RU2534155C2 - Трансзвуковой водометный движитель судна - Google Patents

Трансзвуковой водометный движитель судна Download PDF

Info

Publication number
RU2534155C2
RU2534155C2 RU2013102934/11A RU2013102934A RU2534155C2 RU 2534155 C2 RU2534155 C2 RU 2534155C2 RU 2013102934/11 A RU2013102934/11 A RU 2013102934/11A RU 2013102934 A RU2013102934 A RU 2013102934A RU 2534155 C2 RU2534155 C2 RU 2534155C2
Authority
RU
Russia
Prior art keywords
water
nozzle
outlet
inlet
nozzles
Prior art date
Application number
RU2013102934/11A
Other languages
English (en)
Other versions
RU2013102934A (ru
Inventor
Борис Иванович Турышев
Игорь Чуварович Бабкин
Сергей Николаевич Медведский
Original Assignee
Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "Военный учебно-научный центр Военно-Морского Флота "Военно-морская академия имени Адмирала Флота Советского Союза Н.Г. Кузнецова"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "Военный учебно-научный центр Военно-Морского Флота "Военно-морская академия имени Адмирала Флота Советского Союза Н.Г. Кузнецова" filed Critical Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "Военный учебно-научный центр Военно-Морского Флота "Военно-морская академия имени Адмирала Флота Советского Союза Н.Г. Кузнецова"
Priority to RU2013102934/11A priority Critical patent/RU2534155C2/ru
Publication of RU2013102934A publication Critical patent/RU2013102934A/ru
Application granted granted Critical
Publication of RU2534155C2 publication Critical patent/RU2534155C2/ru

Links

Abstract

Изобретение относится к судостроению, а именно к водометным движителям судов и других плавсредств. Трансзвуковой водометный движитель судна содержит входной и выходной водовод, ускоритель потока текучей среды. Входной водовод, выход которого соединен с входом ускорителя потока текучей среды, выход которого соединен с входом выходного водовода. Ускоритель потока текучей среды содержит, по крайней мере, два сопла на одной оси, причем, по меньшей мере, одно сопло введено в следующее по ходу движения текучей среды, с образованием между ними полости и, по меньшей мере, во всех полостях установлены датчики давления, а во входном и выходном соплах - датчики скорости. При этом ускоритель выполнен с возможностью образования смеси воды и газов в зоне между двумя соседними соплами. Достигается повышение КПД, устранение импульсных электромагнитных помех. 1 з.п. ф-лы, 1 ил.

Description

Изобретение относится к судостроению, а именно к водометным движителям судов и других плавсредств. Направлено, в первую очередь, на снижение расхода энергии для движения судна.
Известны водометные движители [1]. В общем случае они содержат водовод с входным и выходным отверстием, ускоритель потока воды (насос или гребной винт) и спрямляющий аппарат или без него. Недостатки аналога - большие гидродинамические потери и, как следствие, низкий по сравнению с гребным винтом коэффициент полезного действия, большой расход энергии на работу движителя, во многих случаях нерентабельность его использования.
Известны водометные движители или вставки-водоводы водометных движителей [2-5] с повышенными значениями тяги и КПД за счет рационального изменения поперечных сечений водовода и/или размещения в нем хорошо обтекаемых тел с высоким гидродинамическим качеством.
Недостаток модифицированных таким образом водометных движителей состоит в сравнительно большой трате энергии для работы движителя.
Известен ускоритель потока жидкости, содержащий, по меньшей мере, два сопла на одной оси, при этом, по меньшей мере, одно сопло соосно введено в следующее по ходу движения текучей среды сопло с образованием между соплами полости, причем не менее чем одна полость сообщена с устройствами подачи и отсоса текучей среды, по меньшей мере, в одной полости размещены средства ионизации текучей среды, причем в полости с устройствами подачи и отсоса текучей среды размещены электроды для осуществления электрогидравлических ударов в текучей среде, которые соединены с выходами блока формирования электрогидравлических ударов в текучей среде [5].
Недостатком этого ускорителя текучей среды является применение искрового электрогидравлического удара в жидкости и блока формирования электрогидравлических ударов в текучей среде [6], которые создают сильные импульсные электромагнитные помехи для окружающей электронной аппаратуры и таким образом либо существенно ограничивают область использования ускорителя, либо приводят к нерациональным затратам на изготовление для ускорителя средств защиты от электромагнитные помех.
Технический результат изобретения состоит в разработке конструкции водометного движителя с ускорителем потока жидкости, не создающим импульсные электромагнитные помехи, обладающим электромагнитной совместимостью с окружающей электронной аппаратурой и позволяющим при этом существенно снизить расход углеводородного топлива, а также повысить КПД движителя.
Технический результат достигается тем, что в водометном движителе судна, содержащем входной водовод, выход которого соединен с входом ускорителя потока текучей среды, выход которого соединен с входом выходного водовода, при этом ускоритель потока текучей среды содержит, по крайней мере, два сопла на одной оси, причем, по меньшей мере, одно сопло введено в следующее по ходу движения текучей среды сопло с образованием между соплами полости и, по меньшей мере, во всех полостях установлены датчики давления, а во входном и выходном соплах - датчики скорости, ускоритель выполнен с возможностью образования смеси воды и газов в зоне между соседними соплами.
Смесь воды и газов в зоне между соседними соплами создается за счет того, что сборка из двух соседних сопел выполнена в виде газожидкостного струйного аппарата, при этом первое по ходу движения текучей среды сопло выполняет функции активного сопла с входным сужающимся и выходным расширяющимся участками, полость в сборке между двумя соседними соплами образует приемную камеру с отверстием для подвода жидкой или газообразной среды, а пространство между выходным сечением первого сопла и выходным сечением второго по ходу движения текучей среды сопла выполняет функции камеры смешения, причем выходное сечение первого сопла превышает минимальное проходное сечение второго сопла.
Выполнение сборки из двух соседних сопел ускорителя в виде газожидкостного струйного аппарата позволяет в камере смешения между сечениями сопел создать двухфазную газожидкостную смесь из пузырьков газа и жидкости (воды). При движении этой смеси по ходу движения текучей среды к выходному сечению второго сопла, сужающемуся по ходу движения текучей среды в виде двухфазной газожидкостной смеси, эта смесь сжимается, происходит кавитация пузырьков в выходном сечении второго сопла с выделением дополнительной энергии. При этом двухфазный поток превращается в практически однофазный жидкостной поток, в котором могут присутствовать только мелкие газовые пузырьки, а за выходным сечением второго сопла резко возрастают давление и напор струи жидкости (воды), что позволяет протолкнуть струю текучей среды (воды) в ускорителе далее в следующие по ходу движения текучей среды сопла и обеспечить таким образом процесс работы ускорителя потока жидкости водомета в автономном режиме.
Таким образом, путем выполнения ускорителя с возможностью образования смеси воды и газов в зоне между соседними соплами, в частности, выполнения сборки из двух соседних сопел ускорителя в виде газожидкостного струйного аппарата описанным выше образом, удалось добиться выполнения поставленной в изобретении задачи - устранения импульсных электромагнитных помех, обеспечить электромагнитную совместимость ускорителя потока жидкости с электронными устройствами, при этом существенно снизить расход углеводородного топлива, а также повысить КПД движителя.
Конструкция ускорителя рассчитывается на задаваемую максимальную скорость потока на его выходе. При этом меньшие значения скорости получают путем варьирования величины вакуума в полостях с помощью устройств подачи и отсоса текучей среды, за счет давления газа в полости сборки из двух соседних сопел.
Схематически предлагаемое изобретение изображено на фиг.1. Трансзвуковой водометный движитель судна (фиг.1) состоит из входного водовода 1 с входным 2 и выходным 3 отверстием и ускорителя 4 потока текучей среды 5, а также выходного водовода б.
Ускоритель 4 потока текучей среды 5 (в общем случае смесь воды и газов) содержит размещенные соосно сопло 7 с входным сечением 8, выходным сечением 9 и критическим сечением 10, сопло 11 с критическим сечением 12 и полость 13 между этими соплами. Пространство между выходным сечением 9 и критическим сечением 12 сопла 11 образует камеру 14 смешения. Далее по ходу движения текучей среды следуют сопло Лаваля Л1 с критическим сечением 15, образованное соплами 16 и 17, а также сопло Лаваля Л2 с критическим сечением 18, образованное соплом 19 и соплом водовода 6. Между соплами 11 и 16 имеется полость 21, между соплами Лаваля Л1 и Л2 полость 22. При этом сопла 11 и 16, а также 16 и 17, 17 и 19 соединены между собой герметично. К полостям 21 и 22 подсоединены устройства 23 отсоса, подачи текучей среды внутрь этих полостей, а также контроля давления газа в них. Датчик измерения скорости движения потока текучей среды 5 на входе ускорителя 4, входное сечение 8, датчик измерения скорости движения потока текучей среды 5 на выходе ускорителя 4, выходное сечение 18, и блок управления работой ускорителя 4 на фигуре не показаны. Все сопла ускорителя 4 размещены в корпусе 24. Полость 13 в сборке между двумя соседними соплами 7 и 11 образует приемную камеру с отверстием для подвода газообразной среды 25 через патрубок 26. Блок 27 контролирует величину давления газообразной среды 25, поступающей в полость 13. Сопло 7 выполняет функции активного сопла с входным сужающимся 28 и выходным расширяющимся 29 участками.
Устройство работает следующим образом.
При работе водометного движителя судна вначале его ускоритель 4 соединяют с забортной водой через входной водовод 1. Далее под небольшим давлением, например, 1 атм, воду закачивают в сопло 7, в котором она при пересечении критического сечения 10 разгоняется в расширяющемся участке 29. Одновременно через патрубок 26 в полость 13 закачивают газ, например, воздух или водяной пар, под давлением в интервале от 1 атм до 10 атм. Поток газа взаимодействует с разогнанным в сопле 7 потоком воды, что приводит к образованию в пространстве 14 (камера смешения) двухфазной газожидкостной смеси пузырьков газа в воде. При движении двухфазной газожидкостной смеси в сужающемся сопле 11 эта смесь сжимается, кавитационные пузырьки охлопываются, излучая при этом в сечении 12 дополнительную энергию ударной волны, что приводит к резкому скачку давления в струе воды и напору ее за сечением 12. При необходимости, с помощью блоков 23 производят отсос (подачу) текучей среды в полости 21 и 22. Когда скорость потока текучей среды (вода и газы), идущей из полости 14, с учетом эжектируемой забортной воды (через сопло 7) между сечениями 12 и 13 будет достаточной для эжекции воды из полости 21, в последней возникнет некоторое разрежение. Оно будет способствовать повышению перепада давлений между сечениями 10 и 12 и, тем самым, увеличению скорости истечения и расхода забортной воды через входное сечение 8. Это, в свою очередь, приведет к усилению вакуумирования полости 21. Аналогично происходит вакуумирование полости 22 с последовательным повышением скорости потока воды в ускорителе в конечном итоге до величины V0. В режиме разгона воды в ускорителе скорость на его выходе растет, при этом затраты энергии, необходимые для разгона воды насосом, будут уменьшаться вплоть до нуля, и при скорости на выходе водовода 6 V0 ускоритель 4 перейдет в режим самостоятельного поддержания режима разгона струи на выходе водометного движителя судна.
Такие процессы будут происходить до тех пор, пока не перестанет повышаться степень вакуума в полостях 21 и 22. Что касается вопроса управления работой ускорителя, то возможны два варианта. Первый, когда величиной вакуума в полостях 21 и 22 не управляют, тогда скорость потока будет наибольшей при технически возможной степени вакуума (за счет самовакуумирования [8]). Второй вариант, когда, наоборот, величину вакуума назначают и поддерживают в полостях 21 и 22 искусственно, скорость потока при этом будет управляемой.
При установлении постоянной скорости потока V0 в ускорителе 4 величину давления газа 23 в полости 13 постепенно уменьшают вплоть до полного выключения. Ускоритель и движитель в целом начинают работать только за счет засасывания в сопла 21 и 22 текучей среды (забортной воды) через отверстие 3 вакуумом этих полостей. При вакуумировании полостей 21 и 22 в выходном сопле 6 возникнет устойчивый реактивный поток текучей среды (в основном воды), создающий силу тяги судна. Насос или другое внешнее устройство для разгона текучей среды 5 в ускорителе 4, если оно использовалось, отключают.
Регулировка скорости (мощности) потока текучей среды на выходе из движителя (ускорителя) в реальном времени производится путем управления величиной вакуума в полостях 13, 21, 22. Для этого предусмотрены устройства 23 для отсоса текучей среды (газов, например воздуха) и подачи (впрыскивании) текучей среды (воды, воздуха). Для управления работой ускорителя используются показания датчиков давления, размещенных в полостях, датчиков скорости потока на выходе и входе из ускорителя, а также показания устройств 22, поступающие в блок управления работой ускорителя.
Затраты энергии на работу ускорителя сравнительно небольшие. Энергия расходуется на первоначальный разгон текучей среды внутри ускорителя до заданной скорости, компенсацию гидравлических потерь на трение и др. Кроме этого, энергия расходуется на работу механизмов, обеспечивающих давление газа 25 в полости 13, а также работу устройств 23, 27. Поддержание же задаваемой скорости струи на выходе движителя осуществляется, главным образом, за счет вакуума в полостях 21, 22 ускорителя 4.
Технический результат изобретения - устранение импульсных электромагнитных помех, обеспечение электромагнитной совместимости ускорителя 4 потока жидкости с электронными устройствами, при этом существенное снижение затрат энергии на движение судна (не менее 70-80%), следовательно, возможность увеличить скорость хода и/или дальность плавания, снизить запасы топлива, повысить КПД движителя.
Источники информации
1. Куликов С.В., Храмкин М.Ф. Водометные движители (теория и расчет). - 3-е изд., перераб. и доп. Л.: Судостроение, 1980. - 312 с. (с.11).
2. Патент РФ №2240951, опубл. 2004 г.
3. Патент РФ №2247058, опубл. 2005 г.
4. Патент РФ №2285636, опубл. 2006 г.
5. Патент РФ №2343086, опубл.2009 г.
6. Юдкин, Электрогидравлический удар, 1986 г.
7. Е.И. Андреев, О.А. Ключарев, А.П. Смирнов, Р.А. Давиденко. Естественная энергетика. - СПб: Нестор, 2000. - 122 с.
8. Патент WO 03/25379, кл.7 F2K 7/00, опубл. 2003 г.

Claims (2)

1. Трансзвуковой водометный движитель судна, содержащий входной водовод, выход которого соединен с входом ускорителя потока текучей среды, выход которого соединен с входом выходного водовода, при этом ускоритель потока текучей среды содержит, по крайней мере, два сопла на одной оси, причем, по меньшей мере, одно сопло введено в следующее по ходу движения текучей среды сопло с образованием между соплами полости и, по меньшей мере, во всех полостях установлены датчики давления, а во входном и выходном соплах - датчики скорости, отличающийся тем, что ускоритель выполнен с возможностью образования смеси воды и газов в зоне между двумя соседними соплами.
2. Трансзвуковой водометный движитель судна по п.1, отличающийся тем, что сборка из двух соседних сопел выполнена в виде газожидкостного струйного аппарата, при этом первое по ходу движения текучей среды сопло выполняет функции активного сопла с входным сужающимся и выходным расширяющимся участками, полость в сборке между двумя соседними соплами образует приемную камеру с отверстием для подвода жидкой или газообразной среды, а пространство между выходным сечением первого сопла и выходным сечением второго по ходу движения текучей среды сопла выполняет функции камеры смешения, причем выходное сечение первого сопла превышает минимальное проходное сечение второго сопла.
RU2013102934/11A 2013-01-24 2013-01-24 Трансзвуковой водометный движитель судна RU2534155C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013102934/11A RU2534155C2 (ru) 2013-01-24 2013-01-24 Трансзвуковой водометный движитель судна

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013102934/11A RU2534155C2 (ru) 2013-01-24 2013-01-24 Трансзвуковой водометный движитель судна

Publications (2)

Publication Number Publication Date
RU2013102934A RU2013102934A (ru) 2014-07-27
RU2534155C2 true RU2534155C2 (ru) 2014-11-27

Family

ID=51264689

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013102934/11A RU2534155C2 (ru) 2013-01-24 2013-01-24 Трансзвуковой водометный движитель судна

Country Status (1)

Country Link
RU (1) RU2534155C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2760353C1 (ru) * 2021-02-05 2021-11-24 Олег Валентинович Синельников Способ приведения в движение плавательного средства с подводной частью усечённой формы

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2791949A1 (fr) * 1999-04-12 2000-10-13 Jean Coton Hydro-stato propulseur marin a double flux pour embarcations
RU2285636C2 (ru) * 2004-12-22 2006-10-20 Государственное образовательное учреждение высшего профессионального образования Военно-морская академия им. Адмирала Флота Советского Союза Н.Г. Кузнецова Прямоточный газоводометный движитель
RU2299152C1 (ru) * 2005-12-22 2007-05-20 Государственное образовательное учреждение высшего профессионального образования Военно-морская академия имени Адмирала Флота Советского Союза Н.Г. КУЗНЕЦОВА Двухрежимный водозаборник водометного движителя судна на подводных крыльях
RU2345926C2 (ru) * 2007-03-13 2009-02-10 Государственное образовательное учреждение высшего профессионального образования Военно-морская академия имени Адмирала Флота Советского Союза Н.Г. КУЗНЕЦОВА Водометный движитель судна

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2791949A1 (fr) * 1999-04-12 2000-10-13 Jean Coton Hydro-stato propulseur marin a double flux pour embarcations
RU2285636C2 (ru) * 2004-12-22 2006-10-20 Государственное образовательное учреждение высшего профессионального образования Военно-морская академия им. Адмирала Флота Советского Союза Н.Г. Кузнецова Прямоточный газоводометный движитель
RU2299152C1 (ru) * 2005-12-22 2007-05-20 Государственное образовательное учреждение высшего профессионального образования Военно-морская академия имени Адмирала Флота Советского Союза Н.Г. КУЗНЕЦОВА Двухрежимный водозаборник водометного движителя судна на подводных крыльях
RU2345926C2 (ru) * 2007-03-13 2009-02-10 Государственное образовательное учреждение высшего профессионального образования Военно-морская академия имени Адмирала Флота Советского Союза Н.Г. КУЗНЕЦОВА Водометный движитель судна

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2760353C1 (ru) * 2021-02-05 2021-11-24 Олег Валентинович Синельников Способ приведения в движение плавательного средства с подводной частью усечённой формы

Also Published As

Publication number Publication date
RU2013102934A (ru) 2014-07-27

Similar Documents

Publication Publication Date Title
US6581537B2 (en) Propulsion of underwater vehicles using differential and vectored thrust
JP7334339B2 (ja) 艦船の航行時の造波抵抗及び摩擦抵抗を低減する方法及び装置
KR20120064588A (ko) 추진 장치와 이를 갖는 선박
KR100700234B1 (ko) 프로펠러 추진 시스템과는 별도로 선박 아래쪽에 하나 이상의 워터제트를 갖는 대형 고속 해상 선박의 작동 방법, 및 선박 아래쪽에 배치되는 워터제트를 갖는 대형 고속 해상 선박의 작동 방법을 실시하기 위한 추진장치
US2730065A (en) Hydraulic ship propulsion apparatus
RU2534155C2 (ru) Трансзвуковой водометный движитель судна
CN100395159C (zh) 喷水式推力器
KR102271758B1 (ko) 테슬라 펌프를 이용한 워터젯 추진 장치
RU2343087C1 (ru) Водометный движитель подводного судна
US1914038A (en) Art and apparatus for impelling and maneuvering of floating vessels
KR20150111429A (ko) 선박의 저항감소장치
US20100258046A1 (en) Method and apparatus for suppressing cavitation on the surface of a streamlined body
RU2345926C2 (ru) Водометный движитель судна
KR20160117654A (ko) 선박의 저항감소장치
JP6873459B2 (ja) 船舶
KR200470109Y1 (ko) 프로펠러 팁 보오텍스 캐비테이션 초생 속도 제어 장치
RU2343086C1 (ru) Ускоритель потока жидкости
RU2299152C1 (ru) Двухрежимный водозаборник водометного движителя судна на подводных крыльях
EP3808648A2 (en) Wind-water machine set
KR20160117655A (ko) 버블형성유닛
WO2018232460A1 (en) PULSED PROPULSION SYSTEM AND METHOD FOR PROPULSION OF A BOAT
黄国勤 et al. Experimental study on reaction thrust characteristics of water jet for conical nozzle
RU2797090C1 (ru) Двигательная установка ракеты-носителя со штыревым соплом
RU2533958C1 (ru) Струйный насадок водометного движителя
RU2285635C2 (ru) Газоводометный движитель

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20160125