RU2534027C2 - Устройство для преобразования электрического параметра, имеющее реактор с нулевой точкой - Google Patents

Устройство для преобразования электрического параметра, имеющее реактор с нулевой точкой Download PDF

Info

Publication number
RU2534027C2
RU2534027C2 RU2012105533/07A RU2012105533A RU2534027C2 RU 2534027 C2 RU2534027 C2 RU 2534027C2 RU 2012105533/07 A RU2012105533/07 A RU 2012105533/07A RU 2012105533 A RU2012105533 A RU 2012105533A RU 2534027 C2 RU2534027 C2 RU 2534027C2
Authority
RU
Russia
Prior art keywords
voltage
converter
alternating
energy storage
zero point
Prior art date
Application number
RU2012105533/07A
Other languages
English (en)
Other versions
RU2012105533A (ru
Inventor
Кристоф АРМШАТ
Мике ДОММАШК
Фолькер ХУССЕННЕТЕР
Томас ВЕСТЕРВЕЛЛЕР
Original Assignee
Сименс Акциенгезелльшафт
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=43303955&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2534027(C2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Сименс Акциенгезелльшафт filed Critical Сименс Акциенгезелльшафт
Publication of RU2012105533A publication Critical patent/RU2012105533A/ru
Application granted granted Critical
Publication of RU2534027C2 publication Critical patent/RU2534027C2/ru

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/26Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents
    • H02H3/36Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points of different systems, e.g. of parallel feeder systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/49Combination of the output voltage waveforms of a plurality of converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)
  • Inverter Devices (AREA)
  • Dc-Dc Converters (AREA)
  • Power Conversion In General (AREA)

Abstract

Изобретение относится к преобразовательной технике. Для того чтобы предоставить устройство (1) для преобразования электрического параметра в области передачи и распределения электроэнергии с преобразователем (2), переключаемым между сетью (11) переменного напряжения и контуром (7) постоянного напряжения, который имеет силовые полупроводниковые вентили (3), которые располагаются между выводом (4) переменного напряжения и выводом (5, 6) постоянного напряжения, причем каждый силовой полупроводниковый вентиль (3) включает в себя последовательную схему из биполярных подмодулей (8), которые имеют, соответственно, накопитель энергии и параллельно накопителю энергии расположенную силовую полупроводниковую схему, и с блоком (9) сетевого подключения, соединенным с выводом (4) переменного напряжения для соединения с сетью (11) переменного напряжения, с помощью которого обеспечивается простое, эффективное и экономичное симметрирование напряжений в контуре постоянного напряжения по отношению к потенциалу земли, предложен реактор (14) с нулевой точкой, соединенный с точкой (13) потенциала между блоком (9) сетевого подключения и преобразователем (2), имеющий дроссельные катушки (15), соединенные с заземленной нулевой точкой (16), причем дроссельные катушки (15) выполнены таким образом, что они для переменного тока с частотой основного колебания сети (11) переменного напряжения представляют токовый путь с высоким импедансом относительно потенциала земли, а для постоянного тока - токовый путь с низким импедансом относительно потенциала земли. Технический результат - симметрирование напряжений в контуре постоянного тока по отношению к потенциалу земли. 10 з.п. ф-лы, 1 ил.

Description

Изобретение относится к устройству для преобразования электрического параметра в области передачи и распределения электроэнергии с преобразователем, переключаемым между сетью переменного напряжения и цепью постоянного напряжения, который имеет силовые полупроводниковые вентили, которые располагаются между выводом переменного напряжения и выводом постоянного напряжения, причем каждый силовой полупроводниковый вентиль включает в себя последовательную схему из биполярных подмодулей, которые имеют, соответственно, накопитель энергии и силовую полупроводниковую схему, и с блоком сетевого подключения, соединенным с выводом переменного напряжения для соединения с сетью переменного напряжения.
Устройства для преобразования электрического параметра известны, например, как часть установки передачи высокого напряжения постоянного тока. Установка передачи высокого напряжения постоянного тока (HGÜ) имеет, как правило, два преобразователя, связанные между собой через промежуточный контур постоянного напряжения, которые со стороны переменного напряжения связаны, соответственно, с сетью переменного напряжения. С помощью установки передачи высокого напряжения постоянного тока является возможным передавать электрическую мощность от одной сети переменного напряжения к другой сети переменного напряжения. В частности, передача энергии на большие и расстояния предпочтительна путем передачи высокого напряжения постоянного тока, так как по сравнению с передачей переменного напряжения при передаче возникают меньшие потери.
Из уровня техники известны различные топологии преобразователей для HGÜ. Двухкаскадные преобразователи, которые в данной отрасли обозначаются как двухточечные преобразователи, вырабатывают на своем выходе только два различных уровня напряжения. Преобразовательные вентили двухточечных преобразователей имеют множество силовых полупроводниковых переключателей, которые размещены последовательно друг с другом. Расположенные последовательно друг с другом силовые полупроводники должны все переключаться одновременно, таким образом, переводиться из положения прерывания, в котором протекание тока через силовой полупроводник прерывается, в положение пропускания, в котором возможно протекание тока через силовой полупроводник. Автономные и сохраняющие напряжение преобразователи также обозначаются как преобразователи источника напряжения (VSC). Преобразователи, имеющие три каскада напряжения, обозначаются как трехточечные преобразователи.
Наряду с двухточечными и трехточечными преобразователями, из уровня техники также известны так называемые многокаскадные преобразователи, которые в данной отрасли также обозначаются как многоуровневые преобразователи источника напряжения (VSC). Многоуровневые VSC имеют, как правило, силовые полупроводниковые вентили из биполярных подмодулей, которые содержат, соответственно, накопитель энергии, например конденсатор, и силовую полупроводниковую схему, с помощью которой является возможным сформировать на выходных клеммах каждого подмодуля напряжение, падающее на конденсаторе, или нулевое напряжение. За счет последовательного включения подмодулей напряжение на выходе каждого силового полупроводникового вентиля можно изменять ступенчато, причем высота ступенек определяется напряжением, падающим на соответствующем конденсаторе. Предусмотренный в двух- или трехточечных преобразователях центральный конденсатор контура постоянного напряжения, в случае многоуровневых VSC, распределяется на отдельные подмодули силовых полупроводниковых вентилей.
Многоуровневые преобразователи имеют недостаток, заключающийся в том, что полюса промежуточного контура постоянного тока, к которым подключены силовые полупроводниковые вентили преобразователей, могут иметь различные по высоте величины напряжения относительно потенциала земли.
Задачей настоящего изобретения является предложить преобразователь вышеназванного типа, с помощью которого можно обеспечить простое, эффективное и экономичное симметрирование напряжений в контуре постоянного тока по отношению к потенциалу земли.
Изобретение решает эту задачу посредством реактора с нулевой точкой, соединенного с точкой потенциала между блоком сетевого подключения и преобразователем, имеющего дроссельные катушки, соединенные с заземленной нулевой точкой, причем дроссельные катушки выполнены таким образом, что они для переменного тока с частотой основного колебания сети переменного напряжения представляют токовый путь с высоким импедансом относительно потенциала земли, а для постоянного тока - токовый путь с низким импедансом относительно потенциала земли.
В соответствии с изобретением привязка потенциала на стороне преобразователя реализуется реактором с нулевой точкой. Реактор с нулевой точкой имеет дроссельные катушки, соединенные с нулевой точкой, которые на их стороне, противоположной нулевой точке, гальванически соединены с выводом переменного напряжения соответствующего преобразователя. При подключении соответствующего изобретению устройства к сети переменного напряжения с помощью блока сетевого подключения реактор с нулевой точкой, другими словами, располагается параллельно сети переменного напряжения. Дроссельные катушки реактора с нулевой точкой выполнены таким образом, что они для компоненты основного колебания переменного тока, которая обычно равна 50 или 60 Гц, представляют токовый путь с высоким импедансом, так что переменные токи не могут протекать через заземленную нулевую точку. Протекание постоянных токов, однако, возможно с порядком величины паразитных токов утечки на поверхности изолятора. Целесообразно, что реактор с нулевой точкой находится в наружном поле вблизи вентильного отсека, в котором размещаются силовые полупроводниковые вентили. С помощью этого реактора с нулевой точкой, таким образом, является возможным симметрировать промежуточный контур постоянного напряжения многоуровневых преобразователей, которые имеют плавающий потенциал. Иными словами, полюса промежуточного контура постоянного напряжения по отношению к потенциалу земли имеют напряжения, величины которых примерно одинаковы.
Целесообразно, что нулевая точка реактора с нулевой точкой через омическое сопротивление соединена с потенциалом земли. С помощью омического сопротивления можно избежать резонансов или колебаний между емкостью между проводником и землей промежуточного контура постоянного напряжения и индуктивностью реактора с нулевой точкой. Таким способом обеспечивается затухание.
Целесообразно, что каждая дроссельная катушка имеет намагничиваемый сердечник. Намагничиваемый сердечник может представлять собой железный сердечник или тому подобное. Согласно целесообразному в этом отношении дальнейшему развитию, сердечник ограничивает воздушный зазор. Воздушный зазор служит тому, чтобы избегать преждевременного насыщения сердечника при проведении постоянных токов, например, до 100 мА.
Целесообразно, что каждый подмодуль имеет полномостовую схему с четырьмя отключаемыми силовыми полупроводниками, которые таким образом соединены с накопителем энергии, что на выходных клеммах подмодуля может генерироваться падающее на накопителе энергии напряжение накопителя энергии, нулевое напряжение или инверсное напряжение накопителя энергии. Такие полномостовые схемы хорошо известны специалистам, так что здесь не требуется рассматривать более подробно их точный способ действия и пример включения. Полномостовые схемы также обозначаются как Н-мостовые схемы. К каждому отключаемому силовому полупроводнику противоположно параллельно включен безынерционный диод.
Как вариант описанного выполнения, каждый подмодуль имеет полумостовую схему с двумя отключаемыми силовыми полупроводниками, которые таким образом соединены с накопителем энергии, что на выходных клеммах подмодуля может генерироваться падающее на накопителе энергии напряжение накопителя энергии или нулевое напряжение. Преобразователи с такой топологией и подмодули также обозначаются как так называемые «преобразователи Марквардта». В противоположность полномостовой схеме, с помощью полумостовой схемы невозможно выработать инверсное напряжение накопителя энергии на выходных клеммах. Но зато в случае полумостовой схемы число дорогостоящих силовых полупроводников наполовину сокращается. И в данном случае, с каждым управляемым и отключаемым силовым полупроводником, таким как IGBT или GTO, противоположно параллельно включен безынерционный диод.
Предпочтительным образом, блок сетевого подключения представляет собой трансформатор. Трансформатор соединен в соответствии с конкретными требованиями. Первичная обмотка трансформатора соединена, например, через распределительное устройство с сетью переменного напряжения. Вторичная обмотка трансформатора гальванически соединена с выводом переменного напряжения преобразователя, а также с реактором с нулевой точкой. Для каждой фазы, которая ведет от блока сетевого подключения к выводу переменного напряжения преобразователя, предусмотрена дроссельная катушка. Число дроссельных катушек соответствует в рамках изобретения, таким образом, числу фаз подключаемой сети переменного напряжения.
В другом варианте блок сетевого подключения содержит индуктивность, подключаемую последовательно с сетью переменного напряжения. Токовый путь от сети переменного напряжения к выводу переменного напряжения преобразователя ведет, согласно этому варианту выполнения, через последовательно соединенную индуктивность. Блок сетевого подключения может, кроме того, содержать конденсатор, включенный последовательно с индуктивностью. Кроме того, возможно, что блок сетевого подключения содержит как трансформатор, так и последовательно соединенную индуктивность, а также последовательно соединенный конденсатор. Индуктивность в принципе представляет собой любой индуктивный компонент. Целесообразно, что индуктивность является катушкой, дросселем, обмоткой или тому подобным.
Целесообразно, что дроссельные катушки реактора с нулевой точкой смонтированы на изоляторах. В особенности, является целесообразным, что реактор с нулевой точкой со своими дроссельными катушками установлен на открытом воздухе.
Предпочтительным образом, преобразователь имеет незаземленную нулевую точку преобразователя, причем дроссельные катушки размещены на нулевой точке преобразователя.
Другие предпочтительные формы выполнения преимущества изобретения являются предметом последующего описания примеров выполнения со ссылками на чертеж, на котором показан пример выполнения реактора с нулевой точкой соответствующего изобретению устройства.
Фиг.1 показывает пример выполнения соответствующего изобретению устройства 1, которое содержит преобразователь 2 с шестью силовыми полупроводниковыми вентилями 3, которые находятся, соответственно, между выводом 4 переменного напряжения и выводом 5 или 6 постоянного напряжения. При этом между каждым силовым полупроводниковым вентилем 3 и каждым выводом 4 переменного напряжения предусмотрена индуктивность 18 в форме катушки, с помощью которой, в частности, облегчается регулирование контурных токов, которые могут протекать между различными силовыми полупроводниковыми вентилями 3. Каждый вывод 5 постоянного напряжения соединен с положительным полюсом промежуточного контура 7 постоянного тока, который на чертеже изображен лишь частично. Выводы 6 постоянного напряжения соединены с отрицательным полюсом (-) промежуточного контура 7 постоянного тока. Каждый силовой полупроводниковый вентиль 3 состоит из последовательного соединения биполярных подмодулей 4, которые, соответственно, содержат не показанные на чертеже конденсатор и силовую полупроводниковую схему из двух отключаемых силовых полупроводников, IGBT, к которым, соответственно, противоположно параллельно подключен безынерционный диод. Подмодули 8 являются биполярными и имеют поэтому две выходные клеммы. Соединение силовых полупроводников и конденсатора выбрано таким образом, что на выходных клеммах каждого подмодуля может вырабатываться либо падающее на конденсаторе конденсаторное напряжение, либо нулевое напряжение. За счет целенаправленного управления подмодулями 8 является возможным устанавливать напряжение, падающее на силовых полупроводниковых вентилях 3, ступенчатым образом. Число подмодулей, в случае применений в области передачи высокого напряжения постоянного тока, составляет от 20 до нескольких сотен.
Устройство 1 содержит, кроме того, трансформатор 9 в качестве блока сетевого подключения, причем трансформатор 9 имеет первичную обмотку 10, которая соединена с сетью 11 переменного напряжения, а также вторичную обмотку 12, которая гальванически соединена с выводами 4 переменного напряжения преобразователя 1. Сеть 11 переменного напряжения выполнена трехфазной. Это справедливо, соответственно, для числа выводов 4 переменного напряжения, а также для участка 13 проводника для гальванического соединения вторичной обмотки 12 с выводами 4 переменного напряжения. Участок 13 проводника может также обозначаться как точка потенциала между блоком 9 сетевого подключения и выводами 4 переменного напряжения преобразователя 2.
Для симметрирования положительного постоянного напряжения и отрицательного постоянного напряжения или, другими словами, для симметрирования полюсов промежуточного контура 7 постоянного тока по отношению к потенциалу земли предусмотрен реактор 14 с нулевой точкой. Реактор 14 с нулевой точкой имеет три дроссельные катушки 15, которые соединены с нулевой точкой 16. Нулевая точка 16 соединена через омическое сопротивление 17 с потенциалом земли. Каждая дроссельная катушка 15 на своей стороне, противоположной нулевой точке 16, соединена с фазой участка 13 проводника и, тем самым, гальванически соединена с выводом 4 переменного напряжения преобразователя 2.
Дроссельные катушки 15 выполнены таким образом, то они для основной частоты переменного напряжения сети 11 переменного напряжения, которая в выбранном примере выполнения составляет 50 Гц, представляют токовый путь с высоким импедансом. К тому же каждая дроссельная катушка имеет железный сердечник. Во избежание преждевременного насыщения железного сердечника внутри каждого железного сердечника дроссельных катушек 15 предусмотрен воздушный зазор. Реактор с нулевой точкой выполняется как обычный коммерчески доступный преобразователь разряда, причем вторичные обмотки преобразователя разряда опущены. Дроссельные катушки 15 реактора с нулевой точкой установлены на подходящих изоляторах, например, таких изоляторах, которые рассчитаны на 39 кВ. С помощью реактора 14 с нулевой точкой, таким образом, обеспечивается возможность привязки потенциала на стороне переменного напряжения преобразователя 2, с симметрированием полюсов промежуточного контура 7 постоянного тока, как следствие. Первые испытания показали, что, несмотря на экстремальное возбуждение реактора с нулевой точкой третьей гармоникой основного колебания переменного напряжения, система остается стабильной. Контурные токи в значительной степени предотвращаются. К тому же, в противоположность привязке потенциала на стороне постоянного напряжения, возникают заметно сниженные потери энергии. Подобный по конструкции индуктивному преобразователю напряжения реактор с нулевой точкой доступен как стандартный продукт на рынке, так что соответствующее изобретению устройство является экономичным.

Claims (11)

1. Устройство (1) для преобразования электрического параметра в области передачи и распределения электроэнергии
с преобразователем (2), переключаемым между сетью (11) переменного напряжения и контуром (7) постоянного напряжения, который имеет силовые полупроводниковые вентили (3), которые располагаются между выводом (4) переменного напряжения и выводом (5, 6) постоянного напряжения, причем каждый силовой полупроводниковый вентиль (3) включает в себя последовательную схему из биполярных подмодулей (8), которые имеют, соответственно, накопитель энергии и силовую полупроводниковую схему, и
с блоком (9) сетевого подключения, соединенным с выводом (4) переменного напряжения для соединения с сетью (11) переменного напряжения,
отличающееся посредством
реактора (14) с нулевой точкой, соединенного с точкой (13) потенциала между блоком (9) сетевого подключения и преобразователем (2), имеющего дроссельные катушки (15), соединенные с заземленной нулевой точкой (16), причем дроссельные катушки (15) выполнены таким образом, что они для переменного тока с частотой основного колебания сети (11) переменного напряжения представляют токовый путь с высоким импедансом относительно потенциала земли, а для постоянного тока - токовый путь с низким импедансом относительно потенциала земли.
2. Устройство (1) по п.1, отличающееся тем, что
каждая дроссельная катушка (15), на ее стороне, противоположной нулевой точке (16), соединена с соответствующим выводом (4) переменного напряжения преобразователя (2).
3. Устройство (1) по п.2, отличающееся тем, что нулевая точка (16) реактора (14) с нулевой точкой через омическое сопротивление (17) соединена с потенциалом земли.
4. Устройство (1) по п.2, отличающееся тем, что каждая дроссельная катушка (15) имеет намагничиваемый сердечник.
5. Устройство (1) по п.4, отличающееся тем, что сердечник ограничивает воздушный зазор.
6. Устройство (1) по п.1, отличающееся тем, что каждый подмодуль (8) имеет полномостовую схему с четырьмя отключаемыми силовыми полупроводниками, которые таким образом соединены с накопителем энергии, что на выходных клеммах подмодуля может генерироваться падающее на накопителе энергии напряжение накопителя энергии, нулевое напряжение или инверсное напряжение накопителя энергии.
7. Устройство (1) по п.1, отличающееся тем, что каждый подмодуль имеет полумостовую схему с двумя отключаемыми силовыми полупроводниками, которые таким образом соединены с накопителем энергии, что на выходных клеммах подмодуля может генерироваться падающее на накопителе энергии напряжение накопителя энергии или нулевое напряжение.
8. Устройство (1) по п.1, отличающееся тем, что блок сетевого подключения представляет собой трансформатор (9).
9. Устройство (1) по п.1, отличающееся тем, что блок сетевого подключения содержит индуктивность, соединяемую последовательно с сетью (11) переменного напряжения.
10. Устройство (1) по п.1, отличающееся тем, что дроссельные катушки (15) реактора (14) с нулевой точкой смонтированы на изоляторах.
11. Устройство (1) по п.1, отличающееся тем, что преобразователь (2) имеет незаземленную нулевую точку преобразователя, причем дроссельные катушки (15) размещены на нулевой точке преобразователя.
RU2012105533/07A 2009-07-17 2010-07-06 Устройство для преобразования электрического параметра, имеющее реактор с нулевой точкой RU2534027C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102009034354A DE102009034354A1 (de) 2009-07-17 2009-07-17 Sternpunktreaktor
DE102009034354.7 2009-07-17
PCT/EP2010/059632 WO2011006796A2 (de) 2009-07-17 2010-07-06 Sternpunktreaktor

Publications (2)

Publication Number Publication Date
RU2012105533A RU2012105533A (ru) 2013-08-27
RU2534027C2 true RU2534027C2 (ru) 2014-11-27

Family

ID=43303955

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012105533/07A RU2534027C2 (ru) 2009-07-17 2010-07-06 Устройство для преобразования электрического параметра, имеющее реактор с нулевой точкой

Country Status (8)

Country Link
US (1) US8994232B2 (ru)
EP (1) EP2454794B1 (ru)
KR (1) KR101386805B1 (ru)
CN (1) CN102474101B (ru)
BR (1) BR112012001065B8 (ru)
DE (1) DE102009034354A1 (ru)
RU (1) RU2534027C2 (ru)
WO (1) WO2011006796A2 (ru)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009034354A1 (de) 2009-07-17 2011-01-27 Siemens Aktiengesellschaft Sternpunktreaktor
CN102931674B (zh) * 2012-10-30 2014-08-13 浙江大学 一种多端模块化多电平直流输电系统及其接地极确定方法
EP2755315A1 (en) 2013-01-11 2014-07-16 Alstom Technology Ltd Hybrid modular converter
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
EP2830200B1 (en) 2013-07-25 2022-05-11 General Electric Technology GmbH A power converter
US10439400B2 (en) 2013-08-21 2019-10-08 General Electric Technology Gmbh Electric protection on AC side of HVDC
EP2887529A1 (en) 2013-12-23 2015-06-24 Alstom Technology Ltd Modular multilevel converter leg with flat-top PWM modulation, converter and hybrid converter topologies
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
CN105098764B (zh) * 2014-05-19 2017-12-05 国家电网公司 一种特高压交流落点送出工程优选方法
EP3161921B1 (de) 2014-08-20 2022-12-07 Siemens Energy Global GmbH & Co. KG Verfahren zum unterbrechen eines elektrischen stromes in einer gleichspannungsleitung und anwendung des verfahrens
CN104767191B (zh) * 2015-04-09 2019-04-05 国家电网公司 一种换流器接地系统
CN104734134B (zh) * 2015-04-09 2019-06-28 国家电网公司 一种换流器接地系统
DE102015218728A1 (de) 2015-09-29 2017-03-30 Siemens Aktiengesellschaft Partikelfalle für eine gasisolierte Anlage und gasisolierte Anlage mit Partikelfalle
GB2547716B (en) * 2016-02-29 2018-06-06 General Electric Technology Gmbh An electrical assembly
WO2017190782A1 (de) 2016-05-04 2017-11-09 Siemens Aktiengesellschaft Umrichteranordnung mit sternpunktbildner
WO2018095508A1 (de) 2016-11-22 2018-05-31 Siemens Aktiengesellschaft Umrichteranordnung mit sternpunktbildner
EP3340410B1 (en) * 2016-12-22 2020-10-28 ABB Schweiz AG Protection of an inductive element
WO2019020186A1 (de) 2017-07-27 2019-01-31 Siemens Aktiengesellschaft Umrichteranordnung mit phasenmodulableiter sowie verfahren zu deren kurzschlussschutz
CN111033927B (zh) * 2017-08-30 2023-11-03 西门子能源全球有限公司 用于稳定频率的装置
FR3077438B1 (fr) 2018-01-31 2020-01-10 Supergrid Institute Poste de conversion comportant un circuit d'equilibrage de tension
EP3534523B1 (en) * 2018-02-28 2022-02-16 General Electric Technology GmbH Improvements in or relating to hvdc power converters
FR3087054B1 (fr) 2018-10-08 2020-10-02 Inst Supergrid Convertisseur de tension modulaire multi niveaux pour la gestion d'un defaut d'isolement
CN111181187B (zh) * 2018-11-12 2023-06-16 西安许继电力电子技术有限公司 一种mmc阀组及其投退时子模块均压控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002063758A1 (en) * 2001-02-07 2002-08-15 Abb Ab A converter device and a method for the control thereof
WO2008036009A1 (en) * 2006-09-18 2008-03-27 Abb Technology Ltd. Hvdc converter
RU2007104166A (ru) * 2004-07-05 2008-08-10 Сименс Акциенгезелльшафт (DE) Устройство для высоковольтной электропередачи постоянного тока

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT114765B (de) * 1926-09-22 1929-10-25 Siemens Ag Anordnung zur mehrpoligen Ableitung gleichgerichteter Ströme, insbesondere elektrostatischer Ladungen, an Ein- oder Mehrphasenanlagen.
DE2036762A1 (de) 1970-07-24 1972-02-03 Licentia Gmbh Anordnung zur Herabsetzung von Überspannungen
JPS57196824A (en) * 1981-05-29 1982-12-02 Tokyo Shibaura Electric Co Secondary arc extinguishing device for power system
DE19637290A1 (de) 1996-09-13 1998-03-19 Asea Brown Boveri Stromrichterschaltungsanordnung mit lastseitigem Filter
GB2331854A (en) 1997-11-28 1999-06-02 Asea Brown Boveri Transformer
US6885273B2 (en) 2000-03-30 2005-04-26 Abb Ab Induction devices with distributed air gaps
DE20122923U1 (de) 2001-01-24 2010-02-25 Siemens Aktiengesellschaft Stromrichterschaltungen mit verteilten Energiespeichern
DE10217889A1 (de) * 2002-04-22 2003-11-13 Siemens Ag Stromversorgung mit einem Direktumrichter
DE102004002261A1 (de) * 2004-01-09 2005-08-18 Siemens Ag Kommutierungsfilter
US20070279947A1 (en) 2004-07-05 2007-12-06 Siemens Aktiengesellschaft High-Voltage Direct-Current Transmission Device
DE102005012371A1 (de) 2005-03-09 2006-09-14 Siemens Ag Zwölfpuls-Hochspannungsgleichstromübertagung
DE102005040543A1 (de) 2005-08-26 2007-03-01 Siemens Ag Stromrichterschaltung mit verteilten Energiespeichern
US20080252142A1 (en) 2005-09-09 2008-10-16 Siemens Aktiengesellschaft Apparatus for Electrical Power Transmission
WO2007075132A1 (en) 2005-12-28 2007-07-05 Abb Research Ltd Voltage source converter and method of controlling a voltage source converter
EP2054987A4 (en) * 2006-08-25 2016-09-21 Abb Technology Ltd VOLTAGE SOURCE CONVERSION STATION
WO2008067784A1 (de) * 2006-12-08 2008-06-12 Siemens Aktiengesellschaft Steuerung eines modularen stromrichters mit verteilten energiespeichern
KR101392117B1 (ko) 2008-01-08 2014-05-07 에이비비 테크놀로지 아게 전압원 컨버터 제어 방법 및 전압 변환 장치
CN101247040B (zh) * 2008-02-29 2010-12-08 西安交通大学 一种带并联电抗器的输电线路永久性故障判别方法
DE102009034354A1 (de) 2009-07-17 2011-01-27 Siemens Aktiengesellschaft Sternpunktreaktor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002063758A1 (en) * 2001-02-07 2002-08-15 Abb Ab A converter device and a method for the control thereof
RU2007104166A (ru) * 2004-07-05 2008-08-10 Сименс Акциенгезелльшафт (DE) Устройство для высоковольтной электропередачи постоянного тока
WO2008036009A1 (en) * 2006-09-18 2008-03-27 Abb Technology Ltd. Hvdc converter

Also Published As

Publication number Publication date
US8994232B2 (en) 2015-03-31
CN102474101A (zh) 2012-05-23
RU2012105533A (ru) 2013-08-27
WO2011006796A3 (de) 2011-04-14
KR20120031069A (ko) 2012-03-29
EP2454794B1 (de) 2013-06-19
WO2011006796A2 (de) 2011-01-20
BR112012001065B1 (pt) 2020-09-29
BR112012001065B8 (pt) 2023-04-25
DE102009034354A1 (de) 2011-01-27
EP2454794A2 (de) 2012-05-23
KR101386805B1 (ko) 2014-04-21
US20120120691A1 (en) 2012-05-17
CN102474101B (zh) 2015-08-19
BR112012001065A2 (pt) 2016-03-29

Similar Documents

Publication Publication Date Title
RU2534027C2 (ru) Устройство для преобразования электрического параметра, имеющее реактор с нулевой точкой
US8553432B2 (en) Power transmission method and power transmission apparatus
CA2622057C (en) Apparatus for electrical power transmission
KR101633049B1 (ko) 전력 변환 장치
RU2477556C2 (ru) Установка для передачи электрической энергии
US9705406B2 (en) Modular multi-level DC-DC converter for HVDC applications
EP1882216A2 (en) Multi-level active filter
US11329544B2 (en) Filter arrangement
BRPI1104341A2 (pt) mÉtodo de controle para conversço de energia e conversor eletrânico de energia adaptado para conduzir o mÉtodo de controle
US20210151240A1 (en) Inductor assembly
EP3400644A1 (en) Modular multilevel converter and power electronic transformer
CN111052588B (zh) 具有Scott变压器的功率转换装置
US20160149509A1 (en) Connecting power plants to high voltage networks
WO2020244731A1 (en) Vehicle charging system
US10826379B2 (en) Converter arrangement comprising a star point reactor
EP3297149B1 (en) Parallel-connected converter assembly
US11012001B2 (en) Transformer-less, tapped point AC voltage splitter for full bridge DC AC inverters
RU2701147C1 (ru) Шунтирующий управляемый реактор
FI128738B (en) Inverter device and method for controlling inverter device
KR20230116259A (ko) 반도체 변압기 및 모듈형 고압 전력기기
Van Rhyn High voltage DC-DC converter using a series stacked topology

Legal Events

Date Code Title Description
PC41 Official registration of the transfer of exclusive right

Effective date: 20211201