RU2537405C1 - Способ деасфальтизации нефтяных остатков - Google Patents

Способ деасфальтизации нефтяных остатков Download PDF

Info

Publication number
RU2537405C1
RU2537405C1 RU2013158717/04A RU2013158717A RU2537405C1 RU 2537405 C1 RU2537405 C1 RU 2537405C1 RU 2013158717/04 A RU2013158717/04 A RU 2013158717/04A RU 2013158717 A RU2013158717 A RU 2013158717A RU 2537405 C1 RU2537405 C1 RU 2537405C1
Authority
RU
Russia
Prior art keywords
solvent
pressure
asphalt
deasphalting
vapours
Prior art date
Application number
RU2013158717/04A
Other languages
English (en)
Inventor
Андрей Владиславович Курочкин
Original Assignee
Андрей Владиславович Курочкин
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Андрей Владиславович Курочкин filed Critical Андрей Владиславович Курочкин
Priority to RU2013158717/04A priority Critical patent/RU2537405C1/ru
Application granted granted Critical
Publication of RU2537405C1 publication Critical patent/RU2537405C1/ru

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

Изобретение относится к способам сольвентной деасфальтизации нефтяных остатков и может быть использовано в нефтеперерабатывающей промышленности для получения деасфальтизата и асфальта. Изобретение касается способа деасфальтизации нефтяных остатков, включающего экстракцию нефтяного остатка легким углеводородным растворителем с получением асфальтового и деасфальтизатного раствора, регенерацию растворителя из асфальтового раствора, нагретого в рекуперационном теплообменнике, включающую однократное испарение паров растворителя при среднем давлении, регенерацию растворителя из деасфальтизатного раствора, нагретого в рекуперационном теплообменнике и нагревателе, включающую сверхкритическую сепарацию с получением регенерированного растворителя и деасфальтизатной фазы, однократное испарение из нее паров растворителя при среднем давлении, а также сжатие смеси паров растворителя среднего давления струйным компрессором. Из нагретого асфальтового раствора при давлении экстракции предварительно отгоняют пары растворителя, которые смешивают с деасфальтизатным раствором, при этом отгонку осуществляют в условиях противоточного нагрева асфальтом и теплоносителем, из деасфальтизатной фазы при давлении сверхкритической сепарации предварительно отгоняют пары растворителя, которые смешивают с регенерированным растворителем, при этом отгонку осуществляют в условиях противоточного нагрева деасфальтизатом и теплоносителем, а в качестве рабочего тела струйного компрессора при сжатии смеси паров растворителя среднего давления используют часть охлажденной смеси регенерированного растворителя �

Description

Изобретение относится к способам сольвентной деасфальтизации нефтяных остатков и может быть использовано в нефтеперерабатывающей промышленности для получения деасфалыизата и асфальта.
Известен и широко используется способ деасфальтизации нефтяных остатков легкими углеводородными растворителями, например пропаном [Альбом технологических схем процессов переработки нефти и газа. Под ред. Б.И. Бондаренко.-М.: РГУ, 2003 г., с.101], который включает экстракцию нефтяных остатков пропаном с получением деасфальтизатного и битумного (асфальтового) раствора, регенерацию пропана из деасфальтизатного раствора путем многоступенчатого испарения пропана при пониженном давлении и отпариванием остаточного пропана с помощью водяного пара, регенерацию пропана из асфальтового раствора, предварительно нагретого в печи огневого нагрева путем однократного испарения при пониженном давлении и отпаривания остаточного пропана с помощью водяного пара с получением паров пропана высокого, среднего и низкого давления. Пары пропана низкого давления сжимают компрессором, смешивают с парами пропана среднего и высокого давления, охлаждают, конденсируют, подают на экстракцию (рециркулируют).
Недостатком известного способа являются высокие энергозатраты из-за необходимости полного испарения растворителя при его регенерации, а также большой расход охлаждающей воды на охлаждение и конденсацию паров растворителя, а также топлива на нагрев асфальтового раствора.
Наиболее близок по технической сущности к заявляемому изобретению и принят в качестве прототипа способ деасфальтизации нефтяных остатков [патент RU 2232792, МПК C10G 21/28, опубл. 20.07.2004 г.], который предусматривает экстракцию нефтяных остатков легким углеводородным растворителем с получением деасфальтизатного и асфальтового растворов, регенерацию растворителя из деасфальтизатного раствора, предварительно нагретого в рекуперационном теплообменнике, включающую гравитационную сепарацию в условиях, сверхкритических по отношению к растворителю (сверхкритическую сепарацию), с получением регенерированного растворителя и деасфальтизатной фазы, однократное испарение из последней паров растворителя при среднем давлении и отпаривание водяным паром паров растворителя при низком давлении, а также регенерацию растворителя из асфальтового раствора, предварительно нагретого в рекуперационном теплообменнике и в печи огневого нагрева, включающую однократное испарение паров растворителя при среднем давлении и отпаривание водяным паром паров растворителя при низком давлении, при этом осуществляют двухступенчатое сжатие паров растворителя низкого давления, предварительно охлажденных водой в конденсаторе смешения, с помощью струйных компрессоров, использующих в качестве рабочего тела на первой ступени пары растворителя среднего давления, а на второй ступени - регенерированный растворитель, с получением паров растворителя среднего давления, которые затем охлаждают, конденсируют и подают на экстракцию (рециркулируют).
Основным недостатком известного способа являются получение большого количества паров растворителя среднего и низкого давления при регенерации растворителя из деасфальтизатного и асфальтового растворов, что требует больших энергозатрат на сжатие паров растворителя, их последующую конденсацию и рециркуляцию. Кроме того, для отпаривания паров растворителя низкого давления используют водяной пар, а для их охлаждения используют смешение с водой, что приводит к образованию водных стоков. Печной нагрев асфальтового раствора приводит к разложению сернистых соединений и к накоплению в растворителе коррозионно-активного сероводорода.
Задачей изобретения является уменьшение количества паров растворителя среднего давления, исключение образования паров растворителя среднего и низкого давления, снижение расхода электроэнергии на циркуляцию растворителя и тепла на нагрев асфальтового и деасфальтизатного растворов, предотвращение образования водных стоков и исключение печного нагрева асфальтового раствора.
При реализации изобретения в качестве технического результата достигается:
- уменьшение количества паров растворителя среднего и исключение образования паров растворителя низкого давления за счет отгонки основного количества паров растворителя при высоком давлении,
- снижение расхода электроэнергии на циркуляцию растворителя за счет уменьшения количества паров растворителя среднего давления и исключения образования паров низкого давления,
- снижение расхода тепла на нагрев асфальтового и деасфальтизатного растворов за счет рекуперации тепла асфальта и деасфальтизата,
- предотвращение образования водных стоков за счет исключения использования воды и водяного пара,
- исключение печного нагрева асфальтового раствора за счет его нагрева асфальтом и теплоносителем.
Указанный технический результат достигается тем, что в известном способе деасфальтизации нефтяных остатков, предусматривающем
экстракцию нефтяного остатка легким углеводородным растворителем с получением асфальтового и деасфальтизатного раствора,
регенерацию растворителя из асфальтового раствора, нагретого в рекуперационном теплообменнике, включающую однократное испарение паров растворителя при среднем давлении,
регенерацию растворителя из деасфальтизатного раствора, нагретого в рекуперационном теплообменнике и нагревателе, включающую сверхкритическую сепарацию с получением регенерированного растворителя и деасфальтизатной фазы, однократное испарение из нее паров растворителя при среднем давлении,
а также сжатие смеси паров растворителя среднего давления струйным компрессором, особенность заключается в том, что
из нагретого асфальтового раствора при давлении экстракции предварительно отгоняют пары растворителя, которые смешивают с деасфальтизатным раствором,
при этом отгонку осуществляют в условиях противоточного нагрева асфальтом и теплоносителем,
из деасфальтизатной фазы при давлении сверхкритической сепарации предварительно отгоняют пары растворителя, которые смешивают с регенерированным растворителем,
при этом отгонку осуществляют в условиях противоточного нагрева деасфальтизатом и теплоносителем,
а в качестве рабочего тела струйного компрессора при сжатии смеси паров растворителя среднего давления используют часть охлажденной смеси регенерированного растворителя и паров растворителя, отогнанных при давлении сверхкритической сепарации.
Целесообразно компрессат, полученный при сжатии паров растворителя среднего давления, подвергать обессериванию, например путем экстракции сероводорода водным раствором этаноламина, с получением обессеренного растворителя, а нефтяной остаток подавать в среднюю зону питания экстрактора после смешения с частью смеси регенерированного растворителя и паров растворителя, отогнанных при давлении сверхкритической экстракции, а другую часть указанной смеси подавать в нижнюю зону питания экстрактора и при этом нагревать верхнюю часть экстрактора. Температура нагрева зависит от состава растворителя и характеристик сырья и находится в интервале 80-120°C.
Целесообразно также разделять асфальтовый раствор на циркулирующую часть и балансовую часть, которую направляют на нагрев и отгонку растворителя, а циркулирующую часть смешивают с обессеренным растворителем и по меньшей мере часть полученной смеси смешивают с частью смеси регенерированного растворителя и паров растворителя, отогнанных при давлении сверхкритической экстракции, подаваемой в нижнюю зону питания экстрактора, а другую часть полученной смеси подают непосредственно в кубовую часть экстрактора. Соотношение балансовой и циркулирующей части асфальтового раствора зависит от количества смеси регенерированного растворителя и паров растворителя, отогнанных при давлении сверхкритической экстракции, подаваемой на очистку от сероводорода, которое определяется скоростью накопления сероводорода в растворителе и находится в интервале 1:0,1÷1,0.
Предварительная отгонка паров растворителя из нагретого асфальтового раствора при давлении экстракции и их смешение с деасфальтизатным раствором позволяет регенерировать основное количество растворителя из асфальтового раствора при высоком давлении и рециркулировать его без применения компрессорного или насосного оборудования, за счет чего уменьшить количество паров растворителя среднего давления и исключить образование паров растворителя низкого давления, а также снизить расход электроэнергии на циркуляцию растворителя.
Отгонка паров растворителя из асфальтового раствора в условиях противоточного нагрева асфальтом и теплоносителем позволяет осуществлять отгонку при высокой температуре, а также рекуперировать тепло асфальта, за счет чего снизить расход тепла, а также исключить печной нагрев асфальтового раствора, уменьшить разложение сернистых соединений асфальта, замедлить накопление сероводорода в растворителе и снизить его коррозионную активность.
Предварительная отгонка паров растворителя из деасфальтизатной фазы при давлении сверхкритической сепарации и их смешение с регенерированным растворителем позволяет регенерировать основное количество растворителя из деасфальтизатной фазы при высоком давлении и рециркулировать его без применения компрессорного или насосного оборудования, за счет чего уменьшить количество паров растворителя среднего давления и исключить образование паров растворителя низкого давления, а также снизить расход электроэнергии на циркуляцию растворителя.
Отгонка паров растворителя из деасфальтизатной фазы в условиях противоточного нагрева деасфальтизатом и теплоносителем позволяет осуществлять отгонку при высокой температуре, а также рекуперировать тепло деасфальтизата, за счет чего снизить расход тепла.
Использование в качестве рабочего тела струйного компрессора части охлажденной смеси регенерированного растворителя и паров растворителя, отогнанных при давлении сверхкритической сепарации, позволяет направить компрессат на обессеривание без применения компрессорного или насосного оборудования, за счет чего снизить расход электроэнергии.
Давление однократного испарения устанавливают в зависимости от заданного расхода растворителя на обессеривание таким, чтобы давление компрессата позволило осуществить его полную конденсацию при использовании доступного хладоагента (например, 1,5-2,0 МПа при использовании пропана в качестве растворителя, 1,0-1,2 при использовании бутана и т.п.) и последующее обессеривание в жидкой фазе.
Подача нефтяного остатка в среднюю часть экстрактора после смешения с частью растворителя, подача растворителя в нижнюю часть экстрактора после смешения со смесью циркулирующей части асфальтового раствора и обессеренного растворителя и нагрев верхней части экстрактора обеспечивают снижение кратности циркуляции растворителя и уменьшение затрат электроэнергии на его циркуляцию.
Исключение использования воды и водяного пара позволяет предотвратить образование водных стоков, а обессеривание компрессата позволяет снизить коррозионную активность растворителя.
Предлагаемый способ осуществляют следующим образом (см. чертеж). Циркулирующую часть смеси (I) регенерированного растворителя и паров растворителя, отогнанных при давлении сверхкритической сепарации, разделяют на два потока. Первый поток (II) смешивают с гудроном (III) и направляют в зону питания, расположенную в средней части экстрактора 1 (например, насадочного типа), в нижнюю зону питания которого подают второй поток (IV) смеси (I), предварительно смешанный со смесью (V) циркулирующей части асфальтового раствора (VI) и обессеренного растворителя (VII). При этом по меньшей мере часть смеси (V) может направляться непосредственно в кубовую часть экстрактора 1 (показано пунктиром).
С низа экстрактора 1 выводят асфальтовый раствор (VIII), который разделяют на балансовую часть (IX) и циркулирующую часть (VI), последнюю смешивают в струйном насосе 2 с обессеренным растворителем (VII) с получением смеси (V). Балансовую часть асфальтового раствора (IX) нагревают в рекуперационном теплообменнике 3 и направляют в верхнюю зону питания пленочной отгонной колонны 4 с внутренними тепломассообменными блоками 5 и 6, например, радиально-спирального типа, имеющими внутреннее пространство для прохода теплоносителя и наружное пространство, в котором осуществляется тепло- и массообмен, и расположенными в верхней и средней части колонны 4, соответственно. В нижнюю часть внутреннего пространства тепломассообменного блока 5 подают нагретый асфальт (X), который после охлаждения выводят (XI) из его верхней части. В нижнюю часть внутреннего пространства тепломассообменного блока 6 подают теплоноситель (XII), который после охлаждения выводят из его верхней части. В колонне 4, в условиях противоточного нагрева асфальтового раствора (VII) асфальтом (X) и теплоносителем (XII), при давлении экстракции отгоняют пары растворителя (XIII) и выводят их с верха колонны 4. С низа колонны 4 выводят нагретый асфальтовый раствор (XIV), который подвергают однократному испарению при среднем давлении в сепараторе 7 с получением паров растворителя среднего давления (XV) и нагретого асфальта (X).
С верха экстрактора 1 выводят деасфальтизатный раствор (XVI), который смешивают с парами растворителя, отогнанными при давлении экстракции (XIII), а полученную смесь (XVII) бустерным насосом 8 подают последовательно в рекуперационный теплообменник 9 и теплообменник 10, где нагревают теплоносителем (XII) и подают в сепаратор 11, где при давлении и температуре сверхкритической сепарации разделяют на регенерированный растворитель (XVII) и деасфальтизатную фазу (XVIII), выводимые из верхней и нижней частей сепаратора 11, соответственно. Деасфальтизатную фазу (XVIII) направляют в верхнюю зону питания пленочной отгонной колонны 12 с внутренними тепломассообменными блоками 13 и 14, например, радиально-спирального типа, имеющими внутреннее пространство для прохода теплоносителя и наружное пространство, в котором осуществляется тепло- и массообмен, и расположенными в верхней и средней части колонны 12, соответственно. В нижнюю часть внутреннего пространства тепломассообменного блока 13 подают нагретый деасфальтизат (XIX), который после охлаждения выводят (XX) из его верхней части. В нижнюю часть внутреннего пространства тепломассообменного блока 14 подают теплоноситель (XII), который после охлаждения выводят из его верхней части. В колонне 12, в условиях противоточного нагрева деасфальтизатной фазы (XVIII) деасфальтизатом (XIX) и теплоносителем (XII), при давлении сверхкритической сепарации отгоняют пары растворителя (XXI) и выводят их с верха колонны 12. С низа колонны 4 выводят нагретую деасфальтизатную фазу (XXII), которую подвергают однократному испарению при среднем давлении в сепараторе 15 с получением паров растворителя среднего давления (XXIII) и нагретого деасфальтизата (XIX).
Регенерированный растворитель (XVII) и пары растворителя (XXI), отогнанные при давлении сверхкритической сепарации, смешивают, а полученную смесь (XXIV) последовательно охлаждают в рекуперационных теплообменниках 9 и 3, холодильнике 16 и разделяют на две части - циркулирующую (I) и балансовую (XXV), которую подают в качестве рабочего тела в струйный компрессор 17, в котором сжимают смесь (XXVI) паров растворителя среднего давления (XV) и (XXIII). Полученный компрессат (XXVII) очищают от сероводорода на блоке 18, обессеренный растворитель насосом 19 подают в струйный насос 2.
Работоспособность предлагаемого способа иллюстрируется следующим примером. 30 т/ч гудрона с коксуемостью 14% смешивают с 40 т/час циркулирующего пропан-бутанового растворителя и подают при 90°C в среднюю часть экстрактора, нижнюю зону питания которого при 80°C подают 40 т/час циркулирующего пропан-бутанового растворителя, смешанного с 10 т/час обессеренного растворителя и 24 т/час циркулирующей части асфальтового раствора.
С верха экстрактора при температуре 100°C и давлении 4,0 МПа (давление экстракции) выводят 95,8 т/час деасфальтизатного раствора, а с низа при температуре 80°C выводят 24,2 т/час балансовой части асфальтового раствора, нагревают в рекуперационном теплообменнике смесью регенерированного растворителя и паров растворителя, отогнанных при давлении сверхкритической сепарации, и далее в пленочной отгонной колонне за счет противоточного нагрева асфальтом и теплоносителем при 4,0 МПа и 250°C отгоняют 7,1 т/час паров растворителя высокого давления. Полученный остаток дросселируют и при 1,0 МПа подвергают однократному испарению с получением 0,5 т/час паров растворителя среднего давления и 18,4 т/час асфальта.
Деасфальтизатный раствор смешивают с 7,1 т/час паров растворителя высокого давления, при 4,5 МПа нагревают до 160°C (условия сверхкритической сепарации) сначала смесью регенерированного растворителя и паров растворителя, отогнанных при давлении сверхкритической сепарации, а затем теплоносителем, и в сверхкритических условиях сепарируют с получением регенерированного растворителя и деасфальтизатной фазы, из которой в пленочной отгонной колонне за счет противоточного нагрева асфальтом и теплоносителем при 4,5 МПа и 250°C отгоняют пары растворителя, которые смешивают с регенерированным растворителем с получением 88,6 т/час смеси, направляемой в рекуперационный теплообменник, и 14,3 т/час остатка, который при 1,0 МПа подвергают однократному испарению с получением 0,6 т/час паров растворителя среднего давления и 13,7 т/час деасфальтизата.
Охлажденную до 80°C в рекуперационных теплообменниках и холодильнике смесь регенерированного растворителя и паров растворителя, отогнанных при давлении сверхкритической сепарации, разделяют на 80 т/час циркулирующего пропан-бутанового растворителя и 8,6 т/час балансового пропан-бутанового растворителя. Последний используют в качестве рабочего тела в струйном компрессоре для сжатия до 1,5 МПа 1,1 т/час суммарных паров растворителя среднего давления, полученный компрессат в количестве 9,7 т/час направляют на очистку от сероводорода. После обессеривания и добавления 0,3 т/час свежего пропан-бутанового растворителя полученные 10 т/час обессеренного растворителя направляют на смешение с циркулирующей частью асфальтового раствора.
Пары растворителя низкого давления не образовывались, количество паров растворителя среднего давления составило 1,1 т/час, расчетный расход электроэнергии на циркуляцию составил 0,69 кВтч/т сырья (без учета к.п.д. насоса и привода), а расход тепла для нагрева теплоносителя - 540 МДж/т сырья.
Согласно прототипу в аналогичных условиях количество паров растворителя низкого давления составило 1,97 т/час, а количество паров растворителя среднего давления составило 15,81 т/час, при этом для сжатия паров растворителя низкого давления потребовалось дросселирование паров растворителя среднего давления и дросселирование 104 т/час регенерированного растворителя. Расчетный расход электроэнергии на циркуляцию растворителя составил 3,55 кВтч/т сырья, а расход тепла - 840 МДж/т сырья.
Таким образом предлагаемый способ позволяет уменьшить количество паров растворителя среднего давления и исключить образование паров растворителя низкого давления, снизить расход электроэнергии на циркуляцию растворителя и тепла на нагрев асфальтового и деасфальтизатного растворов, предотвратить образование водных стоков и исключить печной нагрев асфальтового раствора. Изобретение может быть использовано в нефтеперерабатывающей промышленности.

Claims (5)

1. Способ деасфальтизации нефтяных остатков, включающий экстракцию нефтяного остатка легким углеводородным растворителем с получением асфальтового и деасфальтизатного раствора, регенерацию растворителя из асфальтового раствора, нагретого в рекуперационном теплообменнике, включающую однократное испарение паров растворителя при среднем давлении, регенерацию растворителя из деасфальтизатного раствора, нагретого в рекуперационном теплообменнике и нагревателе, включающую сверхкритическую сепарацию с получением регенерированного растворителя и деасфальтизатной фазы, однократное испарение из нее паров растворителя при среднем давлении, а также сжатие смеси паров растворителя среднего давления струйным компрессором, отличающийся тем, что из нагретого асфальтового раствора при давлении экстракции предварительно отгоняют пары растворителя, которые смешивают с деасфальтизатным раствором, при этом отгонку осуществляют в условиях противоточного нагрева асфальтом и теплоносителем, из деасфальтизатной фазы при давлении сверхкритической сепарации предварительно отгоняют пары растворителя, которые смешивают с регенерированным растворителем, при этом отгонку осуществляют в условиях противоточного нагрева деасфальтизатом и теплоносителем, а в качестве рабочего тела струйного компрессора при сжатии смеси паров растворителя среднего давления используют часть охлажденной смеси регенерированного растворителя и паров растворителя, отогнанных при давлении сверхкритической сепарации.
2. Способ по п.1, отличающийся тем, что компрессат, полученный при сжатии паров растворителя среднего давления, подвергают обессериванию с получением обессеренного растворителя.
3. Способ по п.1, отличающийся тем, что нефтяной остаток подают в среднюю зону питания экстрактора после смешения с частью смеси регенерированного растворителя и паров растворителя, отогнанных при давлении сверхкритической экстракции, при этом другую часть указанной смеси подают в нижнюю зону питания экстрактора.
4. Способ по п.1, отличающийся тем, что асфальтовый раствор разделяют на циркулирующую часть и балансовую часть, которую направляют на нагрев и отгонку растворителя, а циркулирующую часть смешивают с обессеренным растворителем, при этом по меньшей мере часть полученной смеси смешивают с частью смеси регенерированного растворителя и паров растворителя, отогнанных при давлении сверхкритической экстракции, подаваемой в нижнюю зону питания экстрактора, а другую часть полученной смеси подают непосредственно в кубовую часть экстрактора.
5. Способ по п.1, отличающийся тем, что верхнюю часть экстрактора нагревают.
RU2013158717/04A 2013-12-27 2013-12-27 Способ деасфальтизации нефтяных остатков RU2537405C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013158717/04A RU2537405C1 (ru) 2013-12-27 2013-12-27 Способ деасфальтизации нефтяных остатков

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013158717/04A RU2537405C1 (ru) 2013-12-27 2013-12-27 Способ деасфальтизации нефтяных остатков

Publications (1)

Publication Number Publication Date
RU2537405C1 true RU2537405C1 (ru) 2015-01-10

Family

ID=53287735

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013158717/04A RU2537405C1 (ru) 2013-12-27 2013-12-27 Способ деасфальтизации нефтяных остатков

Country Status (1)

Country Link
RU (1) RU2537405C1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4747936A (en) * 1986-12-29 1988-05-31 Uop Inc. Deasphalting and demetallizing heavy oils
RU2176659C2 (ru) * 2000-01-13 2001-12-10 Институт проблем нефтехимпереработки АН Республики Башкортостан Способ деасфальтизации нефтяных остатков
US6533925B1 (en) * 2000-08-22 2003-03-18 Texaco Development Corporation Asphalt and resin production to integration of solvent deasphalting and gasification
RU2232792C2 (ru) * 2002-09-27 2004-07-20 Государственное унитарное предприятие "Институт нефтехимпереработки" Способ деасфальтизации нефтяных остатков

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4747936A (en) * 1986-12-29 1988-05-31 Uop Inc. Deasphalting and demetallizing heavy oils
RU2176659C2 (ru) * 2000-01-13 2001-12-10 Институт проблем нефтехимпереработки АН Республики Башкортостан Способ деасфальтизации нефтяных остатков
US6533925B1 (en) * 2000-08-22 2003-03-18 Texaco Development Corporation Asphalt and resin production to integration of solvent deasphalting and gasification
RU2232792C2 (ru) * 2002-09-27 2004-07-20 Государственное унитарное предприятие "Институт нефтехимпереработки" Способ деасфальтизации нефтяных остатков

Similar Documents

Publication Publication Date Title
US10480352B2 (en) Organic Rankine cycle based conversion of gas processing plant waste heat into power and cooling
US11073050B2 (en) Kalina cycle based conversion of gas processing plant waste heat into power
CN108138053B (zh) 热电联合的延迟焦化装置
US10851679B2 (en) Natural gas liquid fractionation plant waste heat conversion to potable water using modified multi-effect distillation system
US9719380B2 (en) Power generation using non-aqueous solvent
US10975735B2 (en) Natural gas liquid fractionation plants low grade waste heat conversion to cooling, power and water
RU2439452C1 (ru) Способ низкотемпературной подготовки углеводородного газа
RU2537405C1 (ru) Способ деасфальтизации нефтяных остатков
RU2339677C1 (ru) Способ деасфальтизации нефтяных остатков
RU2525983C1 (ru) Способ деасфальтизации нефтяных остатков
RU2232792C2 (ru) Способ деасфальтизации нефтяных остатков
RU2338734C1 (ru) Способ выделения углеводородов c3+ из попутных нефтяных газов
RU2513396C1 (ru) Способ регенерации метанола
RU2279465C1 (ru) Способ деасфальтизации нефтяных остатков
US20190003343A1 (en) Process and apparatus for using a waste heat stream in an aromatics complex
RU2526626C1 (ru) Способ деасфальтизации нефтяных остатков
RU2136720C1 (ru) Способ деасфальтизации нефтяных остатков
WO2010074596A1 (ru) Способ создания вакуума в вакуумной колонне перегонки нефтяного сырья и установка для осуществления способа
CA3138297A1 (en) Gas and solvent separation in surface facility for solvent based in situ recovery operation
RU2217475C2 (ru) Способ регенерации растворителя
US20140196499A1 (en) Stripper overhead heat integration system for reduction of energy consumption
RU2401296C1 (ru) Установка первичной перегонки нефти и способ первичной перегонки нефти
US20200040772A1 (en) Natural gas liquid fractionation plant waste heat conversion to simultaneous power, cooling and potable water using modified goswami cycle and new modified multi-effect-distillation system
RU2171270C2 (ru) Способ выделения стабильного конденсата из природного газа
US1320167A (en) Augusts jean paris

Legal Events

Date Code Title Description
PC41 Official registration of the transfer of exclusive right

Effective date: 20210216