RU2539367C1 - Способ фотодинамической терапии онкологических заболеваний - Google Patents

Способ фотодинамической терапии онкологических заболеваний Download PDF

Info

Publication number
RU2539367C1
RU2539367C1 RU2013149215/14A RU2013149215A RU2539367C1 RU 2539367 C1 RU2539367 C1 RU 2539367C1 RU 2013149215/14 A RU2013149215/14 A RU 2013149215/14A RU 2013149215 A RU2013149215 A RU 2013149215A RU 2539367 C1 RU2539367 C1 RU 2539367C1
Authority
RU
Russia
Prior art keywords
tissue
light
radiation
parameters
photosensitizer
Prior art date
Application number
RU2013149215/14A
Other languages
English (en)
Inventor
Сергей Александрович Лысенко
Михаил Михайлович Кугейко
Original Assignee
Белорусский Государственный Университет (Бгу)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Белорусский Государственный Университет (Бгу) filed Critical Белорусский Государственный Университет (Бгу)
Priority to RU2013149215/14A priority Critical patent/RU2539367C1/ru
Application granted granted Critical
Publication of RU2539367C1 publication Critical patent/RU2539367C1/ru

Links

Images

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

Изобретение относится к медицине и может быть использовано для выбора индивидуальных дозиметрических параметров при лазерной терапии тканей организма человека. Облучают ткань широкополосным излучением из видимого и ближнего ИК диапазонов спектра. Измеряют спектр диффузного отражения ткани. По спектру диффузного отражения ткани определяют ее структурно-морфологические параметры, в числе которых концентрация кровеносных сосудов fи фотосенсибилизатора Cв ткани, а также относительные содержания оксигемоглобина S и метгемоглобина Cв крови. Устанавливают спектр пространственной освещенности в ткани Ф(z, λ) с использованием модели переноса оптического излучения в ткани и найденных значений ее структурно-морфологических параметров. Длины волн и мощности лазерных источников, а также время лазерного воздействия на ткань, обеспечивающие наибольшее поглощение света фотосенсибилизатором и наилучшую генерацию кислорода на глубине залегания патологического участка ткани или во всей ее толще при минимальном воздействии лазерного излучения на здоровую ткань, определяют на основе распределений эффективностей поглощения света фотосенсибилизатором K(z, λ) и эффективности фотодиссоциации оксигемоглобина n(z, λ) по длине волны света λ и глубине ткани z, рассчитываемых на основе выражений:K(z, λ)=Cε(λ)Ф(z, λ),, где εи- молярные коэффициенты поглощения фотосенсибилизатора и оксигемоглобина, C=150 г/л - средняя концентрация гемоглобина в крови, µ=64500 г/моль - молярная масса гемоглобина, h - постоянная Планка; c - скорость света в среде; q - квантовый выход фотодиссоциации оксигемоглобина. Способ позволяет определить оптимальные для к�

Description

Способ относится к медицине и может быть использован для выбора индивидуальных дозиметрических параметров при лазерной терапии тканей организма человека.
Фотодинамическая терапия (ФДТ) является методом лечения рака с применением света и химического вещества - фотосенсибилизатора (ФС), используемого в сочетании с молекулярным кислородом, который, в свою очередь, вызывает повреждение и гибель раковых клеток. Физический механизм ФДТ можно представить следующим образом. После внутривенного введения ФС он избирательно накапливается в опухолевых тканях. При облучении пораженного участка ткани светом определенной длины волны сенсибилизатор поглощает кванты света и затем передает энергию молекулярному кислороду в ткани, вследствие чего происходит его активация и образуется так называемый синглетный кислород. Данная возбужденная форма молекулы кислорода токсична для биоткани и разрушает опухоль. ФДТ также приводит к нарушению питания и гибели опухоли за счет повреждения ее микрососудов.
Поскольку ФДТ сопровождается непрерывной утилизацией молекулярного кислорода в фотохимических реакциях, то для максимального повреждения раковых клеток необходимо поддерживать требуемый уровень оксигенации опухолевой ткани на протяжении всего сеанса терапии. Эффективным методом устранения недостатка кислорода (гипоксии) в зоне опухоли является его дополнительная экстракция за счет лазерно-индуцированной фотодиссоциации оксигемоглобина (HbO2) [1]. При этом важно обеспечить возможность генерации кислорода на требуемой глубине в ткани, где находится опухолевый участок с ФС. Для решения этой задачи требуется знание концентрации HbO2 в ткани и распределения освещенности Ф(z,λ) по глубине z ткани и длине волны света λ.
Известны способы повышения эффективности ФДТ [2-4], основанные на контроле расхода ФС в фотохимических реакциях с участием кислорода путем сравнения спектров диффузного отражения (ДО) или флуоресценции реальной ткани с аналогичными спектрами модельных растворов с известным содержанием ФС. Однако за счет большого количества оптически активных хромофоров ткани (поглощающих и рассеивающих оптическое излучение) линия поглощения ФС в спектре отражения или флуоресценции ткани может быть сдвинута, а ее форма модифицирована по отношению к аналогичной линии для модельных растворов. Поэтому попытка интерпретировать измеряемый спектр на основе аналогичных спектров модельных образцов с конкретными оптическими параметрами не всегда правомерна.
В работе [5] предложен способ определения концентрации ФС в ткани на основе количественного анализа спектра ДО ткани с использованием закона Ламберта-Бера. Данный способ не позволяет достичь высокой точности определения концентрации ФС - коэффициент корреляции между результатами спектрального и биохимического анализов составляет всего лишь 0,77-0,88 [5]. Кроме того, он не позволяет контролировать эффективность доставки световой мощности в различные слои ткани (т.е. не решает задачу послойной дозиметрии лазерного излучения) и определять индивидуальную терапевтическую дозу облучения.
Известен ряд способов [6-8], в которых о концентрации ФС и HbO2 в ткани, а также о глубине проникновения света в ткань судят, в диффузионном приближении, по спектру ДО ткани, измеряемому с пространственным разрешением. Однако сложность необходимого экспериментального оборудования, большой динамический диапазон регистрируемых сигналов и жесткие ограничения по геометрии измерений и оптическим параметрам ткани, накладываемые диффузионным приближением, существенно затрудняют использование данных методов в клинической практике. Кроме того, данные способы не позволяют оценивать эффективность поглощения света фотосенсибилизатором и оксигемоглобином в различных слоях ткани и выбирать оптимальную терапевтическую дозу облучения.
Известен способ определения концентрации ФС в ткани, основанный на измерениях сигналов флуоресценции и диффузного отражения на расстояниях 0,65 и 1,35 мм от источника возбуждающего излучения соответственно [9]. К недостаткам данного способа следует отнести необходимость калибровочных измерений для образца с известной концентрацией ФС и влияние различия оптических параметров ткани на длинах волн возбуждающего излучения и света флуоресценции на результат измерений. Кроме того, знания одной лишь концентрации ФС недостаточно для анализа эффективности протекания фотофизических и фотохимических процессов в облучаемой ткани пациента и выбора оптимальной дозы облучения.
Известны также способы лазерной терапии биологических тканей, основанные на использовании длины волн лазерного излучения, обеспечивающих наиболее эффективное воздействие на ФС и HbO2 в слоях ткани с различной глубиной залегания [10-12]. Данные способы основаны на результатах моделирования светового поля в ткани при средних или выборочных значениях ее параметров и носят рекомендательный характер по выбору длин волн лазерного излучения. Однако эти данные непригодны для выбора оптимальных энергетических параметров лазерного воздействия, поскольку такой выбор должен осуществляться с учетом спектров поглощения света ФС и HbO2 в реально облучаемой ткани. При этом необходимо также принимать во внимание морфологические изменения ткани, вызываемые лазерным излучением. По данным экспериментальных исследований [13-15] в процессе сеанса ФДТ происходит частичное разрушение стенок кровеносных сосудов (с высвобождением гемоглобина) и существенно повышается концентрация метгемоглобина в опухолевой ткани (до 60% от общей концентрации гемоглобина), что, разумеется, влияет на выбор оптимальных спектральных и энергетических характеристик лазерного излучения.
Наиболее близким к заявляемому изобретению является способ фотодинамической терапии онкологических заболеваний [16], включающий введение фотосенсибилизатора в зону опухолевой ткани и воздействие на нее лазерным излучением одновременно на двух длинах волн. Первая длина волны совпадает с максимумом поглощения ФС, а вторая используется для фотодиссоциации оксигемоглобина с дополнительным выделением кислорода. Данный способ предполагает использование одних и тех же длин волн излучения и доз облучения для всех пациентов, что может приводить как к низкой эффективности ФДТ, так и к ряду нежелательных последствий, связанных с излишним нагревом ткани пациента и ее необратимыми изменениями (коагуляция, разрушение капилляров и т.д.).
Предлагаемое изобретение направлено на решение задач определения оптимальных для конкретного пациента параметров лазерного воздействия (дозы облучения и длины волны излучения), повышение эффективности ФДТ и минимизации побочных неблагоприятных эффектов лечения за счет контроля концентраций ФС и HbO2 в ткани и эффективности поглощения ими света в слоях ткани с различной глубиной залегания, а также за счет контроля морфологических изменений облучаемой ткани (объемного содержания кровеносных сосудов и соотношения различных форм гемоглобина).
Для решения данных задач в способе фотодинамической терапии онкологических заболеваний, включающем введение фотосенсибилизатора в зону опухолевой ткани и воздействие на нее лазерным излучением одновременно на двух длинах волн, обеспечивающих воздействие на фотосенсибилизатор и оксигемоглобин, дополнительно облучают ткань широкополосным излучением из видимого и ближнего ИК диапазонов спектра; измеряют спектр диффузного отражения ткани; по спектру диффузного отражения ткани определяют ее структурно-морфологические параметры, в числе которых концентрации кровеносных сосудов fbl и фотосенсибилизатора Cps в ткани, а также относительные содержания оксигемоглобина S и метгемоглобина CMetHb в крови; устанавливают спектр пространственной освещенности в ткани Ф(z,λ) с использованием модели переноса оптического излучения в ткани и найденных значений ее структурно-морфологических параметров; а длины волн и мощности лазерных источников, а также время лазерного воздействия на ткань, обеспечивающие наибольшее поглощение света фотосенсибилизатором и наилучшую генерацию кислорода на глубине залегания патологического участка ткани или во всей ее толще при минимальном воздействии лазерного излучения на здоровую ткань, определяют на основе распределений эффективностей поглощения света фотосенсибилизатором Kps(z,λ) и эффективности фотодиссоциации оксигемоглобина n(z,λ) по длине волны света λ и глубине ткани z, рассчитываемых на основе выражений:
Kps(z,λ)=Cpsεps(λ)Ф(z,λ),
n ( z , λ ) = f b l S ( C t H b / μ t H b ) ε H b O 2 ( λ ) Ф ( z , λ ) ( q λ / h c )
Figure 00000001
,
где εps и ε H b O 2
Figure 00000002
- молярные коэффициенты поглощения фотосенсибилизатора и оксигемоглобина, CtHb=150 г/л - средняя концентрация гемоглобина в крови, µtHb=64500 г/моль - молярная масса гемоглобина, h - постоянная Планка; c - скорость света в среде; q - квантовый выход фотодиссоциации оксигемоглобина.
Сущность данного изобретения поясняется с помощью фиг.1-15.
На фиг.1 представлен спектр поглощения света фотосенсибилизатором «Фотосенс».
На фиг.2 представлены результаты численных экспериментов по восстановлению концентрации кровеносных сосудов в коже из спектра диффузно отраженного ею света, нормированного на λ=800 нм.
На фиг.3 представлены результаты численных экспериментов по восстановлению относительного содержания оксигемоглобина в крови (степени оксигенации крови) из спектра диффузного отражения кожи, нормированного на λ=800 нм.
На фиг.4 представлены результаты численных экспериментов по восстановлению относительного содержания метгемоглобина в крови из спектра диффузного отражения кожи, нормированного на λ=800 нм.
На фиг.5 представлены результаты численных экспериментов по восстановлению концентрации фотосенсибилизатора в кожной ткани из спектра диффузно-отраженного ею света, нормированного на λ=800 нм.
На фиг.6 представлен нормированный спектр диффузного отражения кожи, используемый для восстановления спектральной плотности излучения, поглощаемой фотосенсибилизатором и оксигемоглобином в слоях кожи с различной глубиной залегания.
На фиг.7 представлены истинные (сплошные кривые) и восстановленные (пунктир) распределения полной освещенности по глубине кожи на λ=575 (1) и 675 нм (2).
На фиг.8 представлены истинные (точки) и восстановленные (пунктир) спектральные эффективности поглощения света фотосенсибилизатором.
На фиг.9 представлены истинные (точки) и восстановленные (пунктир) спектры эффективности фотодиссоциации оксигемоглобина в трех слоях кожи [z1, z2]: 1-z1=0.1 мм, z2=1.0 мм; 2-z1=1.0 мм, z2=2.0 мм; 3-z1=3.0 мм, z2=5.0 мм.
На фиг.10 представлены коэффициенты корреляции между истинными и восстановленными спектрами эффективности поглощения света фотосенсибилизатором для трех слоев ткани с различной глубиной залегания; 1-z=0.1-1.0 мм; 2-z=1.0-2.0 мм; 3-z=3.0-5.0 мм.
На фиг.11 представлены коэффициенты корреляции между истинными и восстановленными спектрами эффективности фотодиссоциации оксигемоглобина для трех слоев ткани с различной глубиной залегания; 1-z=0.1-1.0 мм; 2-z=1.0-2.0 мм; 3-z=3.0-5.0 мм.
На фиг.12 представлены нормированные спектры ДО кожи, рассчитанные в рамках моделей кожи с многослойной (сплошная кривая) и однородной (пунктир) дермой.
На фиг.13 представлены спектры эффективности фотодиссоциации оксигемоглобина на глубине ткани z=0.1-1.0 мм (1) и z=1.0-2.0 мм (2), рассчитанные при истинных параметрах 5-слойной среды (сплошные кривые) и восстановленных параметрах 2-слойной среды (пунктир).
На фиг.14 представлены экспериментальные (сплошные кривые) и модельные (пунктир) спектры диффузного отражения света от кожи.
На фиг.15 представлены зависимости эффективности фотодиссоциации оксигемоглобина во всей толще дермы от длины волны возбуждающего излучения; 1-fb1=0,6% и S=54%; 2-fbl=1,6% и S=64%; 3-fbl=3,2% и S=83%.
Возможности и достоинства предлагаемого способа продемонстрируем на примере ФДТ кожной ткани. Для измерений спектра ДО кожи в данном способе можно использовать коммерчески доступные оптоволоконные спектрофотометры (производителей Avantes, Ocean Optics и др.), состоящие из источника широкополосного излучения, спектрометра и волоконно-оптического зонда. Зонд содержит пучок из семи оптических волокон с естественной плотной упаковкой (шесть осветительных волокон вокруг одного считывающего). Центральное (считывающее) волокно присоединяется к спектрометру. Шесть наружных (осветительных) волокон соединяются с источником излучения и передают свет на исследуемый объект.
Определение структурно-морфологических параметров (СМП) кожной ткани основывается на сравнении модельного и экспериментального спектров ДО ткани и подборе модельных параметров x=(xp), обеспечивающих минимум функционала:
Figure 00000003
где Nλ - количество точек в измеряемых спектрах; ωexpi) - экспериментальный спектр ДО, определяемый путем сравнения детектируемых сигналов от ткани (P) и от белого диффузного отражателя (Pref), как
Figure 00000004
где λ0 - нормировочная длина волны; ω(x,λi) - модельный спектр ДО, определяемый как
Figure 00000005
где R(x,λ) - отражательная способность (ОС) ткани, рассчитываемая в рамках оптической модели ткани (см. ниже). Под ОС среды подразумевается отношение R=P/P0, где P0 - мощность коллимированного света, падающего на среду; P - мощность диффузного излучения, выходящего с площадки на поверхности среды вне области падающего света. Нормировка (2) и (3) позволяет избавиться от влияния интенсивности излучения источника, чувствительности приемника и величины ОС опорного отражателя на точность оценок параметров СМП ткани.
Расчет спектра ОС кожной ткани будем осуществлять в рамках оптической модели, описывающей кожу в виде двухслойной среды (эпидермис и дерма) с одинаковыми параметрами светорассеяния и различными коэффициентами поглощения слоев. Роговой слой, в силу малой оптической толщины, играет крайне незначительную роль в диффузном отражении света, поэтому он условно включен в состав эпидермиса. Анатомические области дермы (сосковидная, ретикулярная, поверхностное и глубинное сплетение сосудов) не имеют ни четких физических границ, ни принципиальных морфологических различий, поэтому все они заменены одним однородным слоем. Более глубокие слои кожи (жировой слой и мышечная ткань) практически не участвуют в процессе отражения света в видимой и ближней ИК областях спектра по причине его сильного ослабления вышележащими слоями.
Полагаем, что ФС локализован в тканях дермы, где располагаются кровеносные сосуды. Тогда модельными параметрами x являются: nsk - показатель преломления кожи; Bsca - транспортный коэффициент рассеяния соединительной ткани при λ=400 нм; ρMie - доля рассеяния Ми в общем рассеянии ткани при λ=400 нм; x - параметр спектральной зависимости транспортного коэффициента рассеяния Ми; Le - толщина эпидермиса; fm - объемная концентрации меланина в эпидермисе; fbl - объемная концентрация капилляров в дерме; dv - средний диаметр капилляров; CtHb - концентрация общего гемоглобина в крови (г/л); S и CMetHb - относительные содержания оксигемоглобина (HbO2) и метгемоглобина (MetHb) в общем составе гемоглобина; Cβ - молярная концентрация бета-каротина; Cps - молярная концентрация ФС. Для параметров Le и CtHb используем фиксированные значения - Le=60 мкм, CtHb=150 г/л (средние для кожи человека). Оптические параметры кожи рассчитываются по формулам:
Figure 00000006
Figure 00000007
Figure 00000008
Figure 00000009
Figure 00000010
где β′ и g - транспортный коэффициент рассеяния и фактор анизотропии рассеяния эпидермиса и дермы [17]; ke и kd - коэффициенты поглощения эпидермиса и дермы; kt - коэффициент поглощения соединительной ткани [17]; kbl - коэффициент поглощения крови, учитывающий лазерно-индуцированное образование метгемоглобина в кровеносных сосудах облучаемой ткани; εHb, εHbO2, εβ и εps - молярные коэффициенты поглощения Hb, HbO2, бета-каротина и ФС в мм-1/(моль/л); µtHb=64500 г/моль - молярная масса гемоглобина; µbil=585 г/моль - молярная масса билирубина; α - поправочный коэффициент, учитывающий эффект локализованного поглощения света кровеносными сосудами [18]:
Figure 00000011
В качестве ФС рассмотрим краситель «Фотосенс» производства ГНЦ «НИОПИК», представляющий собой смесь фракций фталоцианина алюминия с различной степенью сульфирования. Оптическая плотность Фотосенса приведена в работе [19]. Максимум его молярного коэффициента поглощения εps приходится на λ=675 нм и, по данным работы [3], составляет 0,25 см-1/(мкМ). Зависимость εps(λ), полученная с учетом этих данных, представлена на фиг.1.
Исходя из результатов численных расчетов ОС кожи методом Монте-Карло, связь ОС с оптическими параметрами кожи аппроксимируется следующим выражением:
Figure 00000012
где a i,m - коэффициенты аппроксимации; δ d = [ 3 k d ( k d + β ' ) ] 1 / 2
Figure 00000013
- глубина проникновения света в дерму (в диффузионном приближении). Рассмотрим геометрическую конфигурацию волоконно-оптического зонда, при которой осветительное и считывающее волокна диаметром 0,8 мм разнесены на расстояние 0,83 мм друг от друга. Коэффициенты формулы (10), соответствующие такой геометрии эксперимента, приведены в табл.1. Данные коэффициенты отвечают следующим размерностям параметров среды: [Le]=[мм], [β′]=[мм-1], [ke]=[мм-1], [kd]=[мм-1]. Формула с высокой точностью аппроксимирует численные расчеты ОС. Средняя погрешность аппроксимации результатов численных расчетов R формулой (10) составляет 0.85%. Коэффициент корреляции между значениями R, получаемыми методом Монте-Карло и по формуле (10), равен 0.9998.
Таким образом, алгоритм восстановления модельных параметров из спектра ДО кожи, измеряемого на расстоянии от области посылки возбуждающего излучения, основан на подборе результатов расчета спектра ДО кожи по формулам (4)-(10) под экспериментальные данные методом минимизации невязки (1). Точность восстановления важных для ФДТ модельных параметров (fbl, S, CMetHb, Cps) оценивалась на основе результатов численного расчета спектров ДО кожи методом МК. Расчет выполнялся для 70 значений λ, равномерно распределенных на отрезке [450 нм, 800 нм], при следующем разбросе модельных параметров: fm=1-10%, fbl=0.4-14%, dv=5-90 мкм, S=20-98%, CMetHb=1-60%, Cβ=0.2-5.0 мкМ, Cps=0.2-2.0 мкМ, Bsca=4-11 мм-1, ρMie=0.1-0.6, x=0.5-1.0, nsk=1.4-1.5.
Табл.1.
Коэффициенты формулы (10) для расчета ОС кожи
(i, m) a i,m (i, m) a i,m (i, m) a i,m
(1, 1) -0.5845 (5, 1) -10.785 (9, 1) -1.1647
(1, 2) 0.1205 (5, 2) 26.881 (9, 2) 0.2458
(1, 3) -0.0074 (5, 3) -19.757 (9, 3) -0.0162
(2, 1) -0.0193 (6, 1) 0.2185 (10, 1) -2.4387
(2, 2) 0.0037 (6, 2) -0.0150 (10, 2) 1.0495
(2, 3) -0.0002 (6, 3) 0.0019 (10, 3) -0.1722
(3, 1) 1.3624 (7, 1) 5.8379 (11, 1) 3.7004
(3, 2) -0.3327 (7, 2) -1.8591 (11, 2) -5.1912
(3, 3) 0.0410 (7, 3) 1.1101 (11, 3) 2.0525
(4, 1) 10.512 (8, 1) 9.3417 (12, 1) -8.8913
(4, 2) -2.7548 (8, 2) -34.946 (12, 2) 23.444
(4, 3) -3.5737 (8, 3) 58.744 (12, 3) -27.775
Значения параметров fbl, S, CMetHb и Cps, полученные путем обращения 550 случайных реализации спектра ДО кожи, смоделированных методом МК, представлены на фиг.2-5 в зависимости от соответствующих им известных значений. Коэффициенты корреляции между точными и восстановленными значениями fbl, S, CMetHb, Cps составляют соответственно 0.996, 0.991, 0.994, 0.980. Среднеквадратические погрешности восстановления данных параметров - Δfbl=0.26%, ΔS=2.4%, ΔCMetHb=1.7%, ΔCps=0.1 мкМ. Таким образом, сигналы диффузного света, регистрируемые при рассматриваемой измерительной базе (0.83 мм), обладают достаточной для практики чувствительностью к содержанию метгемоглобина в крови и к дополнительному экзогенному хромофору ткани - фотосенсибилизатору.
Для расчета пространственной освещенности в многослойной среде используем следующий метод. Полагаем, что исследуемая среда состоит из плоскопараллельных однородных слоев конечной толщины, не ограниченных в горизонтальном направлении, причем показатель преломления слоев одинаков или меняется плавно от одного слоя к другому. Рассеивающие и поглощающие свойства слоев характеризуются оптической толщиной τi, альбедо однократного рассеяния ωi и индикатрисой рассеяния pi(µ) или ее средним косинусом gi. Разделим мысленно каждый физический слой среды на множество тонких (виртуальных) слоев с однократным рассеянием. Световой поток на нижней границе i-го виртуального слоя представим суперпозицией трех составляющих: падающего коллимированного Fi, падающего диффузного F i *
Figure 00000014
и отраженного диффузного J i *
Figure 00000015
. Граничные условия, связывающие световые потоки в соседних слоях с одинаковыми показателями преломления, имеют вид:
Figure 00000016
где ti - коэффициент коллимированного пропускания i-го слоя; fi и bi - коэффициенты рассеяния вперед и назад (по отношению к направлению падающего излучения) слоя при его освещении коллимированным излучением; r i *
Figure 00000017
и t i *
Figure 00000018
- коэффициенты отражения и пропускания слоя при его диффузном освещении. Выражение для коэффициента коллимированного пропускания тривиально:
Figure 00000019
где Δτi - оптическая толщина слоя; µ0 - направляющий косинус падающего излучения, отсчитываемый от оси z, направленной внутрь среды, µ0>0. Для расчета коэффициентов fi и bi воспользуемся формулами для интенсивности излучения, однократно рассеянного слоем вперед Ii и назад Si, при его освещении с направления µ0 единичным потоком [20]:
Figure 00000020
Figure 00000021
Здесь ωi - альбедо однократного рассеяния; µ - направляющий косинус рассеянного излучения (µ>0);
Figure 00000022
- азимутально-усредненная индикатриса рассеяния; φ - азимут, отсчитываемый от произвольного направления в горизонтальной плоскости.
Коэффициенты fi и bi представляют собой отношения полусферических рассеянных потоков (в переднюю и заднюю полусферы) к падающему на слой потоку и рассчитываются путем интегрирования функций (13), (14) по телесному углу:
Figure 00000023
Figure 00000024
Для коэффициентов диффузного пропускания t i *
Figure 00000025
и отражения r i *
Figure 00000026
слоя в работе [21] получены простые аналитические выражения:
Figure 00000027
Figure 00000028
где γ i = 3 ( 1 ω i ) ( 1 g i )
Figure 00000029
- безразмерный глубинный показатель ослабления; q i = 1 / [ 3 ( 1 g i ) ]
Figure 00000030
; gi - средний косинус индикатрисы рассеяния.
При известных коэффициентах ti, fi, bi, t i *
Figure 00000031
, r i *
Figure 00000032
система уравнений (11) позволяет выразить световые потоки Fi, F i *
Figure 00000033
и J i *
Figure 00000034
через аналогичные величины для слоя i-1. Это преобразование удобно представить в матричной форме:
Figure 00000035
где
Figure 00000036
; i=1, …, n; p, g=1, 2, 3. Пересчитывая матрицу Di от слоя к слою как Di=TiDi-1, можно связать характеристики поля излучения внутри среды и на ее поверхности:
Figure 00000037
Figure 00000038
Figure 00000039
Поток излучения от внешнего источника (F0 или F 0 *
Figure 00000040
в зависимости от условий освещения) можно, без потери общности, положить равным единице. Для нахождения потока излучения, отраженного средой J 0 *
Figure 00000041
, рассмотрим уравнение (23), соответствующее самому глубокому слою среды i=n. Поскольку для данного слоя J n * = 0
Figure 00000042
, то из (23) следует, что J 0 * = ( d n , 31 F 0 + d n , 32 F 0 * ) d n , 33 1 = R 0 F 0 + R 0 * F 0 *
Figure 00000043
, где R 0 = J 0 * / F 0 = d n , 31 / d n , 33
Figure 00000044
и R 0 * = J 0 * / F 0 * = d n , 32 / d n , 33
Figure 00000045
- КДО среды при ее коллимированном ( F 0 * = 0
Figure 00000046
) и диффузном (F0=0) освещении соответственно. Определив, таким образом, коэффициенты R0 и R 0 *
Figure 00000047
, можно из уравнений (4.20) и (4.21) найти значения полной освещенности элементарной площадки (с двух сторон) в каждом слое как:
Figure 00000048
Учтем теперь отражение света от поверхности среды. Пусть rs и r s *
Figure 00000049
- коэффициенты отражения поверхностью коллимированного излучения, падающего на нее извне, и диффузного излучения, падающего на нее изнутри. Для гладкой поверхности среды с известным показателем преломления η эти коэффициенты рассчитываются по известным формулам Френеля. При освещении среды коллимированным потоком излучением доля его, равная rs, отражается поверхностью. Остальное излучение проникает во внутренние слои среды, где за счет многократного рассеяния становится диффузным. Диффузный свет многократно переотражается между внутренними слоями среды и ее поверхностью. При этом световые потоки, отраженные от поверхности среды, образуют бесконечно убывающую геометрическую прогрессию со знаменателем r s * R 0 *
Figure 00000050
.
Согласно (24) внешнее коллимированное излучение создает в слое i среды освещенность Фi0=F0Ki, где K i = j = 1 3 ( d i , j 1 + R 0 d i , j 3 )
Figure 00000051
; F0=F(1-rs), F - поток излучения, падающего на поверхность среды. Потоки диффузного излучения ( F 01 *
Figure 00000052
, F 02 *
Figure 00000053
, …), отраженного от внутренней границы среды, дополнительно создают освещенность:
Figure 00000054
где K i * = j = 1 3 ( d i , j 2 + R 0 * d i , j 3 )
Figure 00000055
.
Таким образом, выражение для полной освещенности слоя имеет вид:
Figure 00000056
Таким образом, предлагаемый метод позволяет сравнительно просто и быстро рассчитывать пространственную освещенность в многослойной среде. Последовательность выполняемых при этом операций включает: 1) виртуальное разбиение среды на тонкие слои с оптической толщиной Δτ; 2) нахождение матриц Ti (i=1, …, n), связывающих световые потоки в соседних тонких слоях, по формулам (12)-(20) (количество вычисляемых матриц Ti равно количеству физических слоев среды); 3) последовательное перемножение матриц Ti для всех тонких слоев, начиная с самого верхнего слоя, с попутным вычислением коэффициентов α i = j = 1 3 d i , j 1
Figure 00000057
, β i = j = 1 3 d i , j 2
Figure 00000058
и γ i = j = 1 3 d i , j 3
Figure 00000059
; 4) вычисление пространственной освещенности Фi по формуле (25), в которой R 0 = d n , 31 / d n , 33
Figure 00000060
, R 0 * = d n , 32 / d n , 33
Figure 00000061
, KiiiR0, K i * = β i + γ i R 0 *
Figure 00000062
. При практической реализации данного метода в качестве тонких слоев с однократным рассеянием оптимально брать слои с Δτ=0,04-0,05, обеспечивающие разумный компромисс между точностью и временем вычислений.
Зная концентрации хромофоров ткани и распределение освещенности по ее глубине, можно определить и световые мощности, поглощаемые хромофорами ткани в ее слоях с различной глубиной залегания. Рассмотрим пример определения эффективности поглощения света фотосенсибилизатором Kps(z,λ) и эффективности фотодиссоциации оксигемоглобина n(z,λ). Функция Kps(z,λ) представляет собой суммарную мощность излучения, поглощенную ФС в единичном объеме среды, при единичной освещенности ее поверхности:
Figure 00000063
где Cps и εps - молярная концентрация и коэффициент поглощения ФС; Ф(z,λ) - распределение плотности излучения с длиной волны λ по глубине z ткани (пространственная освещенность), Вт/м2. Под функцией n(z,λ), см-3/с понимается количество молекул кислорода, образующихся в единицу времени в единице объема ткани на глубине z, при единичной освещенности поверхности ткани монохроматическим светом:
Figure 00000064
где h - постоянная Планка; c - скорость света в среде; q - квантовый выход фотодиссоциации, который при возбуждении HbO2 светом с λ=300-650 нм составляет примерно 3-5% [22].
Пусть сигнал диффузного света измеряют при диаметрах круговых осветительной и приемной площадок на поверхности среды 0.8 мм и расстоянии между их центрами 0.83 мм. Спектр ДО кожной ткани ω(λ)=R(λ)/R(800 нм), отвечающий такой геометрии измерений, представлен на фиг.6. Данный спектр рассчитан методом Монте-Карло для случайной комбинации модельных параметров (xp): fm=1,85%, fbl=3.84%, dv=32.2 мкм, S=82.5%, CMetHb=11.4%, Cβ=0.47 мкМ, Cps=1.04 мкМ, Bsca=6.46 мм-1, ρMie=0.19, x=0.94, nsk=1.45. Модельные параметры ( x p *
Figure 00000065
), подобранные в результате минимизации невязки между данным спектром и спектром, рассчитанным на основе аппроксимационной формулы (10), имеют следующие значения: f m *
Figure 00000066
=0,74%, f b l *
Figure 00000067
=3,80%, d v *
Figure 00000068
=43,9 мкм, S*=83,3%, C M e t H b *
Figure 00000069
=11,4%, C β *
Figure 00000070
=0,25 мкМ, C p s *
Figure 00000071
=1,02 мкМ, C s c a *
Figure 00000072
=8,14 мм-1, ρ M i e *
Figure 00000073
=0,12, x*=0,56, n s k *
Figure 00000074
=1,44. Видно, что параметры fbl, S, CMetHb и Cps восстанавливаются с достаточно высокой точностью, что согласуется с результатами анализа диагностических возможностей рассматриваемых измерений. Между тем, погрешности восстановления других параметров среды более чем существенны. Причиной этому является неоднозначная зависимость спектра ДО среды, моделирующей кожную ткань, от указанных выше параметров. Существует бесконечное количество решений обратной задачи, одинаково хорошо воспроизводящих спектр ω(λ) в приближении используемой модели. Диапазоны значений параметров fbl, S, CMetHb и Cps, отвечающих одному и тому же спектру ω(λ), являются достаточно узкими (см. разброс точек на фиг.2-5 относительно прямых x p = x p *
Figure 00000075
), что позволяет получать удовлетворительные оценки данных параметров по измерениям ω(λ). Аналогичные диапазоны для других модельных параметров сравнимы с априорной неопределенностью последних. Тем не менее все комбинации модельных параметров, приводящие к одному и тому же расчетному спектру ω(λ), соответствуют примерно одинаковому световому режиму внутри среды. В качестве подтверждения этому на фиг.7 изображены распределения освещенности по глубине среды Ф(z,λ) на λ=575 и 675 нм, рассчитанные аналитически при восстановленных значениях модельных параметров (описанным выше методом). Действительно, несмотря на существенные различия между точными и восстановленными параметрами среды, и те и другие обуславливают практически одинаковую пространственную освещенность в среде. Восстановленные профили Ф(z,λ) отличаются от истинных распределений освещенности в среде в пределах погрешности разработанного метода расчета Ф(z,λ). Функции Kps(z,λ) и n(z,λ), полученные по восстановленным параметрам fbl, S, Cps и распределениям Ф(z,λ), также достаточно хорошо воспроизводят истинные спектры действия света на ФС и эффективности фотодиссоциации HbO2. В качестве примера на фиг.8 и 9 представлены функции K p s ( λ ) = z 1 z 2 K p s ( z , λ ) d z
Figure 00000076
и n ( λ ) = z 1 z 2 n ( z , λ ) d z
Figure 00000077
, рассчитанные для трех слоев среды [z1, z2] с различной глубиной залегания. Видно, что несущественные количественные отличия между точными и восстановленными профилями Kps(λ) и n(λ) имеют место лишь для глубоких слоев.
Аналогичные численные эксперименты проведены для 550 реализации модельных параметров. Спектры Kps(λ) и n(λ), восстановленные из ω(λ), сравнивались с аналогичными известными спектрами, отвечающими реальному световому режиму в среде. Коэффициенты корреляции между истинными и восстановленными спектрами Kps(λ) и n(λ) приведены на фиг.10 и 11. Видно, что предлагаемый способ позволяет с высокой степенью достоверности определять спектры Kps(λ) и n(λ) в слоях ткани с глубиной залегания до 2.0-2.5 мм при всем разбросе оптических параметров ткани. Для более глубоких слоев можно получать корректные оценки спектральных особенностей поглощения света ФС и HbO2 (например, положение максимума поглощения), однако абсолютные величины Kps(λ) и n(λ) в ряде случаев (например, при высокой пигментации кожи) могут определяться с большими погрешностями. Это обстоятельство не является ограничением предлагаемого метода, а связано с конечной глубиной проникновения света в ткань. Для получения информации о глубоких слоях ткани следует дополнить рассматриваемые измерения ω(λ) ближним ИК диапазоном. При этом придется учесть дополнительные хромофоры ткани - воду и липиды, поглощающие излучение с λ>900 нм. В остальном алгоритм обработки ω(λ) остается без изменений.
Представленные выше результаты получены в приближении модели кожной ткани с тонким верхним слоем (эпидермис) и полубесконечным однородным нижним слоем (дерма). Такая модель, несмотря на свою простоту, хорошо описывает экспериментальные спектры ДО кожи и позволяет выполнять оценки некоторых среднеобъемных параметров эпидермиса и дермы. Однако реальное строение кожи намного сложнее, чем это предполагается в используемой модели. В составе дермы выделяют несколько анатомических областей (слоев) с различным содержанием кровеносных сосудов. В связи с этим возникает вопрос - насколько корректно связь спектра ДО кожи с характеристиками светового поля в ее многослойной дерме воспроизводится в рамках используемой модели? Для ответа на поставленный вопрос рассмотрим более реалистичную модель кожи человека, предложенную в работе [23]. В исходном варианте модель представлена в виде геометрических толщин L слоев кожи и их оптических параметров (коэффициента поглощения k, коэффициента рассеяния β, фактора анизотропии рассеяния g) на λ1=337 нм и λ2=633 нм. Предполагая, что основными поглотителями света в коже являются меланин, Hb и HbO2, по заданным коэффициентам поглощения каждого слоя на λ1 (изобестическая точка спектров поглощения Hb и HbO2) несложно получить концентрации меланина fm и капилляров fbl в соответствующих слоях (см. табл.2). Степень оксигенации крови S во всех слоях дермы положим равной 70%, концентрацию общего гемоглобина в крови CtHb - 150 г/л, диаметр капилляров dv - 10 мкм. Фоновое поглощение ткани соответствует экспериментальным данным [17]. Суммарный коэффициент поглощения каждого из слоев рассчитывается по формулам (7), (8) при Cβ=0, Cps=0 и CMetHb=0. Для расчета β(λ) и g(λ) в диапазоне λ=450-800 нм используем соответственно степенную А(λ2/λ)v и линейную B+Cλ функции с коэффициентами A, v, B и C, полученными для каждого слоя ткани по соответствующим им значениям β и g на λ1 и λ2 (табл.2). Показатель преломления всех слоев кожи полагаем одинаковым - 1,45.
Табл.2.
Параметры слоев кожи, используемые при моделировании
Слой L, мм fm, % fbl, % A, мм-1 v B C·104, нм-1
1 0,1 1,3 0 10,7 0,687 0,64 2,36
2 0,2 0 4 18,7 0,307 0,61 3,38
3 0,2 0 7 19,2 0,393 0,61 3,38
4 0,9 0 4 18,7 0,687 0,61 3,38
5 0,6 0 8 19,4 0,421 0,61 3,38
Спектр ДО кожи с многослойной дермой ωm(λ), рассчитанный методом МК, приведен на фиг.12. Интерпретация этого спектра выполнялась в приближении модели кожи с однородной дермой. Параметры данной модели, восстановленные из спектра ωm(λ), имеют следующие значения: fmDe=0,84 мкм, fbl=5,13%, dv=12,5 мкм, S=68%, β′(λ0))=7,59 мм-1, ρMie=0,95, x=1,97, nsk=1,37. Видно, что восстановленные значения содержания меланина в эпидермисе, степени оксигенации крови и диаметра капилляров достаточно близки к соответствующим значениям для 5-слойной модели кожи. Восстановленный параметр fbl примерно равен средней по глубине многослойной дермы концентрации капилляров - i = 2 5 L i f b l , i / i = 1 5 L i = 5 , 58 %
Figure 00000078
. Спектр ДО кожи ω1(λ), рассчитанный по формуле (10) при восстановленных модельных параметрах, практически не отличим от спектра ωm(λ).
Рассмотрим результаты восстановления характеристик светового поля внутри многослойной ткани по спектру диффузно-отражаемого ею света. Физической основой такого восстановления является зависимость глубины проникновения света в ткань от λ. Зондирующее излучение с различной λ проникает в различные слои ткани и поэтому содержит информацию о данных слоях. Спектры эффективности фотодиссоциации оксигемоглобина nm(λ) на различных глубинах в ткани, рассчитанные методом МК при значениях параметров ткани из табл.2, приведены на фиг.13. Аналогичные спектры n1(λ), рассчитанные в рамках 2-слойной модели кожи, также приведены на фиг.13. Расчет n1(λ) выполнялся при значениях модельных параметров, восстановленных из ωm(λ). Различие между спектрами n1(λ) и nm(λ) не превышает погрешности восстановления n1(λ), предсказанной на основе модели кожи с однородной дермой, и не является принципиальным для практики.
Таким образом, можно заключить, что для определения пространственной освещенности в многослойной дерме и спектров действия света на ее хромофоры можно с успехом использовать модель кожной ткани с однородной дермой. Причиной этому является оптическая эквивалентность данных сред, т.е. спектрально-пространственные характеристики светового поля внутри и вне многослойной среды можно в точности воспроизвести в рамках модели однородной среды.
Разработанный способ определения эффективности фотодиссоциации HbO2 в тканях in vivo опробован на коже нескольких добровольцев. В экспериментах использовался оптоволоконный спектрофотометр Avantes с диаметрами светоподводящего и светопринимающего волокон 0.4 мм. Структурно-морфологические параметры кожи, найденные по спектру ее ДО в приближении двухслойной среды, использовались для расчета оптических параметров среды и глубинного распределения в ней освещенности Ф(z,λ). Спектр эффективности фотодиссоциации HbO2 рассчитывался по формуле (27) в соответствии с восстановленными значениями модельных параметров (fbl, S) и пространственной освещенности Ф(z,λ).
В качестве примера на фиг.14 представлены экспериментальные ωexp(λ) и подобранные в рамках модели ω(λ) спектры ДО безымянного пальца трех добровольцев. Спектры эффективности фотодиссоциации HbO2 во всей толще дермы, восстановленные из ωexp(λ), представлены на фиг.15. Видно, что количество молекулярного кислорода O2, высвобождаемое из кровеносных сосудов дермы в окружающую ткань, зависит от СМП ткани и при одной и той же дозе облучения может различаться в несколько раз. В целом эффективность генерации O2 на длине волны максимального поглощения света HbO2max=577 нм) для одного и того же анатомического участка кожи разных добровольцев различается в 2-3 раза. Для различных анатомических участков вариации n(λmax) еще более существенны - значения n(λmax) для кожи пальца, ладони и переносицы добровольцев различаются в 10 и более раз. Очевидно, что это обстоятельство необходимо учитывать при проведении сеансов лазерной терапии для того, чтобы повысить эффективность генерации O2 и избежать нежелательных последствий лазерного воздействия, связанных с излишним нагревом ткани пациента и ее необратимыми изменениями (коагуляция ткани, разрушение капилляров и т.д.).
Таким образом, предлагаемый способ позволяет контролировать концентрации эндогенных и экзогенных хромофоров ткани (капилляров, оксигемоглобина, метгемоглобина, фотосенсибилизатора) и эффективности поглощения ими света в слоях ткани с различной глубиной залегания. Это, в свою очередь, позволяют учитывать индивидуальные особенности ткани пациента и выбирать оптимальные для него лазерные источники и индивидуальную дозу облучения при ФДТ, обеспечивающие наибольшее поглощение света фотосенсибилизатором и наилучшую генерацию кислорода на глубине залегания патологического участка ткани или во всей ее толще при минимальном воздействии лазерного излучения на здоровую ткань. Таким образом, можно повысить эффективность и снизить продолжительность сеансов лазерной терапии, избежать побочных неблагоприятных эффектов и стандартизовать методы лечения больных с одинаковой патологией.
Литература
1. Асимов P.M., Асимов М.М., Рубинов А.Н. Лазерно-индуцированная оксигенация биотканей: новая технология устранения тканевой гипоксии в раковых опухолях // Лазерная медицина. 2008. Т. 12, №1. С.9-14.
2. Simultaneous measurement of photosensitizer absorption and fluorescence in patient undergoing photodynamic therapy / A.A. Stratonnikov [et. al.] // Proc. SPIE. 2002. V.4613. P.162-173.
3. Использование спектроскопии обратного диффузного отражения света для мониторинга состояния тканей при фотодинамической терапии / Стратонников A.A. [и др.] // Квантовая электроника. 2006. Т.36, №12. С.1103-1110.
4. Патент № US 2011/0270056 A1, A61B 6/00, A61M 37/00, 03.11.2011.
5. Optical measurement of photosensitizer concentration in vivo / M.R. Austwick [et. al.] // J. Innovat. Opt. Health. Sci. 2011. V.4, №.2. P.97-111.
6. The control of photosensitizer in tissue during photodynamic therapy by means of absorption spectroscopy / A.A. Stratonnikov [et. al.] // Proc. SPIE. 1996. V.2924. P.49-60.
7. Loschenov V.В., Konov V.I., Prokhorov A.M. Photodynamic therapy and fluorescence diagnostics // Laser Physics. 2000. V.10, №6. P.1188-1207.
8. Broadband reflectance measurements of light penetration, blood oxygenation, hemoglobin concentration, and drug concentration in human intraperitoneal tissues before and after photodynamic therapy / H.W. Wang [et. al.] // J. Biomed. Opt. 2005. V.10, №1. P.014004-1-13.
9. Noninvasive measurement of fluorophore concentration in turbid media with a simple fluorescence/reflectance ratio technique / R. Weersink [et. al.] // Appl. Opt. 2001. V.40, №34. P.6389-6395.
10. Асимов M.M., Королевич А.Н., Константинова Е.Э. Кинетика оксигенации кожной ткани под воздействием низкоинтенсивного лазерного излучения // Журн. прикл. спектр. 2007. Т.74, №1. С.120-125.
11. Патент RU 2438733 С1, A61N 5/06, 10.01.2012.
12. Патент RU 2484861 C2, A61N 5/06, 20.06.2013.
13. Methemoglobin formation during laser induced photothermolysis of vascular skin lesions / L.L. Randeberg [et. al.] // Lasers Surg. Med. 2004. V.34, №5. P.414-419.
14. Флуоресценция фотосенсибилизатора на основе индотрикарбоцианинового красителя при фотохимиотерапии / M.П. Самцов [и др.] // Журн. прикл. спектр. 2011. Т.78, №1. С.121-127.
15. Laser treatment of port wine stains: therapeutic outcome in relation to morphological parameters / E.I. Fiskerstrand [et. al.] // British J. Dermatol. 1996. V.134, №6. P.1039-1043.
16. Б.М. Джагаров, Э.А. Жаврид, Ю.П. Истомин, В.Н. Чалов. Двухцветная лазерная фотодинамическая терапия // Журнал прикладной спектроскопии. 2001. Т.68. С.151-153.
17. Jacques S.L. Origins of tissue optical properties in the UVA, visible, and NIR // Advances in Optical Imaging and Photon Migration. 1996. V.2. P.364-369.
18. Барун В.В., Иванов А.П. Оценка вклада локализованного поглощения света кровеносными сосудами в оптические свойства биологической ткани // Оптика и спектр. 2004. V.96, №6. Р.1019-1024.
19. Model S.S., Savelieva T.A., Linkov K.G. System for determining the concentration and visualization of the spatial distribution of photosensitizers based on tetrapyrrole compounds in the tissues of the human ocular fundus // Proc. SPIE. 2013. V.8699. P.86990 E-1-6.
20. Liou K.N. An introduction to atmospheric radiation. Second edition. New York, London: Academic Press, 2002. P.290-292.
21. Отражение и пропускание света слоем большой оптической толщины / Э.П. Зеге [и др.] // Журн. прикл. спектроск. 1979. Т.30, №5. С.900-907.
22. Лепешкевич С.В., Коновалова Н.В., Джагаров Б.М. Исследование методом лазерной кинетической спектроскопии бимолекулярных стадий реакции оксигенации α- и β-субъединиц гемоглобина человека в R-состоянии // Биохимия. 2003. Т.68, №5. С.676-685.
23. Тучин В.В. Исследование биотканей методами светорассеяния // Усп. физ. наук. 1997. Т.167, №5. С.517-539.

Claims (1)

  1. Способ фотодинамической терапии онкологических заболеваний, включающий введение фотосенсибилизатора в зону опухолевой ткани и воздействие на нее лазерным излучением одновременно на двух длинах волн, обеспечивающих воздействие на фотосенсибилизатор и оксигемоглобин, отличающийся тем, что дополнительно облучают ткань широкополосным излучением из видимого и ближнего ИК диапазонов спектра; измеряют спектр диффузного отражения ткани; по спектру диффузного отражения ткани определяют ее структурно-морфологические параметры, в числе которых концентрации кровеносных сосудов fbl и фотосенсибилизатора Cps в ткани, а также относительные содержания оксигемоглобина S и метгемоглобина CMetHb в крови; устанавливают спектр пространственной освещенности в ткани Ф(z, λ) с использованием модели переноса оптического излучения в ткани и найденных значений ее структурно-морфологических параметров; а длины волн и мощности лазерных источников, а также время лазерного воздействия на ткань, обеспечивающие наибольшее поглощение света фотосенсибилизатором и наилучшую генерацию кислорода на глубине залегания патологического участка ткани или во всей ее толще при минимальном воздействии лазерного излучения на здоровую ткань, определяют на основе распределений эффективностей поглощения света фотосенсибилизатором Kps(z, λ) и эффективности фотодиссоциации оксигемоглобина n(z, λ) по длине волны света λ и глубине ткани z, рассчитываемых на основе выражений:
    Kps(z, λ)=Cpsεps(λ)Ф(z, λ),
    Figure 00000079
    ,
    где εps и
    Figure 00000080
    - молярные коэффициенты поглощения фотосенсибилизатора и оксигемоглобина, CtHb=150 г/л - средняя концентрация гемоглобина в крови, µtHb=64500 г/моль - молярная масса гемоглобина, h - постоянная Планка; c - скорость света в среде; q - квантовый выход фотодиссоциации оксигемоглобина.
RU2013149215/14A 2013-11-05 2013-11-05 Способ фотодинамической терапии онкологических заболеваний RU2539367C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013149215/14A RU2539367C1 (ru) 2013-11-05 2013-11-05 Способ фотодинамической терапии онкологических заболеваний

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013149215/14A RU2539367C1 (ru) 2013-11-05 2013-11-05 Способ фотодинамической терапии онкологических заболеваний

Publications (1)

Publication Number Publication Date
RU2539367C1 true RU2539367C1 (ru) 2015-01-20

Family

ID=53288499

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013149215/14A RU2539367C1 (ru) 2013-11-05 2013-11-05 Способ фотодинамической терапии онкологических заболеваний

Country Status (1)

Country Link
RU (1) RU2539367C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112689749A (zh) * 2018-09-11 2021-04-20 皇家飞利浦有限公司 针对牙龈炎检测的光学方法
RU2807133C1 (ru) * 2022-12-12 2023-11-09 Федеральное государственное бюджетное учреждение науки Федеральный исследовательский центр "Институт общей физики им. А.М. Прохорова Российской академии наук" (ИОФ РАН) Устройство для спектрально-флуоресцентного контроля состояния биологических тканей в процессе фотодинамического воздействия с применением фотосенсибилизаторов на основе хлорина e6

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2312689C2 (ru) * 2006-01-16 2007-12-20 Государственное Научное Учреждение "Институт Физики Имени Б.И. Степанова Национальной Академии Наук Беларуси" Способ фотодинамической терапии онкологических заболеваний
US20110270056A1 (en) * 2010-04-20 2011-11-03 College of Charleston Determination of photodynamic therapy (pdt) treatment parameters
RU2438733C1 (ru) * 2010-06-21 2012-01-10 Государственное научное учреждение "Институт физики им. Б.И. Степанова Национальной академии наук Белоруси" Способ фотодинамической терапии онкологических заболеваний
RU2484861C2 (ru) * 2011-07-27 2013-06-20 Государственное Научное Учреждение "Институт Физики Имени Б.И. Степанова Национальной Академии Наук Беларуси" Способ локального повышения концентрации молекулярного кислорода в дерме кожной ткани

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2312689C2 (ru) * 2006-01-16 2007-12-20 Государственное Научное Учреждение "Институт Физики Имени Б.И. Степанова Национальной Академии Наук Беларуси" Способ фотодинамической терапии онкологических заболеваний
US20110270056A1 (en) * 2010-04-20 2011-11-03 College of Charleston Determination of photodynamic therapy (pdt) treatment parameters
RU2438733C1 (ru) * 2010-06-21 2012-01-10 Государственное научное учреждение "Институт физики им. Б.И. Степанова Национальной академии наук Белоруси" Способ фотодинамической терапии онкологических заболеваний
RU2484861C2 (ru) * 2011-07-27 2013-06-20 Государственное Научное Учреждение "Институт Физики Имени Б.И. Степанова Национальной Академии Наук Беларуси" Способ локального повышения концентрации молекулярного кислорода в дерме кожной ткани

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Wang H.W. et. al. Broadband reflectance measurements of light penetration, blood oxygenation, hemoglobin concentration, and drug concentration in human intraperitoneal tissues before and after photodynamic therapy // J. Biomed. Opt. 2005. V.10, N1. P.014004-1-13 *
ДЖАГАРОВ Б.М. и др. Двухцветная лазерная фотодинамическая терапия // Журнал прикладной спектроскопии. 2001. Т.68. С.151-153. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112689749A (zh) * 2018-09-11 2021-04-20 皇家飞利浦有限公司 针对牙龈炎检测的光学方法
RU2807133C1 (ru) * 2022-12-12 2023-11-09 Федеральное государственное бюджетное учреждение науки Федеральный исследовательский центр "Институт общей физики им. А.М. Прохорова Российской академии наук" (ИОФ РАН) Устройство для спектрально-флуоресцентного контроля состояния биологических тканей в процессе фотодинамического воздействия с применением фотосенсибилизаторов на основе хлорина e6

Similar Documents

Publication Publication Date Title
Bashkatov et al. Optical properties of human stomach mucosa in the spectral range from 400 to 2000 nm: prognosis for gastroenterology
Yu et al. Near-infrared diffuse correlation spectroscopy for assessment of tissue blood flow
US8406861B2 (en) Detecting optical properties of a turbid medium
Mesquita et al. Diffuse optics: fundamentals and tissue applications
Tuchin Light-tissue interactions
Sunar Monitoring photodynamic therapy of head and neck malignancies with optical spectroscopies
Kholodtsova et al. Scattered and fluorescent photon track reconstruction in a biological tissue
Ong et al. Validation of tissue optical properties measurement using diffuse reflectance spectroscopy (DRS)
Choukeife et al. Measurements of scattering effects within tissue-like media at two wavelengths of 632.8 nm and 680 nm
Beck et al. Clinical determination of tissue optical properties in vivo by spatially resolved reflectance measurements
RU2539367C1 (ru) Способ фотодинамической терапии онкологических заболеваний
Efendiev et al. Near-infrared phototheranostics of tumors with protoporphyrin IX and chlorin e6 photosensitizers
Genin et al. Optical clearing of the gastric mucosa using 40%-glucose solution
Lisenko et al. Method for estimating bilirubin isomerization efficiency in phototherapy to treat neonatal jaundice
Efendiev et al. Tumor fluorescence and oxygenation monitoring during photodynamic therapy with chlorin e6 photosensitizer
Luís et al. Tissue spectroscopy and optical clearing of colorectal mucosa in the pursuit of new cancer diagnostic approaches
Rohrbach et al. Intraoperative optical assessment of photodynamic therapy response of superficial oral squamous cell carcinoma
Yaroslavskaya et al. Angular scattering properties of human epidermal layers
Lysenko Calculation of transfer functions of multilayer biotissues in the problems of correction of their fluorescence spectra
Han et al. In vivo fluorescence spectroscopic monitoring of radiotherapy in cancer treatment
Shimojo Yu Shimojo Takahiro Nishimura Hisanao Hazama Toshiyuki Ozawa Kunio Awazu
Moffitt et al. Determining the reduced scattering of skin in vivo using sized-fiber reflectometry
Kikuchi et al. Goniometric examination of diffuse reflectance of a skin phantom in the wavelength range from 400 to 1600 nm
RU2438733C1 (ru) Способ фотодинамической терапии онкологических заболеваний
Ivanov et al. Light reflection spectra as a diagnostic tool for the structural and biophysical parameters of skin

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20161106