RU2532762C1 - Способ диагностики и оценки остаточного ресурса электроприводов переменного тока - Google Patents

Способ диагностики и оценки остаточного ресурса электроприводов переменного тока Download PDF

Info

Publication number
RU2532762C1
RU2532762C1 RU2013135607/28A RU2013135607A RU2532762C1 RU 2532762 C1 RU2532762 C1 RU 2532762C1 RU 2013135607/28 A RU2013135607/28 A RU 2013135607/28A RU 2013135607 A RU2013135607 A RU 2013135607A RU 2532762 C1 RU2532762 C1 RU 2532762C1
Authority
RU
Russia
Prior art keywords
voltage
power
current
signals
low
Prior art date
Application number
RU2013135607/28A
Other languages
English (en)
Inventor
Юрий Леонидович Жуковский
Сергей Игоревич Таранов
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный минерально-сырьевой университет "Горный"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный минерально-сырьевой университет "Горный" filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный минерально-сырьевой университет "Горный"
Priority to RU2013135607/28A priority Critical patent/RU2532762C1/ru
Application granted granted Critical
Publication of RU2532762C1 publication Critical patent/RU2532762C1/ru

Links

Landscapes

  • Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)

Abstract

Изобретение относится к диагностике технического состояния силового электрооборудования. Осуществляют запись зависимостей от времени напряжения и тока, потребляемых электродвигателем, выполняемую с помощью датчиков напряжения. Обрабатывают сигналы фильтром низких частот. Определяют расхождение амплитуд сигналов токов, напряжений и мощности каждой фазы. Рассчитывают коэффициенты несимметрии тока, напряжений, мощности и коэффициенты гармонических колебаний, используя фильтр низких частот. Отфильтровывают спектр исследуемых частот от общего сигнала. Затем определяют уровень влияния качества питающего напряжения в части наличия несимметрии, импульсов перенапряжения и высших гармонических составляющих и на основе получаемых данных с учетом текущего задания выходной координаты определяют техническое состояние электропривода и оценивают остаточный ресурс. Технический результат заключается в повышении эффективности обнаружении неисправности на ранней стадии возникновения. 1 ил.

Description

Изобретение относится к диагностике технического состояния силового электрооборудования и может применяться для диагностики электрических приводов, работающих в тяжелых условиях и размещенных в труднодоступных местах.
Известен способ диагностики электродвигателей переменного тока и связанных с ним механических устройств (патент РФ №2300116, МПК G01R 31/34), основанный на спектральном анализе потребляемого электродвигателем тока. Недостатком данного способа является то, что в нем не учитывается влияние на спектр сигнала величины и характера нагрузки электропривода, а также влияние показателей качества электроэнергии, особенно при питании электродвигателя от статического силового преобразователя.
Известен способ функциональной диагностики асинхронных двигателей (патент РФ №2351048), согласно которому контролируются две величины - сопротивление изоляции обмоток статора относительно корпуса электродвигателя и отношение полных сопротивлений обмоток для каждой пары обмоток электродвигателя.
Недостатком данного способа является применимость только для отдельных типов повреждений электродвигателя, связанных с возникновением несимметрии сопротивлений обмоток статора, и неприменимость к иным типам повреждений, например к повреждениям обмоток ротора.
Известен способ определения технического состояния (диагностики) электродвигателя, (патент РФ №2213270), при котором регистрируют и анализируют сигнал, порождаемый вибрацией электродвигателя, при этом также регистрируют сигнал от переменной составляющей суммы фазных токов питания, анализируют форму и амплитуду полученного сигнала и, сравнивая со значениями предыдущих измерений, делают вывод от возможности дальнейшей эксплуатации.
Недостатком этого способа является то, что он требует непосредственного доступа к диагностируемому двигателю, а также не позволяет с достаточной достоверностью выявить конкретный вид повреждения.
Известен способ диагностики и прогнозирования остаточного ресурса взрывозащищенного электропривода насосно-компрессорного оборудования нефтехимических производств (патент РФ №2431152). Сущность способа заключается в записи в течение заданного интервала времени значений фазных токов и напряжений электродвигателя, их разложение на гармонические составляющие и измерение амплитуды и фазы гармонических составляющих, при этом производится фильтрация гармонических составляющих, поступающих из сети. По совокупности параметров гармонических составляющих с помощью искусственной нейронной сети производится идентификация технического состояния и прогнозирование ресурса безаварийной работы диагностируемого объекта.
Недостатком данного способа является то, что при определении остаточного ресурса анализируются только гармонические составляющие напряжения, генерируемые только двигателем электропривода, а составляющие, генерируемые сетью питающего напряжения, отфильтровываются и не рассматриваются. Однако значительные искажения питающего напряжения, которые имеют нерегулярный характер, обусловленный изменением режима работы двигателя, непостоянством нагрузки, наличием статических преобразователей, а также характеристиками питающей сети, негативно сказываются на изоляции диагностируемого оборудования, вызывая ее преждевременное старение, что, в свою очередь, может привести к пробою изоляции и выходу из строя оборудования.
Известен способ диагностики и оценки остаточного ресурса электроприводов переменного тока (патент РФ №2425390), выбранный в качестве прототипа, основанный на записи зависимостей от времени тока и напряжения, потребляемых электродвигателем, выполняемой с помощью датчиков напряжения и тока с последующим пропусканием через фильтр низких частот.
Недостатком указанного способа является то, что он использует фильтр низких частот для преобразования поступающего сигнала.
Технический результат заключается в повышении эффективности обнаружении неисправности на ранней стадии возникновения при помощи программного обеспечения, позволяющего убрать ненужный спектр частот, что приведет к повышению качества обработки полученных данных и более точному определению остаточного ресурса электропривода переменного тока. Также помимо точности системы повышается ее надежность за счет исключения одного функционального узла и переноса его функций в ранее существовавший блок - персональный компьютер.
Указанный технический результат достигается тем, что в известном способе диагностики и оценки остаточного ресурса электроприводов переменного тока, в котором путем записи зависимостей от времени напряжения и тока потребляемых электродвигателем, выполняемой с помощью датчиков напряжения и тока с последующим пропусканием через фильтр низких частот, определяется техническое состояние электропривода и оценивается его остаточный ресурс, в предлагаемом способе определяется расхождение амплитуд сигналов токов, напряжений и мощности каждой фазы, рассчитываются коэффициенты несимметрии тока, напряжений, мощности и коэффициенты гармонических колебаний, с помощью программного обеспечения, используемого в качестве фильтра низких и высоких частот, отфильтровывается спектр исследуемых частот от общего сигнала, затем определяется уровень влияния качества питающего напряжения в части наличия несимметрии, импульсов перенапряжения и высших гармонических составляющих и при помощи программного обеспечения на основе получаемых данных, с учетом текущего задания выходной координаты, определяется техническое состояние электропривода и оценивается остаточный ресурс.
Благодаря пропусканию полученных сигналов тока и напряжения через программный фильтр высоких и низких частот повышается качество обработки полученных данных, точность определения остаточного ресурса электропривода переменного тока, а также надежность системы.
Повышение качества обработки полученных данных и точность определения остаточного ресурса достигается за счет фильтрации полученных сигналов тока и напряжения через программный фильтр низких и высоких частот, поскольку амплитуда гармоник зависит не только от степени проявления дефекта, а также от напряжения питания. Если качество сетевого напряжения невысокое, то спектральный состав фазных напряжений сильно отличается от идеального, в нем появляются высокочастотные гармоники. При этом искажения напряжения питания могут носить нерегулярный характер, что, в свою очередь, приводит к ошибочной оценке остаточного ресурса двигателя переменного тока.
Надежность системы достигается за счет исключения одного функционального узла - «фильтр низких частот» и перенося его функции в ранее существовавший блок - «персональный компьютер», где на языке графического программирования осуществляют фильтрацию полученных сигналов тока и напряжения на низких и высоких частотах.
Согласно изобретению в персональном компьютере на языке графического программирования осуществляют фильтрацию полученных сигналов тока и напряжения на низких и высоких частотах, производят вычисление мгновенных мощностей каждой фазы, производят спектральный анализ полученных сигналов напряжения, тока и мощности, рассчитывают коэффициенты несимметрии (тока, напряжений, мощности) и коэффициенты гармоник (тока и мощности), на основе известной величины отдаваемой мощности электропривода с учетом текущего задания выходной координаты вычисляют величину потерь электрической энергии, определяется техническое состояние электропривода и оценивают остаточный ресурс путем сравнения с эталонными сигналами, полученными на заведомо исправном агрегате.
Предлагаемый способ поясняется чертежом, где показана принципиальная схема измерительного комплекса, на основе которой реализуется предлагаемый способ. Измерительный комплекс содержит следующие оборудование. 5 - датчик тока; 6 - датчик напряжения; 7 - сумматор сигнала; 8 - устройство сбора данных; 9 - устройство выборки хранения; 10 - аналого-цифровой преобразователь; 11 - портативный компьютер. Также на фиг.1 изображены: 1 - статический силовой преобразователь; 2 - электрический двигатель; 3 - механический преобразователь; 4 - рабочий орган. Символами на фиг.1 обозначены: P0 - мощность на входе статического преобразователя, P1 - мощность питания электродвигателя, P2 - мощность на входе механического преобразователя, Pn - мощность, поступающая на рабочий орган, [u(t)] - измеряемый сигнал фазных напряжений в фазах A, B, C, [i(t)] - измеряемый сигнал фазных токов в фазах A, B, A, уз - сигнал задания (мощности, координаты, момента).
Способ диагностики и оценки остаточного ресурса электроприводов переменного тока реализуется следующим образом.
На вход статического силового преобразователя 1 из питающей сети поступает мощность P0, который осуществляет в соответствии с введенным в него заданием уз управление координатами скорости, момента и положения электродвигателя 2. С выхода преобразователя 1 сигнал мощности P1 поступает на вход электродвигателя 2, в котором после преобразования мощность на выходе будет равна P2. Сигнал мощности P2 поступает на вход механического преобразователя 3, с выхода которого мощность Pn поступает на рабочий орган 4. Сигналы трехфазного напряжения [u(t)] и трехфазного тока [i(t)] с преобразователя 1 поступают на датчики тока 5 и напряжения 6, аналоговый сигнал с датчиков 5 и 6 поступает в сумматор сигнала 7, также в сумматор 7 от преобразователя 1 поступает сигнал задания уз. Обработанные сигналы с выхода сумматора 7 поступают на вход устройства сбора данных 8, в состав которого входят устройство выборки хранения 9, необходимое для хранения оперативной информации, и аналогово-цифровой преобразователь 10, который преобразует аналоговый сигнал в цифровой и передает его на портативный компьютер 11. Сигналы, поступившие на компьютер 11, обрабатываются программным фильтром частоты, после чего вносятся в базу данных и обрабатываются программой, осуществляющей расчет остаточного ресурса электропривода переменного тока.
Возможность получения технического результата основана на том, что любые неисправности электрических машин и механизмов, сопряженных с ними, в конечном итоге приводят к возникновению электромагнитной несимметрии поля в зазоре машины, а, следовательно, к изменению спектрального состава токов и напряжений. Также в качестве критерия для оценки энергетических процессов в реальной машине, обладающей неравномерным полем в воздушном зазоре и, как следствие, имеющей полигармонический состав спектра токов и напряжений, используют сравнение величины потерь мощности на характерных для определенных повреждений частотах.
Преобразуют полученный сигнал из аналоговой в цифровую форму с помощью аналогово-цифрового преобразователя АЦП, выделяют анализируемые частоты с помощью программного фильтра низких частот на ЭВМ. Также производят анализ качества питающего напряжения в части наличия несимметрии, импульсов перенапряжения и высших гармонических составляющих с целью выявления причин преждевременного выхода из строя оборудования, обусловленных качеством питающего электропривод напряжения. Измерения и анализ производят с определенной периодичностью и создают базу данных измерений и результатов их анализа. В результате сравнения измеренных значений с эталонными и критическими производят контроль развития повреждений и определяют остаточный ресурс электропривода.
Влияние на работоспособность следует оценивать по четырем уровням состояния - отличное, хорошее, удовлетворительное, неудовлетворительное. Результаты обследования заносятся в базу данных, которая предназначена для ввода, хранения, отображения, сортировки и обработки диагностических параметров технологического оборудования. Также база данных обеспечивает возможность анализа данных, осуществление поиска и выборку по различным параметрам, формирование журнала регистрации контроля, вычисление остаточного ресурса оборудования на основе результатов анализа. Величину остаточного ресурса определяют по формуле:
δ = k 1 K I A 2 + k 2 K I B 2 + k 3 K I C 2 + k 4 K э п 2 + k 5 K г I 2 + k 6 K г Р 2 + k 7 K P A 2 + k 8 K P B 2 + k 9 K P C 2 + k 10 K н е с и м U 2 + k 11 K н е с и м I 2 + + k 12 K н е с и м Р 2 + k 13 K Δ Р 2 + k 14 K U A 2 + k 15 K U B 2 + k 16 K U C 2
Figure 00000001
где:
K I A
Figure 00000002
, K I B
Figure 00000003
, K I C
Figure 00000004
- расхождение амплитуд сигналов тока на характерных частотах с уровнем сигнала на частоте питающей сети для фаз A, B, C соответственно;
K U A
Figure 00000005
, K U B
Figure 00000006
, K U C
Figure 00000007
- расхождение амплитуд сигналов напряжения на характерных частотах с уровнем сигнала на частоте питающей сети для фаз А, В, С соответственно;
Kэп - динамический коэффициент мощности;
Kг - коэффициент гармоник (тока и мощности);
K P A
Figure 00000008
, K P B
Figure 00000009
, K P C
Figure 00000010
- расхождение амплитуд сигналов мощности на характерных частотах с уровнем сигнала на частоте питающей сети для фаз A, B, C соответственно;
KнесимU - коэффициент несимметрии напряжения;
KнесимI - коэффициент несимметрии тока;
KнесимP - коэффициент несимметрии мощности;
KΔP - коэффициент потери мощности;
ki - весовой коэффициент, определяемый на основе статистических данных.
Получившееся значение остаточного ресурса сравнивают с предельным значением δпр, определяемым для каждого агрегата на основе статистических баз данных, причем должно выполняться условие δ≤δпр. В случае невыполнения данного условия агрегат выводится из работы.
Регулярный мониторинг электропривода позволяет выявлять неисправности на ранней стадии возникновения, отслеживать динамику их развития, определять остаточный ресурс и планировать рациональные сроки проведения ремонтов.
Аппаратная реализация предлагаемого способа может быть осуществлена с помощью существующих силовых электротехнических, электронных и микропроцессорных устройств при надлежащем выборе и настройке соответствующих параметров.

Claims (1)

  1. Способ диагностики технического состояния силового электрооборудования, включающий запись зависимостей от времени напряжения и тока, потребляемых электродвигателем, выполняемую с помощью датчиков напряжения, обработку сигналов фильтром низких частот с последующей программной обработкой полученных сигналов для диагностики и оценки остаточного ресурса, отличающийся тем, что определяют расхождение амплитуд сигналов токов, напряжений и мощности каждой фазы, рассчитывают коэффициенты несимметрии тока, напряжений, мощности и коэффициенты гармонических колебаний, используя программный фильтр низких частот, отфильтровывают спектр исследуемых частот от общего сигнала, затем определяют уровень влияния качества питающего напряжения в части наличия несимметрии, импульсов перенапряжения и высших гармонических составляющих и при помощи программного обеспечения на основе получаемых данных с учетом текущего задания выходной координаты определяют техническое состояние электропривода и оценивают остаточный ресурс.
RU2013135607/28A 2013-07-29 2013-07-29 Способ диагностики и оценки остаточного ресурса электроприводов переменного тока RU2532762C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013135607/28A RU2532762C1 (ru) 2013-07-29 2013-07-29 Способ диагностики и оценки остаточного ресурса электроприводов переменного тока

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013135607/28A RU2532762C1 (ru) 2013-07-29 2013-07-29 Способ диагностики и оценки остаточного ресурса электроприводов переменного тока

Publications (1)

Publication Number Publication Date
RU2532762C1 true RU2532762C1 (ru) 2014-11-10

Family

ID=53382481

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013135607/28A RU2532762C1 (ru) 2013-07-29 2013-07-29 Способ диагностики и оценки остаточного ресурса электроприводов переменного тока

Country Status (1)

Country Link
RU (1) RU2532762C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106556799A (zh) * 2015-09-30 2017-04-05 大亚湾核电运营管理有限责任公司 一种发电机故障分析方法和装置
RU2655948C1 (ru) * 2017-03-21 2018-05-30 Федеральное государственное бюджетное образовательное учреждение высшего образования "Тюменский индустриальный университет" (ТИУ) Устройство регистрации, идентификации перенапряжений и оценки остаточного ресурса изоляции погружных электродвигателей
RU2794240C1 (ru) * 2022-11-22 2023-04-13 федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВО "НИУ "МЭИ") Способ диагностирования технического состояния асинхронных электрических двигателей и устройство для его осуществления

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4533862A (en) * 1982-10-12 1985-08-06 Otis Elevator Company Polyphase motor drive imbalance detection
US4536686A (en) * 1984-07-26 1985-08-20 Gartner Joseph J Electric motor fault and dynamic braking protection system
RU2213270C2 (ru) * 2001-12-26 2003-09-27 Общество с ограниченной ответственностью "ГРЭЙ" Способ определения технического состояния электропогружных установок для добычи нефти
RU2425390C1 (ru) * 2009-11-16 2011-07-27 Государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный горный институт имени Г.В. Плеханова (технический университет)" Способ диагностики и оценки остаточного ресурса электроприводов переменного тока
RU2431152C2 (ru) * 2009-11-23 2011-10-10 Государственное образовательное учреждение высшего профессионального образования "Уфимский государственный нефтяной технический университет" Способ диагностики механизмов и систем с электрическим приводом

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4533862A (en) * 1982-10-12 1985-08-06 Otis Elevator Company Polyphase motor drive imbalance detection
US4536686A (en) * 1984-07-26 1985-08-20 Gartner Joseph J Electric motor fault and dynamic braking protection system
RU2213270C2 (ru) * 2001-12-26 2003-09-27 Общество с ограниченной ответственностью "ГРЭЙ" Способ определения технического состояния электропогружных установок для добычи нефти
RU2425390C1 (ru) * 2009-11-16 2011-07-27 Государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный горный институт имени Г.В. Плеханова (технический университет)" Способ диагностики и оценки остаточного ресурса электроприводов переменного тока
RU2431152C2 (ru) * 2009-11-23 2011-10-10 Государственное образовательное учреждение высшего профессионального образования "Уфимский государственный нефтяной технический университет" Способ диагностики механизмов и систем с электрическим приводом

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106556799A (zh) * 2015-09-30 2017-04-05 大亚湾核电运营管理有限责任公司 一种发电机故障分析方法和装置
RU2655948C1 (ru) * 2017-03-21 2018-05-30 Федеральное государственное бюджетное образовательное учреждение высшего образования "Тюменский индустриальный университет" (ТИУ) Устройство регистрации, идентификации перенапряжений и оценки остаточного ресурса изоляции погружных электродвигателей
RU2794240C1 (ru) * 2022-11-22 2023-04-13 федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВО "НИУ "МЭИ") Способ диагностирования технического состояния асинхронных электрических двигателей и устройство для его осуществления

Similar Documents

Publication Publication Date Title
Trujillo-Guajardo et al. A multiresolution Taylor–Kalman approach for broken rotor bar detection in cage induction motors
Pineda-Sanchez et al. Application of the Teager–Kaiser energy operator to the fault diagnosis of induction motors
CN111758036B (zh) 用于监测运行中的电力设备的运行状态的系统和方法
US10408879B2 (en) Method and apparatus for diagnosing a fault condition in an electric machine
US10088506B2 (en) Method for detecting a fault condition in an electrical machine
EP2790028B1 (en) Broken rotor bar detection based on current signature analysis of an electric machine
EP2942867B1 (en) Induction motor speed estimation
Climente-Alarcon et al. Particle filter-based estimation of instantaneous frequency for the diagnosis of electrical asymmetries in induction machines
CN106199424B (zh) 一种永磁同步电机匝间短路故障诊断方法
CA2749089A1 (en) System and method for motor fault detection using stator current noise cancellation
JP6945371B2 (ja) 回転機システムの診断装置、電力変換装置、回転機システム、および回転機システムの診断方法
RU2431152C2 (ru) Способ диагностики механизмов и систем с электрическим приводом
EP2574947A1 (en) A method of determining stationary signals for the diagnostics of an electromechanical system
CN106771895A (zh) 一种基于磁场谐波检测的电缆老化检测方法
Pons-Llinares et al. Electric machines diagnosis techniques via transient current analysis
RU2339049C1 (ru) Способ диагностики электродвигателя переменного тока и связанных с ним механических устройств
RU2425390C1 (ru) Способ диагностики и оценки остаточного ресурса электроприводов переменного тока
KR20090027086A (ko) 고정자 전류를 이용한 발전기 결함 진단 장치
RU2532762C1 (ru) Способ диагностики и оценки остаточного ресурса электроприводов переменного тока
CN117289022B (zh) 一种基于傅里叶算法的电网谐波检测方法及系统
JP2020020611A (ja) 絶縁診断装置、絶縁診断方法、および絶縁診断プログラム
RU2552854C2 (ru) Способ диагностики технического состояния электроприводного оборудования
JP2020137327A (ja) 故障判定装置、モータ駆動システム、及び故障判定方法
Jensen et al. A more robust stator insulation failure prognosis for inverter-driven machines
KR101133234B1 (ko) 전동기 3상 전류신호의 합성을 통한 기기결함 신호의 해상도 증가방법

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20180730