RU2539823C1 - Способ самонаведения малоразмерных ракет на цель и система для его осуществления - Google Patents

Способ самонаведения малоразмерных ракет на цель и система для его осуществления Download PDF

Info

Publication number
RU2539823C1
RU2539823C1 RU2013149714/28A RU2013149714A RU2539823C1 RU 2539823 C1 RU2539823 C1 RU 2539823C1 RU 2013149714/28 A RU2013149714/28 A RU 2013149714/28A RU 2013149714 A RU2013149714 A RU 2013149714A RU 2539823 C1 RU2539823 C1 RU 2539823C1
Authority
RU
Russia
Prior art keywords
input
target
output
inputs
rocket
Prior art date
Application number
RU2013149714/28A
Other languages
English (en)
Inventor
Василий Васильевич Ефанов
Виктор Николаевич Федяев
Николай Георгиевич Кондрашов
Дмитрий Олегович Савельев
Original Assignee
Василий Васильевич Ефанов
Виктор Николаевич Федяев
Николай Георгиевич Кондрашов
Дмитрий Олегович Савельев
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Василий Васильевич Ефанов, Виктор Николаевич Федяев, Николай Георгиевич Кондрашов, Дмитрий Олегович Савельев filed Critical Василий Васильевич Ефанов
Priority to RU2013149714/28A priority Critical patent/RU2539823C1/ru
Application granted granted Critical
Publication of RU2539823C1 publication Critical patent/RU2539823C1/ru

Links

Images

Abstract

Изобретение относится к навигационной технике и предназначено для решения проблемы самонаведения кратковременно взаимодействующих малоразмерных летательных аппаратов методом ″погони″. Технический результат - повышение точности наведения. Для этого в полете контролируют вектор скорости ракеты так, чтобы он был направлен на цель по линии вектора направления «ракета-цель», определяют стороны отклонения скорости движения ракеты относительно направления вектора скорости «ракета-цель» на основе разложения суммарной скорости «ракета-цель» на две составляющие: радиальную и тангенциальную, и одновременной оценки радиальной и тангенциальной составляющей суммарной скорости «ракета-цель». При этом относительные величины значений доплеровских частот радиальной и тангенциальной составляющей могут быть между собой либо равными, либо относительно большими, либо относительно меньшими, при этом соответственно будут изменяться отношения напряжений Zi, образованные этими скоростями. 2 н.п. ф-лы, 3 ил.

Description

Изобретение относится к навигационной технике и предназначено, главным образом, для решения проблемы самонаведения кратковременно взаимодействующих малоразмерных летательных аппаратов методом ″погони″ (или так называемым методом ″кривой атаки″).
Известен способ самонаведения ракеты на цель [1], заключающийся в установке остронаправленной антенны на стабилизированной платформе по информации с командного пункта, таким образом, чтобы ось ее равносигнальной зоны совпала с направлением на цель. В начальном процессе самонаведения радиолокатор по команде, поступившей с таймера, совместно с гироскопом измеряет угол отклонения направления на цель от направления равносигнальной зоны антенны. Сигнал ошибки с выхода радиолокатора поступает на устройство управления, корректирующее траекторию движения ракеты.
Известно устройство самонаведения, описанное в [1], которое содержит антенну, радиолокатор, таймер, гироскоп, стабилизированную платформу, мотор начальной установки, угломерный радиодатчик и устройство управления.
Недостатками данного способа и устройства является сложность и громоздкость устройства, содержащего остронаправленную антенну и гироскопический координатор, которые не всегда могут быть реализованы в изделиях ограниченных размеров, в том числе и во многих малоразмерных ракетах. Следовательно, возникает главная проблема - создание устройства самонаведения методом ″погони″ для летательных аппаратов ограниченных размеров, в частности для малоразмерных ракет.
Наиболее близким к изобретению является способ самонаведения ракеты на цель, заключающийся в полете ракеты относительно цели таким образом, чтобы вектор скорости ракеты постоянно был направлен на цель по линии вектора направления «ракета-цель», определении стороны отклонения скорости движения ракеты относительно направления вектора скорости «ракета-цель» за счет разложения суммарной скорости «ракета-цель» на две составляющие: радиальную и тангенциальную, и одновременной оценки радиальной и тангенциальной составляющей суммарной скорости «ракета-цель», при этом относительные величины значений доплеровских частот радиальной и тангенциальной составляющей могут быть между собой либо равными, либо относительно большими, либо относительно меньшими, при этом соответственно будут изменяться отношения напряжений Zi, образованные этими скоростями через доплеровские частоты
Figure 00000001
где Δ U F i = U F д , с б л U F д . τ
Figure 00000002
- разностный сигнал, при этом в случае если значения Zi больше 1, необходимо производить поворот строительной оси ракеты в одну сторону, а если условие Zi меньше 1 - производить ее поворот в противоположную сторону, отличающийся тем, что дополнительно анализируют динамику изменения процесса наведения ракеты за счет анализа динамики изменения отношений напряжений и осуществляют изменения управляющего воздействия на исполнительное устройство с учетом динамики сближения ракеты и цели, процесс наведения продолжается до момента контактной встречи ракеты с целью, при этом слабая направленность антенны позволяет обеспечивать наведение ракеты методом ″погони″ даже при случайных колебаниях ее оси относительно цели [2].
Наиболее близкой к изобретению является система самонаведения ракеты на цель, которая содержит антенну, автодинный радиолокатор с двумя выходами, электронный ключ, блок памяти, первый и второй блок вычислений, логическое устройство, устройство управления и таймер, при этом антенна соединена с первым входом радиолокатора, первый выход которого соединен как с первым сигнальным, так и со вторым блокирующим входом электронного ключа, а второй выход радиолокатора соединен с первым входом первого блока вычислений, выход электронного ключа соединен с входом блока памяти и вторым входом первого блока вычислений, выход которого соединен с первым входом второго блока вычисления, выход которого соединен с входом логического устройства, первый и второй выходы которого соединены соответственно с первым и вторым входами устройства управления, выход блока памяти соединен со вторым входом второго блока вычислений, а выход таймера, на вход которого подается внешняя команда ″Пуск″, соединен со вторым входом автодинного радиолокатора, имеющего два выхода рабочих сигналов, образованных соответственно амплитудной и частотной внутренней модуляцией в автодине, а антенна является приемопередающей и слабонаправленной [2].
Недостатком данного устройства является недостаточная точность сопровождения, обусловленная тем, что определяется только сторона отклонения и не определяется динамика отклонения ракеты относительно линии визирования «ракета-цель».
Цель изобретения - повышение точности наведения управляемой ракеты на цель за счет учета динамики отклонения ракеты относительно линии визирования «ракета-цель».
Данная цель достигается в способе самонаведения ракеты на цель, заключающемся в полете ракеты относительно цели таким образом, чтобы вектор скорости ракеты постоянно был направлен на цель по линии вектора направления «ракета-цель», определении стороны отклонения скорости движения ракеты относительно направления вектора скорости «ракета-цель» за счет разложения суммарной скорости «ракета-цель» на две составляющие: радиальную и тангенциальную, и одновременной оценки радиальной и тангенциальной составляющей суммарной скорости «ракета-цель», при этом относительные величины значений доплеровских частот радиальной и тангенциальной составляющей могут быть между собой либо равными, либо относительно большими, либо относительно меньшими, при этом соответственно будут изменяться отношения напряжений Zi, образованные этими скоростями через доплеровские частоты
Figure 00000003
где Δ U F i = U F д , с б л U F д . τ
Figure 00000004
- разностный сигнал, при этом в случае если значения Zi больше 1, необходимо производить поворот строительной оси ракеты в одну сторону, а если условие Zi меньше 1 - производить ее поворот в противоположную сторону, дополнительно анализируют динамику изменения процесса наведения ракеты за счет анализа динамики изменения отношений напряжений и осуществляют изменения управляющего воздействия на исполнительное устройство с учетом динамики сближения ракеты и цели, процесс наведения продолжается до момента контактной встречи ракеты с целью, при этом слабая направленность антенны позволяет обеспечивать наведение ракеты методом ″погони″ даже при случайных колебаниях ее оси относительно цели.
Предлагаемый способ реализуется в системе самонаведения ракеты на цель, которая содержащим антенну, автодинный радиолокатор с двумя выходами, электронный ключ, блок памяти, первый и второй блок вычислений, логическое устройство, устройство управления и таймер, при этом антенна соединена с первым входом радиолокатора, первый выход которого соединен как с первым сигнальным, так и со вторым блокирующим входом электронного ключа, а второй выход радиолокатора соединен с первым входом первого блока вычислений, выход электронного ключа соединен с входом блока памяти и вторым входом первого блока вычислений, выход которого соединен с первым входом второго блока вычисления, выход которого соединен с входом логического устройства, первый и второй выходы которого соединены соответственно с первым и вторым входами устройства управления, выход блока памяти соединен со вторым входом второго блока вычислений, а выход таймера, на вход которого подается внешняя команда ″Пуск″, соединен со вторым входом автодинного радиолокатора, имеющего два выхода рабочих сигналов, образованных соответственно амплитудной и частотной внутренней модуляцией в автодине, а антенна является приемопередающей и слабонаправленной, в которую дополнительно введен блок оценки динамики сближения ракеты, который содержит n-пороговых устройств, задатчик сигналов, первый и второй элементы ИЛИ, сдвиговый регистр, n-элементов НЕ, n-триггеров, n-элементов И, n-счетчиков, n-делителей, генератор сигналов, при этом выходы команды «Пуск» и второго блока вычислений соединены соответственно с первым и вторым входами блока оценки динамики сближения ракеты, первый вход которого является вторыми входами сдвигового регистра, n-триггеров и n-счетчиков, а второй вход является первыми входами n-пороговых устройств, вторые входы которых соединены с выходами задатчика сигналов, а выходы n-пороговых устройств соединены с входами первого элемента ИЛИ, выход которого соединен с первым входом сдвигового регистра, третий вход которого соединен с выходом генератора импульсов, нечетные и четные выходы сдвигового регистра соединены соответственно с первыми входами n-триггеров и входами n-элементов НЕ, выходы которых соединены со вторыми входами n-элементов И, первые и третьи входы которых соединены соответственно с выходами триггеров и выходом генератора импульсов, выходы элементов И соединены с первыми входами n-счетчиков, выходы которых соединены с первыми входами делителей, вторые входы которых соединены с выходами n-пороговых устройств, выходы n-делителей соединены с входами второго элемента ИЛИ, выход которого является выходом блока оценки динамики сближения ракеты.
На фиг.1 представлена функциональная схема предлагаемого устройства, где 1 - антенна; 2 - автодинный радиолокатор; 3 - электронный ключ; 4 - блок памяти; 5 - первый блок вычислений; 6 - второй блок вычислений; 7 - логическое устройство; 8 - устройство управления; 9 - таймер, 10 - блок оценки динамики сближения ракеты, который содержит 11 - n-пороговых устройств, 12 - задатчик сигналов, 13, 14 - первый и второй элементы ИЛИ, 15 - сдвиговый регистр, 16 - n-элементов НЕ, 17 - n-триггеров, 18 - n-элементов И, 19 - n-счетчиков, 20 - n-делителей, 21 - генератор сигналов.
На фиг.2 и 3 графически представлено взаимодействие ракеты (Р) и цели (Ц) методом «погони» в меридиональной плоскости (вдоль строительной оси ракеты).
Система самонаведения ракеты на цель содержит антенну 1, радиолокатор 2, электронный ключ 3; блок 4 памяти; первый 5 и второй 6 блоки вычислений; логическое устройство 7; устройство 8 управления; таймер 9, при этом антенна соединена с первым входом радиолокатора 2, первый выход которого соединен как с первым сигнальным, так и со вторым блокирующим входом электронного ключа 3, а второй выход радиолокатора 2 соединен с первым входом первого блока вычислений 5. Выход электронного ключа 3 соединен с входом блока памяти 4 и вторым входом первого блока вычислений 5, выход которого соединен с первым входом второго блока вычисления 6. Выход второго блока вычислений 6 соединен с входом логического устройства 7, первый и второй выходы которого соединены соответственно с первым и вторым входами устройства управления 8. Выход блока памяти 4 соединен со вторым входом второго блока вычислений 6, а выход таймера 9, на вход которого подается внешняя команда ″Пуск″, соединен со вторым входом автодинного радиолокатора 2.
Блок 10 оценки динамики сближения ракеты содержит n-пороговых устройств 11, задатчик 12 сигналов, первый 13 и второй 14 элементы ИЛИ, сдвиговый регистр 15, n-элементов НЕ 16, n-триггеров 17, n-элементов И 18, n-счетчиков 19, n-делителей 20, генератор сигналов 21, при этом выходы команды «Пуск» и второго 6 блока вычислений соединены соответственно с первым и вторым входами блока 10 оценки динамики сближения ракеты, первый вход которого является вторыми входами сдвигового регистра 15, n-триггеров 17 и n-счетчиков 19, а второй вход является первыми входами n-пороговых устройств 11, вторые входы которых соединены с выходами задатчика 12 сигналов, а выходы n-пороговых устройств 11 соединены с входами первого 13 элемента ИЛИ, выход которого соединен с первым входом сдвигового регистра 15, третий вход которого соединен с выходом генератора 21 импульсов, нечетные и четные выходы сдвигового регистра 15 соединены соответственно с первыми входами n-триггеров 17 и входами n-элементов НЕ 16, выходы которых соединены со вторыми входами n-элементов И 18, первые и третьи входы которых соединены соответственно с выходами триггеров 17 и выходом генератора 21 импульсов, выходы элементов И 18 соединены с первыми входами n-счетчиков 19, выходы которых соединены с первыми входами делителей 20, вторые входы которых соединены с выходами n-пороговых устройств 11, выходы n-делителей 20 соединены с входами второго 14 элемента ИЛИ, выход которого является выходом блока 10 оценки динамики сближения ракеты
Автодинный радиолокатор 2 имеет два выхода рабочих сигналов, образованных соответственно амплитудной и частотной внутренней модуляцией в автодине, а антенна 1 является приемопередающей и слабонаправленной.
Начало работы предлагаемого устройства самонаведения (t0) задается таймером 9 и подачей на его вход внешней команды «Пуск» (фиг.1) (например, при выстреле ракеты). В качестве таймера 9 может быть использован, например, входящий в состав взрывателя ракеты предохранительно-исполнительный механизм (ПИМ) с часовым механизмом [1].
Перед рассмотрением работы предлагаемого устройства сначала приведем некоторые положения.
1) Принимается, что в процессе самонаведения ракеты методом ″погони″ в результате его кратковременности скорость цели Vц и ракеты Vр будут постоянными величинами (Vц=const, Vр=const) и при этом вектор скорости ракеты Vр направлен вдоль ее строительной оси.
2) Известно [3], что при двухточечном самонаведении ракеты на цель методом ″погони″ полет ракеты (Р) относительно цели (Ц) осуществляется таким образом, что вектор скорости ракеты Vр постоянно направлен на цель по линии вектора R ¯
Figure 00000005
направления «ракета-цель».
При таком самонаведении угол β (фиг.2), образованный направлением вектора скорости ракеты Vр и направлением линии вектора R ¯
Figure 00000006
«ракета-цель», всегда равен нулю.
На фиг.2 и 3 графически представлено взаимодействие ракеты (Р) и цели (Ц) методом «погони» в меридиональной плоскости (вдоль строительной оси ракеты).
3) При движении ракеты со скоростью Vр и движении цели со скоростью Vц вектор их суммарной скорости может быть разложен на две составляющие: радиальную и тангенциальную (фиг.2). Радиальная составляющая скорости Vсбл может быть определена традиционным радиолокационным способом [4].
Одновременная оценка радиальной Vсбл и тангенциальной Vτ составляющей суммарной скорости «ракета-цель» Vрц (фиг.2) может производиться по частоте Доплера устройством, описанным, например, в [5].
Известно (см., например, [4]), что вектор радиальной составляющей суммарной скорости сближения объектов Vсбл всегда направлен в сторону цели (фиг.2, а), а частота Доплера Fд.сбл определяется этой скоростью по формуле
Figure 00000007
где λ - длина волны радиолокационного сигнала радиолокатора.
Частота Доплера F д τ
Figure 00000008
, образованная тангенциальной составляющей суммарной скорости сближения объектов Vτ (фиг.2,а), определяется по формуле
Figure 00000009
Из (1) следует, что радиальная составляющая суммарной скорости ракеты и цели Vсбл будет всегда максимальной при условии α0, равной нулю. Но при этом из (2) следует, что при условии α0, равной нулю, т.е. при совмещении векторов суммарной скорости Vрц с вектором ее радиальной составляющей Vсбл, тангенциальная составляющая вектора скорости Vτ будет равна нулю (фиг.2). Такое угловое положение векторов скоростей в пространстве меридиональной плоскости может достигаться изменением направления вектора скорости полета ракеты Vр поворотом положения ее строительной оси, например, аэродинамическим или реактивным способом. Таким образом, параметром рассогласования при управлении ракеты методом ″погони″ становится напряжение сигнала, образованное тангенциальной составляющей суммарной скорости движения ракеты и цели (UFд.τ). Изменением положения продольной оси ракеты в меридиональной плоскости таким образом, чтобы на втором выходе радиолокатора этот сигнал будет отсутствовать (UFд.τ равно нулю), обеспечивается условие движения ракеты методом ″погони″, т.к. при этом угол β становится равным нулю (фиг.2 и 3).
Рассмотрим работу функциональной схемы предлагаемого устройства самонаведения (фиг.1).
По внешней команде ″Пуск″ на вход таймера 9 поступает одиночный сигнал запуска, после чего с выхода таймера 9 на второй вход автодинного радиолокатора 2 поступает сигнал для его включения. Автодинный радиолокатор 2 начинает вырабатывать непрерывный немодулированный сигнал, излучаемый в пространство слабонаправленной приемопередающей антенной 1. При облучении цели этим сигналом отраженный от нее сигнал через антенну 1 поступает на вход автодинного радиолокатора 2.
В рассматриваемом устройстве применяется автодинный радиолокатор 2, структурная схема которого описана в патенте [5]. Этот автодин имеет два выхода сигналов доплеровских частот: на первом выходе - сигнал, образованный радиальной скоростью Vсбл, а на втором выходе - сигнал, образованный тангенциальной составляющей Vτ суммарной скорости «ракета-цель» Vрц. На этих выходах будут соответствующие уровни сигналов: для скорости Vсбл напряжение будет UFд.сбл, а для скорости Vτ напряжение будет UFд.τ, т.е. величина сигнала доплеровской частоты на первом выходе автодинного радиолокатора 2 пропорциональна величине частоты радиальной составляющей вектора суммарной скорости «ракета-цель» Fд.сбл, а на его втором выходе сигнал доплеровской частоты пропорционален величине частоты тангенциальной составляющей вектора суммарной скорости «ракета-цель» Fдτ. С первого выхода автодинного радиолокатора 2 сигнал доплеровской частоты UFд.сбл поступает на первый сигнальный и второй блокировочный входы электронного ключа 3, выход которого соединен с входом блока памяти 4 и вторым входом первого блока вычислений 5, на первый вход которого со второго выхода автодинного радиолокатора 2 поступает сигнал доплеровской частоты тангенциальной составляющей (UFд.τ). Затем электронный ключ 3 самоблокируется (выключается) сигналом UFд.сбл, поступившим с первого выхода автодинного радиолокатора 2. В начальный момент времени работы устройства самонаведения в первом блоке вычислений 5 производится вычитание напряжений двух сигналов: одного - поступающего на его второй вход с выхода электронного ключа 3 U F д . с б л
Figure 00000010
и второго - текущего значения напряжения сигнала U F д . τ
Figure 00000011
, поступающего на первый вход блока вычислений 5 со второго выхода автодинного радиолокатора 2, в результате на выходе блока вычислений 5 появится разностный сигнал Δ U F д . i
Figure 00000012
Figure 00000013
поступающий затем на первый вход второго блока вычислений 6. На второй вход блока вычислителей 6 поступает сигнал первичного измерения доплеровской частоты Fдо.сбл с выхода блока памяти 4 в виде напряжения UFдо.сбл.
Таким образом, на два входа второго блока вычислений 6 поступают соответственно два сигнала: на первый вход поступает сигнал с выхода первого вычислителя 5 как текущее значение U F д . i
Figure 00000014
и второй сигнал поступает на второй вход блока вычислений 6 с выхода блока памяти 4 в виде постоянного значения UFдо.сбл, при этом на выходе блока вычислений 6 будет сигнал Zi, являющийся величиной как частное от деления этих входных величин
Figure 00000015
В зависимости от направления вектора скорости «ракета-цель» Vрц (характеризуемое величиной угла α, см. фиг.3), определяемые, например, направлением скорости движения ракеты Vр, относительные величины значений доплеровских частот Vсбл и Vτ могут быть между собой либо равными, либо относительно большими, либо относительно меньшими, т.е.
Figure 00000016
Соответственно этому будут изменяться отношения напряжений Zi, образованные этими скоростями через доплеровские частоты UFдо.сбл и
Figure 00000017
Сигнал Zi с выхода второго блока вычислений 6 поступает на вход логического устройства 7, с выхода которого сигнал поступает только на один из двух его выходов: на первом выходе появится сигнал при условии, если Z i = U F д о . с б л Δ U F д . i > 1
Figure 00000018
, а на втором - при условии Z i = U F д о . с б л Δ U F д . i < 1
Figure 00000019
. Значения величин сигнала Zi являются управляющими.
Так, например, условие Zi больше 1, означает, что необходимо производить поворот строительной оси ракеты в одну сторону, а условие Zi меньше 1 - производить ее поворот в противоположную сторону.
С одного из двух выходов логического устройства 7 сигнал поступает на соответствующий вход устройства управления 8, чем производится управление поворотом строительной оси ракеты до тех пор, пока не будет выполнено условие отсутствия сигнала, образованного тангенциальной составляющей скорости «ракета-цель», при котором на двух выходах логического устройства 7 сигнала не будет, чем подтверждается проводимый процесс самонаведения ракеты на цель методом ″погони″.
Кроме того дополнительно определяется динамика сближения ракеты с целью. При этом предварительно по команде «Пуск» производится обнуление сдвигового регистра 15, триггеров 17 и n-счетчиков 19 путем подачи сигнала на вторые входы.
С выхода второго 6 блока вычислений сигнал поступает на второй вход блока 10 оценки динамики сближения ракеты с целью и соответственно на первые входы n-пороговых устройств 11, на вторые входы которых поступают сигналы с выходов задатчика 12 сигналов (фиг.1).
В зависимости от величины сигнала, которая определяется динамикой сближения ракеты с цель, происходит срабатывание одного из n-пороговых устройств 11, при этом сигнал через первый 13 элемент ИЛИ поступает на вход сдвигового регистра 15, с четного выхода которого поступает на первый вход одного из триггеров 17, с выхода которого поступает на один из первых входов n-элемента И 18, на второй и третий входы которого поступают сигналы с выхода элемента НЕ 16 и генератора 21 сигналов.
Сигнал с выхода одного из n-элементов И 18 поступает на один из входов n-счетчиков 19 до момента срабатывания следующего одного из n-пороговых устройств 11, при этом сигнал через первый 13 элемент ИЛИ поступает на вход сдвигового регистра 15, с нечетного выхода которого поступает на вход одного из элементов НЕ 16, тем самым снимая сигнал со второго входа элемента И 18.
С выхода одного из n-счетчиков 19 сигнал через один из n-делителей 20, один из входов второго 14 элемента ИЛИ поступает на третий вход устройства 8 управления.
Аналогично процесс продолжается при следующем изменении величины сигнала до момента контактной встречи ракеты с целью. Слабая направленность антенны позволяет обеспечивать правильное наведение ракеты методом ″погони″ даже при случайных колебаниях ее оси относительно цели.
Источники информации
1. Дорофеев А.Н. Взрыватели ракет. М., Военное издательство МО СССР. 1963, стр.86 и др.
2. Патент РФ на изобретение №2466344. Устройство самонаведения. Авторы Климатов Б.М., Смагин В.А.
3. Гуткин Л.С., Борисов Ю.П., Валуев А.А. и др. Радиоуправление реактивными снарядами и космическими аппаратами. / Под общей ред. Л.С. Гуткина. М., Сов. радио, 1968, стр.597, 680.
4. Коган И.М. Ближняя радиолокация. Теоретические основы. М., Сов. радио, 1973, стр.272.
5. Патент №2351946. Автодинное устройство системы ближней радиолокации. Автор Климашов Б.М.

Claims (2)

1. Способ самонаведения ракеты на цель заключается в полете ракеты относительно цели таким образом, чтобы вектор скорости ракеты постоянно был направлен на цель по линии вектора направления «ракета-цель», определении стороны отклонения скорости движения ракеты относительно направления вектора скорости «ракета-цель» за счет разложения суммарной скорости «ракета-цель» на две составляющие: радиальную и тангенциальную, и одновременной оценки радиальной и тангенциальной составляющей суммарной скорости «ракета-цель», при этом относительные величины значений доплеровских частот радиальной и тангенциальной составляющей могут быть между собой либо равными, либо относительно большими, либо относительно меньшими, при этом соответственно будут изменяться отношения напряжений Zi, образованные этими скоростями через доплеровские частоты
Figure 00000020
,
Figure 00000021
и
Figure 00000022
,
где
Figure 00000023
- разностный сигнал, при этом в случае если значения Zi больше 1, необходимо производить поворот строительной оси ракеты в одну сторону, а если условие Zi меньше 1 - производить ее поворот в противоположную сторону, отличающийся тем, что дополнительно анализируют динамику изменения процесса наведения ракеты за счет анализа динамики изменения отношений напряжений и осуществляют изменения управляющего воздействия на исполнительное устройство с учетом динамики сближения ракеты и цели, процесс наведения продолжается до момента контактной встречи ракеты с целью, при этом слабая направленность антенны позволяет обеспечивать наведение ракеты методом ″погони″ даже при случайных колебаниях ее оси относительно цели.
2. Система самонаведения ракеты на цель содержит антенну, автодинный радиолокатор с двумя выходами, электронный ключ, блок памяти, первый и второй блок вычислений, логическое устройство, устройство управления и таймер, при этом антенна соединена с первым входом автодинного радиолокатора, первый выход которого соединен как с первым сигнальным, так и со вторым блокирующим входом электронного ключа, а второй выход автодинного радиолокатора соединен с первым входом первого блока вычислений, выход электронного ключа соединен с входом блока памяти и вторым входом первого блока вычислений, выход которого соединен с первым входом второго блока вычисления, выход которого соединен с входом логического устройства, первый и второй выходы которого соединены соответственно с первым и вторым входами устройства управления, выход блока памяти соединен со вторым входом второго блока вычислений, а выход таймера, на вход которого подается внешняя команда ″Пуск″, соединен со вторым входом автодинного радиолокатора, имеющего два выхода рабочих сигналов, образованных соответственно амплитудной и частотной внутренней модуляцией в автодине, а антенна является приемопередающей и слабонаправленной, отличающаяся тем, что в нее введен блок оценки динамики сближения ракеты, который содержит n-пороговых устройств, задатчик сигналов, первый и второй элементы ИЛИ, сдвиговый регистр, n-элементов НЕ, n-триггеров, n-элементов И, n-счетчиков, n-делителей, генератор сигналов, при этом выходы команды «Пуск» и второго блока вычислений соединены соответственно с первым и вторым входами блока оценки динамики сближения ракеты, первый вход которого является вторыми входами сдвигового регистра, n-триггеров и n-счетчиков, а второй вход является первыми входами n-пороговых устройств, вторые входы которых соединены с выходами задатчика сигналов, а выходы n-пороговых устройств соединены с входами первого элемента ИЛИ, выход которого соединен с первым входом сдвигового регистра, третий вход которого соединен с выходом генератора импульсов, нечетные и четные выходы сдвигового регистра соединены соответственно с первыми входами n-триггеров и входами n-элементов НЕ, выходы которых соединены со вторыми входами n-элементов И, первые и третьи входы которых соединены соответственно с выходами триггеров и выходом генератора импульсов, выходы элементов И соединены с первыми входами n-счетчиков, выходы которых соединены с первыми входами делителей, вторые входы которых соединены с выходами n-пороговых устройств, выходы n-делителей соединены с входами второго элемента ИЛИ, выход которого является выходом блока оценки динамики сближения ракеты.
RU2013149714/28A 2013-11-06 2013-11-06 Способ самонаведения малоразмерных ракет на цель и система для его осуществления RU2539823C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013149714/28A RU2539823C1 (ru) 2013-11-06 2013-11-06 Способ самонаведения малоразмерных ракет на цель и система для его осуществления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013149714/28A RU2539823C1 (ru) 2013-11-06 2013-11-06 Способ самонаведения малоразмерных ракет на цель и система для его осуществления

Publications (1)

Publication Number Publication Date
RU2539823C1 true RU2539823C1 (ru) 2015-01-27

Family

ID=53286656

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013149714/28A RU2539823C1 (ru) 2013-11-06 2013-11-06 Способ самонаведения малоразмерных ракет на цель и система для его осуществления

Country Status (1)

Country Link
RU (1) RU2539823C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2597309C1 (ru) * 2015-07-20 2016-09-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Уфимский государственный авиационный технический университет" Способ формирования траектории полета информационного летательного аппарата и устройство для его осуществления

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2474682A1 (fr) * 1980-01-29 1981-07-31 Telecommunications Sa Systeme de guidage d'engin au moyen d'un faisceau lumineux module
RU2241950C1 (ru) * 2003-06-16 2004-12-10 Государственное унитарное предприятие "Конструкторское бюро приборостроения" Способ управления ракетой и система наведения ракеты для его осуществления
RU2311605C2 (ru) * 2006-01-19 2007-11-27 Василий Васильевич Ефанов Способ функционирования информационно-вычислительной системы ракеты при наведении на цель и устройство для его осуществления
RU2351946C1 (ru) * 2007-10-15 2009-04-10 Государственное образовательное учреждение высшего профессионального образования Самарский государственный технический университет Автодинное устройство системы ближней радиолокации
RU2400690C1 (ru) * 2009-03-19 2010-09-27 Николай Евгеньевич Староверов Система наведения противосамолетных ракет
RU2466344C1 (ru) * 2011-05-16 2012-11-10 Федеральное Государственное Унитарное Предприятие "Научно-Исследовательский Институт "Экран" Устройство самонаведения

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2474682A1 (fr) * 1980-01-29 1981-07-31 Telecommunications Sa Systeme de guidage d'engin au moyen d'un faisceau lumineux module
RU2241950C1 (ru) * 2003-06-16 2004-12-10 Государственное унитарное предприятие "Конструкторское бюро приборостроения" Способ управления ракетой и система наведения ракеты для его осуществления
RU2311605C2 (ru) * 2006-01-19 2007-11-27 Василий Васильевич Ефанов Способ функционирования информационно-вычислительной системы ракеты при наведении на цель и устройство для его осуществления
RU2351946C1 (ru) * 2007-10-15 2009-04-10 Государственное образовательное учреждение высшего профессионального образования Самарский государственный технический университет Автодинное устройство системы ближней радиолокации
RU2400690C1 (ru) * 2009-03-19 2010-09-27 Николай Евгеньевич Староверов Система наведения противосамолетных ракет
RU2466344C1 (ru) * 2011-05-16 2012-11-10 Федеральное Государственное Унитарное Предприятие "Научно-Исследовательский Институт "Экран" Устройство самонаведения

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ЛАТУХИН А.Н. "ПРОТИВОТАНКОВОЕ ВООРУЖЕНИЕ". М., ВОЕНИЗДАТ, МО СССР, 1974, С.208-235. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2597309C1 (ru) * 2015-07-20 2016-09-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Уфимский государственный авиационный технический университет" Способ формирования траектории полета информационного летательного аппарата и устройство для его осуществления

Similar Documents

Publication Publication Date Title
EP1718918B1 (en) Rf attitude measurement system and method
US4264907A (en) Rolling dual mode missile
US4641801A (en) Terminally guided weapon delivery system
US10072908B2 (en) Missile seeker and guidance method
US3982246A (en) General method of geometrical passive ranging
RU2311605C2 (ru) Способ функционирования информационно-вычислительной системы ракеты при наведении на цель и устройство для его осуществления
US4168663A (en) Computer fuzes
RU2539823C1 (ru) Способ самонаведения малоразмерных ракет на цель и система для его осуществления
WO1983003894A1 (en) Terminally guided weapon delivery system
RU2466344C1 (ru) Устройство самонаведения
RU2695762C1 (ru) Способ формирования параметров рассогласования в радиоэлектронной системе управления ракетой класса &#34;воздух-воздух&#34; при её самонаведении на самолёт из состава их пары по его функциональному назначению по принципу &#34;ведущий-ведомый&#34;
Shinar et al. Three-dimensional validation of an integrated estimation/guidance algorithm against randomly maneuvering targets
US4560120A (en) Spin stabilized impulsively controlled missile (SSICM)
RU2392575C2 (ru) Устройство самонаведения
Khamis et al. Nonlinear finite-horizon regulation and tracking for systems with incomplete state information using differential state dependent Riccati equation
RU2539824C1 (ru) Система самонаведения на цель малоразмерных летательных аппаратов
RU2351889C2 (ru) Способ функционирования информационно-вычислительной системы ракеты и устройство для его осуществления
RU2586399C2 (ru) Способ комбинированного наведения летательного аппарата
RU2332634C1 (ru) Способ функционирования информационно-вычислительной системы ракеты и устройство для его осуществления
US5232182A (en) Autonomous system for initializing synthetic aperture radar seeker acquisition
RU2335730C2 (ru) Способ формирования сигнала управления ракетой
RU2812306C1 (ru) Способ самонаведения ракеты &#34;воздух-воздух&#34; с активной радиолокационной головкой самонаведения в вертикальной плоскости на вертолет с бортовым комплексом обороны
Kale Güvenç Range to-go estimation for a tactical missile with a passive seeker
RU2784492C1 (ru) Способ доставки полезной нагрузки на воздушный объект
Shinar et al. Improved estimation is a prerequisite for successful terminal guidance