трансформацией клеток бактерии E. coli XL1-blue ДНК плазмиды pQS-G3 с использованием стандартных процедур [12]. Отбор трансформантов осуществляют на среде LB с ампициллином (100 мг/л). Плазмида pQS-G3 разработана на основе вектора pUC 18 и содержит репликон pMB1, ген устойчивости к ампициллину bla (кодирующий β-лактамазу), обеспечивающий отбор клеток с плазмидой, промотор лактозного оперона pLac, а также сконструированный ген, кодирующий гибридный белок, содержащий последовательность сигнального пептида внеклеточной протеазы OmpA бактерии E. coli и последовательность липазы Geobacillus stearothermophilus G3 без нативного сигнального пептида. Схема плазмиды pQS-G3 приведена на фиг.1, где: OmpA-Sig - последовательность сигнального пептида протеазы OmpA; G3 - последовательность, кодирующая липазу штамма Geobacillus stearothermophillus G3 без нативного сигнального пептида; bla - ген устойчивости к ампициллину (бета-лактамаза), PLac - промотор лактозного оперона, ORI - точка начала репликации.
Штамм Escherichia coli Xl1 blue/pQS-G3 имеет следующие характеристики.
Культурально-морфологические признаки
Штамм является факультативным аэробом. При росте на LB-агаре колонии гладкие, круглые, блестящие, сероватые, мутные, край ровный. При росте в жидких средах LB образуют интенсивную муть. Клетки прямые, палочковидной формы, подвижные, грамотрицательные.
Генетические признаки, устойчивость к антибиотикам
Штамм имеет следующие генетические признаки: recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac [F′ proAB lacIqZΔM15 Tn10 (Tetr)]. Устойчив к тетрациклину и ампициллину.
Предлагаемый рекомбинантный штамм продуцирует термостабильную липазу, обладающую высокой операционной стабильностью и предназначенную для применения в составе гетерогенных биокатализаторов в процессах переэтерификации растительных масел.
Изобретение иллюстрируется следующими примерами.
Пример 1. Получение плазмиды pQS-G3 и штамма Esherichia coli XL1-blue/pQS-G3
Для получения плазмиды pQS-G3 используют сконструированный гибридный ген, содержащий последовательности, кодирующие ген липазы Geobacillus stearothermophilus G3 и последовательность сигнального пептида внеклеточной протеазы OmpA бактерии E. coli длиной 21 аминокислотный остаток [GenBank ID ААС74043].
Последовательность гена липазы получают следующим путем: проводят выделение геномной ДНК бактерии Geobacillus stearothermophilus G3 с использованием набора GeneJET Genomic DNA Purification Kit (Fermentas), которую затем используют в качестве матрицы в реакции ПЦР. Амплификацию фрагмента гена липазы, не содержащего сигнального пептида, проводят в присутствии 20 нг ДНК в общем объеме 50 мкл, содержащего 0.2 мМ смеси четырех дезокситрифосфатов, 1.5 мМ MgCl2, 0.1 мкМ праймеров Geolip_f - 5′-ATGATYGTRCTTCTCCATGGYTTTAC-3′ и Geolip_r - 5′-TTAAGGYYGCAARCTCGCCA, буфера для Taq ДНК-полимеразы, и 0.05 е.а./мкл Taq ДНК-полимеразы («Сибэнзим»). Полученный фрагмент повторно амплифицируют в аналогичных условиях с использованием урацилсодержащих праймеров Geolip_f_in_pUC(ompA)(U) - 5′-AGCGCAGGCCAUGATYGTRCTTCTCCATGGYTTTAC-3′ и Geolip_r_in_pUC(ompA)(U) - 5′-AGGCCCTTUAAGGYYGCAARCTCGCCA-3′.
Последовательность, кодирующая сигнальный пептид протеазы OmpA, получена путем химического синтеза и клонирована в составе плазмиды pUC18 в компании "АТГ-Сервис Ген". Фрагмент полученной плазмиды pUC18-OmpA, содержащий сигнальный пептид, амплифицируют методом ПЦР с использованием урацилсодержащих праймеров pUC18(atg)OmpA_f - 5′-ACCAGCCAGUGCCACTGCAATCGCGATAGCTGTCTTTTTCATAGCTGTTTCCTGTGTG-3′ и pUC18_OmpAr - 5′-ACTGGCTGGUTTCGCTACCGTAGCGCAGGCCGACGAAAGGGCCTCGTG-3′, как описано выше.
Оба полученных ампликона очищают с использованием набора GeneJET™ PCR Purification Kit, добавляют буфер для TaqSE полимеразы ("СибЭнзим"), обрабатывают раствор ферментативным комплексом USER (New England Biolabs) и рестриктазой Mal I, инкубируют при 37°C в течение 30 мин. Для лигирования используют 50 нг обработанных фрагментов, проводят реакцию с T4 (New England Biolabs) лигазой в течение 20 мин при 22°C, согласно протоколу производителя. Полученную смесь переосаждают [13] и трансформируют ей электрокомпетентные клетки Esherichia coli XL1-blue, как описано в [12]. Полученные клетки высевают на агаризованную среду LB, содержащую ампициллин (100 мг/л), и культивируют при 37°C в течение 16 ч. Плазмидную ДНК, выделенную из полученных клонов с использованием набора GeneJET Plasmid Miniprep Kit (Fermentas), проверяют ПЦР анализом на наличие необходимой вставки ДНК.
Клоны с подтвержденной встройкой (не менее 10 штук) отбирают для оценки липазной активности. Для этого клоны культивируют в жидкой среде LB в пробирках при 37°C в течение 12 ч, после проводят индукцию биосинтеза путем добавления IPTG в концентрации 1 мМ в течение 6 ч. Полученные клетки осаждают центрифугированием при 5000 об/мин в течение 5 мин, лизируют путем обработки ультразвуком в течение 5 мин, после чего центрифугируют при 14000 об/мин при 4°C в течение 10 мин. Активность полученного супернатанта оценивают по скорости гидролиза субстрата (п-нитрофенил пальмитата) при 50°C [14] и выбирают клон с наибольшей липазной активностью.
Пример 2. Культивирование штамма Esherichia coli XL1-blue/pQS-G3 и выделение липазы
Культуру Esherichia coli XL1-blue/pQS-G3 выращивают при 37°C в течение 16 ч, после чего засевают в 5 мл жидкой среды LB и культивируют при перемешивании (250 об/мин) и температуре 37°C в течение 12 ч. Затем засевают посевной культурой колбы со средой TB (200 мл) из расчета 1:100, выращивают до оптической плотности 0,6 (λ=600 нм) при 37°C. Индукцию и лизис клеток проводят, как описано выше. Для выделения белка полученный лизат насыщают сульфатом аммония до 30%, после формирования осадка его отделяют центрифугированием при 14000 об/мин в течение 20 мин. Затем проводят повторное осаждение белка путем добавления к полученному супернатанту сульфата аммония до 80% от насыщения, осадок отделяют центрифугированием, как описано выше.
Полученный осадок очищают хроматографией на колонке с сорбентом Butyl Sepharose 4 Fast Flow (GE Healthcare). Для этого его наносят на колонку, уравновешенную 1 М (NH4)2SO4 в 0.05 М Tris pH 7.0, и проводят элюцию раствором 1 М (NH4)2SO4 в 0.05 М Tris pH 7.0 в градиенте концентрации от 100 до 0%. Фракции, обладающие липазной активностью, повторно разделяют на сорбенте Sephadex G-75 в изократическом градиенте 0.05 М Tris-HCl pH 7.0. Активность полученной липазы составила 3238 е.а./г.
Пример 3. Определение оптимума активности рекомбинантной липазы бактерии Geobacillus stearothermophilus G3 при различных температурах и ее операционной стабильности
Для определения термостабильности липазы G3 при различных температурах очищенный фермент инкубируют при температурах 40-100°C в буфере 0.1 М Tris-HCl pH 8.0 в течение 15 мин, затем измеряют активность по скорости гидролиза п-нитрофенол пальмитата. Активность рекомбинантной липазы Geobacillus stearothermophillus G3 при различных температурах представлена на фиг.2. Как видно из данных, оптимум активности фермента отмечается при температуре 50°C.
Для определения pH оптимума рекомбинантной липазы G3 проводят инкубацию в буфере 0.1 М Tris-HCl при pH 5.0-9.0 и температуре 50°C в течение 15 мин, после чего определяют остаточную активность по п-нитрофенил пальмитату. Данные по активности рекомбинантной липазы Geobacillus stearothermophillus G3 при различных значениях pH и температуре 50°C приведены на фиг.3. Видно, что фермент обладает наибольшей активностью при pH 8.0-9.0.
Для определения операционной стабильности фермента очищенную липазу инкубируют в буфере 0.1 М Tris-HCl pH 8.0 при температуре 50°C в течение определенных промежутков времени, после чего измеряют остаточную активность липазы по гидролизу п-нитрофенил пальмитата. Данные по операционной стабильности рекомбинантной липазы Geobacillus stearothermophillus G3 при температуре 50°C приведены на фиг.4, из которой видно, что время полуинактивации липазы G3 при температуре 50°C составляет 145 мин.
Полученный штамм, по сравнению с остальными, продуцирует липазу бактерии Geobacillus stearothermophilus G3, обладающую высокой операционной стабильностью, при 50°C время ее полуинактивации составляет 145 мин, а также имеет щелочной оптимумом активности. Применение данной термостабильной липазы в процессах переэтерификации в составе гетерогенных биокатализаторов пищевых жиров позволит существенно увеличить время их эксплуатации, что, в конечном счете, позволяет снизить себестоимость процесса получения жиров специального назначения.
Источники информации
1. Houde A., Kademi A., Leblanc D. Lipases and their industrial applications: an overview // Appl. Biochem. Biotechnol. 2004. V.118. №1-3. P.155-170.
2. Fishman A., Basheer S., Shatzmiller S., Cogan U. Fatty-acid-modified enzymes as effective enantioselective catalysts in microaqueous organic media // Biotechnol. Lett. 1998. V.20. №6. P.535-538.
3. Fernandez-Lafuente R. Lipase from Thermomyces lanuginosus: Uses and prospects as an industrial biocatalyst // Journal of Molecular Catalysis B: Enzymatic. 2010. V.62. №3-4. P.197-212.
4. Christensen M.W., Andersen L., Husum T.L., Kirk O. Industrial lipase immobilization // European Journal of Lipid Science and Technology. 2003. V.105. №6. P.318-321.
5. Houde A., Kademi A., Leblanc D. Lipases and their industrial applications: an overview // Appl. Biochem. Biotechnol. 2004. V.118. №1-3. P.155-170.
6. Hasan F., Shah A.A., Hameed A. Industrial applications of microbial lipases // Enzyme and Microbial Technology. 2006. V.39. №2. P.235-251.
7. Gupta R., Gupta N., Rathi P. Bacterial lipases: an overview of production, purification and biochemical properties // Appl. Microbiol. Biotechnol. 2004. V.64. P.763-781.
8. Li H. Zhang X. Characterization of thermostable lipase from thermophilic Geobacillus sp. TW1 // Protein Expression and Purification. 2005. V.42, №1. P.153-159.
9. Solimana N.A., Knoll M., Abdel-Fattaha Y.R., Schmid R.D., Langeb S. Molecular cloning and characterization of thermostable esterase and lipase from Geobacillus thermoleovorans YN isolated from desert soil in Egypt // Process Biochemistry. 2007. V.42. №7. P.1090-1100.
10. Villeneuve P. Biocatalysis in lipid modification // European Journal of Lipid Science and Technology. 2013. V.115. №4. P.377-378.
11. Choi J.H. Lee S.Y. Secretory and extracellular production of recombinant proteins using Escherichia coli // Appl. Microbiol. Biotechnol. 2004. V.64. P.625-635.
12. Miller E.M., Nickoloff J.A. Escherichia coli Electrotransformation // Methods in Molecular Biology. 1995. V.47. P.105-113.
13. Sambrook J. Molecular Cloning: A Laboratory Manual, Third Edition. Cold Spring Harbor Laboratory Press. 2001. 2344 p.
14. Farneta A.M., Qasemiana L., Goujarda L., Gilb G., Guirala D., Ruaudela F., Ferrea E. A modified method based on p-nitrophenol assay to quantify hydrolysis activities of lipases in litters // Soil Biology and Biochemistry. 2010. V.42. №2. P.386-389.

Claims (1)

  1. Штамм бактерии Esherichia coli XL1-blue, содержащий рекомбинантную плазмиду pQS-G3, депонированный в ФБУН ГНЦ ВБ «Вектор» под регистрационным номером B-1298, предназначенный для получения термостабильной липазы бактерии Geobacillus stearothermophillus G3.
RU2013142983/10A 2013-09-23 2013-09-23 ШТАММ БАКТЕРИИ Escerichia coli XL1-blue/pQS-G3, ПРОДУЦЕНТ ТЕРМОСТАБИЛЬНОЙ ЛИПАЗЫ БАКТЕРИИ Geobacillus stearothermophilus G3 RU2540873C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013142983/10A RU2540873C1 (ru) 2013-09-23 2013-09-23 ШТАММ БАКТЕРИИ Escerichia coli XL1-blue/pQS-G3, ПРОДУЦЕНТ ТЕРМОСТАБИЛЬНОЙ ЛИПАЗЫ БАКТЕРИИ Geobacillus stearothermophilus G3

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013142983/10A RU2540873C1 (ru) 2013-09-23 2013-09-23 ШТАММ БАКТЕРИИ Escerichia coli XL1-blue/pQS-G3, ПРОДУЦЕНТ ТЕРМОСТАБИЛЬНОЙ ЛИПАЗЫ БАКТЕРИИ Geobacillus stearothermophilus G3

Publications (1)

Publication Number Publication Date
RU2540873C1 true RU2540873C1 (ru) 2015-02-10

Family

ID=53286996

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013142983/10A RU2540873C1 (ru) 2013-09-23 2013-09-23 ШТАММ БАКТЕРИИ Escerichia coli XL1-blue/pQS-G3, ПРОДУЦЕНТ ТЕРМОСТАБИЛЬНОЙ ЛИПАЗЫ БАКТЕРИИ Geobacillus stearothermophilus G3

Country Status (1)

Country Link
RU (1) RU2540873C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2808501C1 (ru) * 2023-02-15 2023-11-28 федеральное государственное бюджетное образовательное учреждение высшего образования "Алтайский государственный университет" Рекомбинантная плазмида pBU-LipA, обеспечивающая синтез белка липазы А штамма Bacillus natto IAN

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7319029B2 (en) * 2004-08-02 2008-01-15 Universiti Purta Malaysia Lipase from Geobacillus sp. strain T1
EP0977869B2 (en) * 1997-04-09 2008-11-12 Danisco A/S Lipase and use of same for improving doughs and baked products
EP2450458A2 (en) * 2010-09-14 2012-05-09 Universiti Putra Malaysia (UPM) Novel microorganisms producing a thermostable lipase and their use
RU2451075C1 (ru) * 2011-04-08 2012-05-20 Федеральное государственное унитарное предприятие "Государственный научно-исследовательский институт генетики и селекции промышленных микроорганизмов" (ФГУП "ГосНИИгенетика") Рекомбинантный штамм дрожжей yarrowia-lipolytica - продуцент липазы

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0977869B2 (en) * 1997-04-09 2008-11-12 Danisco A/S Lipase and use of same for improving doughs and baked products
US7319029B2 (en) * 2004-08-02 2008-01-15 Universiti Purta Malaysia Lipase from Geobacillus sp. strain T1
EP2450458A2 (en) * 2010-09-14 2012-05-09 Universiti Putra Malaysia (UPM) Novel microorganisms producing a thermostable lipase and their use
RU2451075C1 (ru) * 2011-04-08 2012-05-20 Федеральное государственное унитарное предприятие "Государственный научно-исследовательский институт генетики и селекции промышленных микроорганизмов" (ФГУП "ГосНИИгенетика") Рекомбинантный штамм дрожжей yarrowia-lipolytica - продуцент липазы

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI H. et.al. Characterization of thermostable lipase from thermophilic Geobacillus sp. TW1, Protein Expr Purif. 2005 Jul;42(1):153-9. Epub 2005 Mar 31. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2808501C1 (ru) * 2023-02-15 2023-11-28 федеральное государственное бюджетное образовательное учреждение высшего образования "Алтайский государственный университет" Рекомбинантная плазмида pBU-LipA, обеспечивающая синтез белка липазы А штамма Bacillus natto IAN

Similar Documents

Publication Publication Date Title
Sekhon et al. Enhanced biosurfactant production through cloning of three genes and role of esterase in biosurfactant release
Li et al. Characterization of thermostable lipase from thermophilic Geobacillus sp. TW1
Abdel-Fattah et al. Identification and over-expression of a thermostable lipase from Geobacillus thermoleovorans Toshki in Escherichia coli
Fulzele et al. Characterization of novel extracellular protease produced by marine bacterial isolate from the Indian Ocean
Kourist et al. Protein engineering and discovery of lipases
Brault et al. Isolation and characterization of EstC, a new cold-active esterase from Streptomyces coelicolor A3 (2)
Immanuel et al. Investigation of lipase production by milk isolate Serratia rubidaea
Wang et al. A novel low-temperature alkaline lipase from Acinetobacter johnsonii LP28 suitable for detergent formulation
Wi et al. Characterization and a point mutational approach of a psychrophilic lipase from an arctic bacterium, Bacillus pumilus
Zhang et al. Purification and characterization of a novel organic solvent-tolerant and cold-adapted lipase from Psychrobacter sp. ZY124
Daskaya-Dikmen et al. Cold active pectinase, amylase and protease production by yeast isolates obtained from environmental samples
Annamalai et al. Thermostable, alkaline tolerant lipase from Bacillus licheniformis using peanut oil cake as a substrate
Jiewei et al. Purification and characterization of a cold-adapted lipase from Oceanobacillus strain PT-11
Demera et al. Production, extraction and characterization of lipases from the antarctic yeast Guehomyces pullulans
Triyaswati et al. Lipase-producing filamentous fungi from non-dairy creamer industrial waste
Mazhar et al. Optimization of low-cost solid-state fermentation media for the production of thermostable lipases using agro-industrial residues as substrate in culture of Bacillus amyloliquefaciens
Wu et al. Identification of novel esterase from metagenomic library of Yangtze River
Su et al. Cloning, expression, and characterization of a cold-active and organic solvent-tolerant lipase from Aeromicrobium sp. SCSIO 25071
Zha et al. Molecular identification of lipase LipA from Pseudomonas protegens Pf-5 and characterization of two whole-cell biocatalysts Pf-5 and Top10lipA
Zhang et al. Thermostable esterase from Thermoanaerobacter tengcongensis: high-level expression, purification and characterization
EP1920051B1 (en) Lipase
Park et al. A new esterase showing similarity to putative dienelactone hydrolase from a strict marine bacterium, Vibrio sp. GMD509
Chen et al. Protein engineering and homologous expression of Serratia marcescens lipase for efficient synthesis of a pharmaceutically relevant chiral epoxyester
Lanka et al. Optimization of process variables for extracellular lipase production from Emericella nidulans NFCCI 3643 isolated from palm oil mill effluent (POME) dump sites using OFAT method
RU2540873C1 (ru) ШТАММ БАКТЕРИИ Escerichia coli XL1-blue/pQS-G3, ПРОДУЦЕНТ ТЕРМОСТАБИЛЬНОЙ ЛИПАЗЫ БАКТЕРИИ Geobacillus stearothermophilus G3