RU2532682C2 - Гондола с переменным сечением сопла - Google Patents

Гондола с переменным сечением сопла Download PDF

Info

Publication number
RU2532682C2
RU2532682C2 RU2011115146/11A RU2011115146A RU2532682C2 RU 2532682 C2 RU2532682 C2 RU 2532682C2 RU 2011115146/11 A RU2011115146/11 A RU 2011115146/11A RU 2011115146 A RU2011115146 A RU 2011115146A RU 2532682 C2 RU2532682 C2 RU 2532682C2
Authority
RU
Russia
Prior art keywords
fairing
aerodynamic
nacelle
movable
profile
Prior art date
Application number
RU2011115146/11A
Other languages
English (en)
Other versions
RU2011115146A (ru
Inventor
Ги Бернар ВОШЕЛЬ
Original Assignee
Эрсель
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Эрсель filed Critical Эрсель
Publication of RU2011115146A publication Critical patent/RU2011115146A/ru
Application granted granted Critical
Publication of RU2532682C2 publication Critical patent/RU2532682C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K1/00Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto
    • F02K1/54Nozzles having means for reversing jet thrust
    • F02K1/64Reversing fan flow
    • F02K1/70Reversing fan flow using thrust reverser flaps or doors mounted on the fan housing
    • F02K1/72Reversing fan flow using thrust reverser flaps or doors mounted on the fan housing the aft end of the fan housing being movable to uncover openings in the fan housing for the reversed flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D29/00Power-plant nacelles, fairings, or cowlings
    • B64D29/06Attaching of nacelles, fairings or cowlings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D33/00Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for
    • B64D33/04Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for of exhaust outlets or jet pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K1/00Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto
    • F02K1/78Other construction of jet pipes
    • F02K1/80Couplings or connections
    • F02K1/805Sealing devices therefor, e.g. for movable parts of jet pipes or nozzle flaps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/50Intrinsic material properties or characteristics
    • F05D2300/501Elasticity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Wind Motors (AREA)
  • Dairy Products (AREA)

Abstract

Изобретение относится к авиации, в частности к гондоле турбореактивного двигателя, имеющего переменное сечение сопла. Гондола содержит верхнюю по потоку неподвижную конструкцию, подвижный обтекатель и нижнее по потоку сопло с переменным сечением. Подвижный обтекатель продолжен соплом с переменным сечением и установлен на неподвижной конструкции. Обтекатель имеет возможность перемещения так, чтобы изменять сечение указанного сопла. Гондола содержит обеспечивающий аэродинамическую целостность узел. Узел выполнен между неподвижной конструкцией и подвижным обтекателем и содержит упругое средство, способное сжиматься и растягиваться между неподвижной конструкцией и подвижным обтекателем в зависимости от положения обтекателя. Достигается улучшение способности самолета выполнять торможение при посадке. 11 з.п. ф-лы, 17 ил.

Description

Данное изобретение относится к гондоле турбореактивного двигателя, имеющей переменное сечение сопла.
Гондола, как правило, имеет трубчатую конструкцию с воздухозаборником, размещенным перед турбореактивным двигателем, среднюю секцию, охватывающую вентилятор турбореактивного двигателя, и заднюю секцию, в которой размещаются средства реверсирования тяги и которая охватывает камеру сгорания турбореактивного двигателя и, как правило, заканчивается реактивным соплом, выход которого находится за турбореактивным двигателем.
Современные гондолы предназначены для размещения двухконтурного турбореактивного двигателя, который может посредством лопаток вращающейся крыльчатки создавать горячий воздушный поток (известный также как первичный поток), поступающий от камеры сгорания турбореактивного двигателя, и холодный воздушный поток (вторичный поток), который проходит снаружи турбореактивного двигателя через канал, выполненный между обтекателем турбореактивного двигателя и внутренней стенкой гондолы. Данные два потока воздуха выталкиваются из турбинного двигателя через заднюю часть гондолы.
Назначение реверсора тяги заключается в улучшении способности самолета выполнять торможение при посадке посредством переориентации вперед, по меньшей мере, части тяги, создаваемой турбореактивным двигателем. Во время этого этапа реверсор перекрывает струю холодного потока и направляет ее к передней части гондолы, создавая тем самым обратную тягу, которая объединяется с торможением колес самолета.
Используемые для такой переориентации холодного потока средства варьируются в зависимости от типа реверсора.
Известными являются соединенные с энергосистемой реверсивные механизмы, как показано на фиг.1-3, в которых переориентация воздушного потока осуществляется каскадными лопатками 1, связанными с подвижным обтекателем 2, открывающим и закрывающим лопатки 1, причем перемещение указанного обтекателя 2 происходит по продольной оси, проходящей, по существу, параллельно оси гондолы.
Подвижный обтекатель 2 попеременно перемещается от закрытого положения, показанного на фиг.1, в котором он обеспечивает аэродинамическую целостность гондолы и закрывает каскадные лопатки 1, к открытому положению, в котором он открывает проход в гондоле, предназначенный для проходящего через каскадные лопатки потока, и открывает каскадные лопатки 1.
Помимо функционирования в качестве реверсора тяги данный подвижный обтекатель является частью задней секции и имеет заднюю стенку, образующую реактивное сопло 3, проводящее выталкиваемые воздушные потоки.
Сопло 3 содержит по меньшей мере одну панель 4, установленную с возможностью поворота, причем указанная панель 4 приспособлена для поворота между нормальным положением, показанным на фиг.1, в котором она обеспечивает аэродинамическую целостность гондолы, положением реверсора тяги, в котором она перекрывает канал 5 холодного потока, и положением, показанным на фиг.2, изменяющим сечение сопла 3.
Имеется возможность регулировать степень поворота подвижной панели 4 и либо изменять сечение 3 реактивного сопла, либо обеспечивать реверсирование потока холодного воздуха в канале 5 на обратный поток в зависимости от степени смещения подвижного обтекателя 2.
Таким образом, как показано на фиг.2, для уменьшения сечения 3 реактивного сопла посредством продвижения панели 4 к внутренней части канала 5, мобильный обтекатель 2 необходимо продвинуть вверх по потоку по направлению к неподвижной конструкции 6 гондолы.
Для обеспечения указанного простого поступательного перемещения подвижного обтекателя 2 по направлению вверх и, соответственно, свободного относительного перемещения подвижного обтекателя 2 и верхней неподвижной конструкции 6 гондолы, у места стыка этих двух компонентов выполнено углубление 7.
Однако как подробно изображено на фиг.3, наличие этого углубления 7 создает разрыв аэродинамических линий поверхности гондолы, вызывая ухудшение характеристик двигательной установки гондолы и увеличение энергопотребления самолета.
Одной целью данного изобретения является устранение вышеуказанных недостатков.
С этой целью в данном изобретении предлагается гондола, которая содержит неподвижную конструкцию, сопло с переменным сечением и обтекатель, установленный на указанной неподвижной конструкции с возможностью перемещения, в частности, по ходу движения так, чтобы изменять сечение указанного сопла, отличающаяся тем, что данная гондола дополнительно содержит обеспечивающий аэродинамическую целостность узел, выполненный между неподвижной конструкцией и подвижным обтекателем, причем указанный узел содержит упругие средства, способные сжиматься между неподвижной конструкцией и указанным подвижным обтекателем, когда обтекатель находится в верхнем участке его хода движения, и способные растягиваться, когда обтекатель находится в нижнем участке его хода движения, чтобы обеспечить аэродинамическую целостность линий между указанной неподвижной конструкцией и указанным подвижным обтекателем.
Данное изобретение обеспечивает преимущество, обусловленное смещением разрыва аэродинамических линий в направляющий канал между верхней неподвижной конструкцией и подвижным обтекателем с одновременным обеспечением свободного перемещения между этими двумя компонентами, в частности, перемещения подвижного обтекателя 30 по направлению к верхней по потоку части гондолы для изменения сечения сопла.
В соответствии с конкретными вариантами выполнения данного изобретения предлагаемое устройство может обладать одним или несколькими следующими свойствами, рассмотренными обособленно или в технически возможных сочетаниях:
обеспечивающий аэродинамическую непрерывность узел содержит упругий профиль из материала типа эластомера;
обеспечивающий аэродинамическую непрерывность узел содержит жесткий профиль, способный к упругой деформации;
данный профиль выполнен из проволочной пружины, пластинчатой пружины или по типу сильфона;
обеспечивающий аэродинамическую непрерывность узел содержит недеформируемый жесткий профиль, связанный с упругим возвратным средством;
данный профиль выполнен в виде одной детали или нескольких секторов, или частей, которые должны быть смонтированы вместе;
обеспечивающий аэродинамическую непрерывность узел способен обеспечивать аэродинамическую целостность наружных линий между верхней неподвижной конструкцией и подвижным обтекателем;
обеспечивающий аэродинамическую непрерывность узел способен обеспечивать аэродинамическую целостность внутренних линий между неподвижной конструкцией и подвижным обтекателем;
к верхнему по потоку концу подвижного обтекателя может быть прикреплен задник;
обеспечивающий аэродинамическую непрерывность элемент выполнен за одно целое с неподвижной конструкцией;
обеспечивающий аэродинамическую непрерывность элемент выполнен за одно целое с подвижным обтекателем;
данная гондола содержит нижнюю секцию, снабженную средством реверсирования тяги.
Другие свойства, цели и преимущества данного изобретения будут понятны из последующего подробного описания в соответствии с вариантами выполнения, приведенными в качестве неограничительных примеров, со ссылкой на прилагаемые чертежи, на которых:
фиг.1 и 2 представляют собой схематические иллюстрации продольного разреза устройства реверсирования тяги предшествующего уровня техники, содержащего подвижные панели, соответственно, в нормальном положении сопла и в закрытом положении сопла;
фиг.3 представляет собой детальное изображение вида, показанного на фиг.1, стыка между подвижным обтекателем и верхней неподвижной конструкцией устройства реверсора тяги;
фиг.4 представляет собой схематический вид продольного разреза устройства реверсирования тяги, содержащего обеспечивающий аэродинамическую целостность узел в соответствии с первым вариантом выполнения данного изобретения;
фиг.5-8 представляют собой детальные изображения видов, показанных на фиг.4, стыка между подвижным обтекателем и верхней неподвижной конструкцией устройства реверсирования тяги, соответственно, перед перемещением подвижного обтекателя вверх по потоку и после него;
фиг.9 представляет собой схематический вид продольного разреза устройства реверсирования тяги, содержащего обеспечивающий аэродинамическую целостность узел в соответствии со вторым вариантом выполнения данного изобретения;
фиг.10-13 представляют собой детальные изображения видов, показанных на фиг.9, стыка между подвижным обтекателем и верхней неподвижной конструкцией устройства реверсирования тяги, соответственно, перед перемещением подвижного обтекателя вверх по потоку и после него;
фиг.14 и 15 представляют собой схематические виды продольного разреза устройства реверсирования тяги, содержащего обеспечивающий аэродинамическую целостность узел в соответствии с третьим вариантом выполнения данного изобретения, соответственно, перед перемещением подвижного обтекателя вверх по потоку и после него;
фиг.16 и 17 представляют собой схематические виды продольного разреза устройства реверсирования тяги, содержащего обеспечивающий аэродинамическую целостность узел в соответствии с четвертым вариантом выполнения данного изобретения, соответственно, перед перемещением подвижного обтекателя вверх по потоку и после него.
Гондола, обычно, имеет конструкцию, содержащую верхнюю секцию, образующую воздухозаборник, среднюю секцию, охватывающую вентилятор турбореактивного двигателя, и заднюю секцию, охватывающую турбореактивный двигатель.
В соответствии с фиг.4 нижняя по потоку секция содержит наружную конструкцию 10, содержащую устройство реверсирования тяги и внутреннюю конструкцию обтекателя двигателя (не показана), определяющую вместе с наружной конструкцией 10 границы канала (не показан), в котором циркулирует холодный поток, для случая гондолы с двухконтурным турбореактивным двигателем, рассматриваемой в данном документе.
Нижняя по потоку секция также содержит верхнюю по потоку неподвижную конструкцию 20, содержащую переднюю раму 21, причем указанную конструкцию 20 продолжают подвижный обтекатель 30 реверсора тяги и секция реактивного сопла (не показана).
Подвижный обтекатель 30 реверсора тяги приводится в перемещение, по существу, в продольном направлении гондолы между закрытым положением, в котором он закрывает каскадные лопатки 31, и открытым положением, в котором он отнесен от передней рамы 21 с открытием прохода в гондоле за счет открытия каскадных лопаток, направляющих воздушный поток.
Кроме того, секция реактивного сопла, в выдвинутом состоянии обтекателя 30, содержит ряд подвижных панелей, установленных с возможностью вращения у нижнего по потоку конца обтекателя 30 и распределенных по периферии секции реактивного сопла.
Каждая подвижная панель приспособлена к повороту с обеспечением многопозиционных положений, т.е. нормального положения, в котором она обеспечивает аэродинамическую целостность гондолы, положения реверсора тяги, в котором она перекрывает канал холодного воздуха и возвращает указанный воздух к каскадным лопаткам 31, обеспечивающим переориентацию потока и, соответственно, струю обратного хода, и положений, в которых она обеспечивает возможность изменять сечение сопла.
Именно степенью перемещения обтекателя 30 вверх по потоку и вниз по потоку можно регулировать степень поворота подвижных панелей и, соответственно, изменять работу секции реактивного сопла так, чтобы создавать либо прямую струю, либо обратным движением потока холодного воздуха в канале создавать обратную струю.
Для того чтобы обеспечить перемещение обтекателя 30 в верхнем по потоку направлении к передней раме 21 с целью изменения сечения сопла, между передней рамой 21 и обтекателем 30 на наружной стороне гондолы и внутренней поверхности передней рамы 21 могут быть выполнены углубления 50, 51.
В соответствии с данным изобретением обеспечивающий аэродинамическую целостность узел 40 расположен у стыка передней рамы 21 и обтекателя 30 с вмещением в углубление (углубления) 50, 51.
Узел 40 содержит упругие средства, способные к сжатию между передней рамой 21 и обтекателем 30, когда обтекатель расположен в верхнем по потоку участке его хода движения, создавая возможность для изменения сечения сопла, и способные к расширению, когда обтекатель расположен в нижнем по потоку участке его хода движения, чтобы обеспечить аэродинамическую целостность линий между передней рамой 21 и обтекателем 30.
Более точно, обеспечивающий аэродинамическую целостность узел 40 встраивается в аэродинамический профиль гондолы, занимая несколько положений, а именно - растянутое положение, когда обтекатель 30 находится в положении, в котором сечение сопла не изменяется, положение, в котором предполагается, что данный узел заполняет пространство между нижним концом передней рамы 21 и верхним концом обтекателя 30 для обеспечения аэродинамической целостности линий нижней по потоку секции, т.е. аэродинамические линии передней рамы 21 и обтекателя 30 не имеют скачкообразных изменений, и
сжатое положение, в котором данный узел допускает перемещение обтекателя 30 вверх по потоку с изменением сечения сопла и одновременным его закрытием во время постепенного продвижения обтекателя в направлении вверх по потоку.
Преимущественно наличие обеспечивающего аэродинамическую целостность элемента 40 создает возможность для смещения разрыва аэродинамической линии в направляющий канал с одновременным перемещением обтекателя 30 в направлении к верхней части гондолы для изменения сечения сопла.
Такое решение исключает ухудшение характеристик гондолы в направляющем канале.
Предпочтительно обеспечивающий аэродинамическую целостность элемент 40 может быть расположен у стыка передней рамы 21 и обтекателя 30 с наружной стороны гондолы и/или стороны канала холодного воздуха, обеспечивая тем самым целостность наружных аэродинамических линий между этими двумя элементами, как будет изложено в дальнейшем со ссылкой на различные чертежи.
В первом варианте выполнения, показанном на фиг.4-6, элемент 40 имеет форму упругого профиля 41, обеспечивающего целостность наружной аэродинамической линии гондолы.
Этот профиль 41, соответственно, принимает форму и размеры, подходящие для заполнения пространства между нижним по потоку концом передней рамы 21 и верхним по потоку свободным концом обтекателя 30, когда обтекатель 30 находится в положении, в котором сечение сопла не изменяется.
Этот профиль 41 может иметь нижний по потоку конец, принимающий форму обшивки вместе с верхним по потоку концом обтекателя 30, для поддержания по возможности наименьшего изменения аэродинамического профиля.
Преимущественно элемент 40 является достаточно упругим для того, чтобы деформироваться при вхождении в контакт с верхним по потоку концом обтекателя 30, когда последний перемещается поступательно в направлении вверх по потоку к передней раме 21, обеспечивая поворот подвижных панелей сопла, а затем восстанавливать нейтральное положение и форму после отведения обтекателя 30 вниз по потоку.
В одном неограничительном примере профиль 41, по существу, имеет L-образную форму.
С одной стороны он имеет верхний по потоку конец, прикрепляемый к передней раме 21 и имеющий форму, дополняющую нижний по потоку конец передней рамы 21 а, с другой стороны, имеет форму, дополняющую верхний по потоку конец обтекателя 30.
Поскольку обтекатель 30 имеет у верхнего свободного конца выступ 32, проходящий вдоль продольной оси гондолы, то верхний по потоку конец профиля, определяемый углублением L, обеспечивает пространство, необходимое для вмещения выступа обтекателя 30.
Таким образом, за счет профиля 41, расположенного между передней рамой 21 и обтекателем 30, соответственно, сглаживаются наружные аэродинамические линии гондолы.
Во время перемещения обтекатель 30 стремится войти в контакт с передней рамой 21, деформируя во время прохода профиль 41, который вмещается под обтекатель 30.
В одном альтернативном варианте выполнения структура профиля 41 может быть упрочнена волокнами. Упрочнение также может быть выполнено введением элементов жесткости в определенные участки профиля 41, которые не должны деформироваться.
В еще одном альтернативном варианте выполнения к профилю 41 может быть добавлен упругий элемент для обеспечения восстановления его исходной формы после отведения обтекателя 30 в направлении к нижней части гондолы.
В последнем варианте выполнения к верхнему по потоку концу обтекателя 30 может быть прикреплен задник 33 соответствующей формы для улучшения контактного стыка с элементом 40 и, соответственно, для обеспечения регулируемой контактной зоны.
В соответствии с фиг.7 и 8 элемент 40 может обеспечивать целостность внутренних аэродинамических линий гондолы на стороне канала холодного воздуха.
В одном неограничительном примере данного изобретения указанный обеспечивающий аэродинамическую целостность элемент 40 может принимать форму язычка 42, вмещающегося в углубление 51, выполненное на внутренней поверхности передней рамы 21 и, более точно, на направляющей конструкции воздушного потока на этапе реверсирования.
Длинный линейный язычок 42 содержит два противоположных конца, опирающиеся на внутреннюю поверхность передней панели 21, и центральную часть, обращенную к верхнему по потоку концу обтекателя 30.
Центральная часть язычка 42 имеет изогнутую секцию, кривизна которой определена так, чтобы обеспечить целостность внутренней аэродинамической линии внутренней поверхности передней рамы 21.
Во время перемещения обтекателя 30 в направлении вверх по потоку к передней раме 21 для изменения сечения сопла верхний по потоку конец обтекателя 30 внедряется в центральную часть язычка 42 и деформирует ее. После отведения обтекателя 30 в направлении к нижней части гондолы язычок 42 восстанавливает свою первоначальную форму.
В одном альтернативном варианте выполнения задник 34 соответствующей формы может быть прикреплен к верхнему по потоку концу обтекателя 30, как показано на фиг.4-6.
Во втором альтернативном варианте выполнения центральная часть язычка может быть выполнена посредством сдвоенной перегородки для усиления элемента 40. Таким образом, центральную часть, показанную на фиг.7 и 8, прикрепляют к Т-образной внутренней стенке, в которой стержень Т-образной формы образует вторую стенку сдвоенной перегородки.
Во втором варианте выполнения, показанном на фиг.9-13, 16 и 17, обеспечивающий аэродинамическую целостность узел 40 содержит жесткий профиль 43, способный к упругой деформации и обеспечивающий целостность наружной и внутренней аэродинамических линий гондолы.
Как показано на фиг.10-11, профиль 43 может иметь форму проволочной пружины.
В одном неограничительном примере данного изобретения профиль 43 имеет, по существу, J-образную форму, вогнутая поверхность которой обращена к передней раме 21.
Более точно, данный профиль имеет нижний по потоку конец, согнутый и прикрепленный к передней раме 21, причем указанный конец проходит посредством переходной части, обеспечивающей изгиб профиля 43, сам профиль проходит посредством прямолинейного верхнего по потоку конца, прикрепленного к наружной поверхности передней рамы 21, без внезапных скачкообразных изменений с ней.
Когда обтекатель 30 находится в положении, в котором сечение сопла не изменяется, то верхний по потоку конец обтекателя 30 вмещается в переходную часть так, что передняя рама 21, элемент 40 и подвижный обтекатель не имеют скачкообразного изменения на наружной поверхности гондолы.
Во время перемещения обтекателя 30 в направлении вверх по потоку к передней раме 21 верхний по потоку конец обтекателя 30 примыкает к переходной части профиля 43, изгибая ее и тем самым освобождая проход для продвижения верхнего по потоку конца обтекателя 30 к передней раме 21.
Место изгиба преимущественно может быть расположено ниже по потоку от его конструкции, как показано на фиг.9-11. Кроме того, место изгиба может быть изменено на противоположное, но для этого потребуется большее смещение для обеспечения выпускного отверстия.
Профиль 43 может быть выполнен из металлического или композиционного материала, обладающего упругими свойствами, обеспечивающими изгиб части его конструкции.
Кроме того, поскольку перемещение вверх по потоку подвижного обтекателя 30 создает уменьшение наружного диаметра профиля 43, то необходимо обеспечить пазы, которые проходят от верхнего по потоку конца профиля к изогнутому участку для обеспечения его деформации.
Помимо этого, чтобы не ухудшать аэродинамические характеристики гондолы указанными пазами, они могут быть заполнены упругим материалом типа эластомера.
Как показано на фиг.12 и 13, профиль 44 может иметь форму пружины пластинчатого типа, обеспечивающую целостность внутренних аэродинамических линий гондолы на стороне канала холодного потока.
Указанный профиль 44 принимает форму, аналогичную форме, уже рассмотренной со ссылкой на фиг.7 и 8.
Однако в этом варианте выполнения профиль 44 является жестким с возможностью упругой деформации.
Таким образом, как показано на фиг.13, во время перемещения обтекателя 30 в направлении вверх по потоку к передней раме 21 для изменения сечения сопла, верхний по потоку конец обтекателя 30 примыкает к профилю 44, который изгибается к внутренней части передней рамы 21 для того, чтобы не создавать аэродинамические разрывы.
Более точно, свободный конец профиля 44, не прикрепленный на внутренней поверхности передней рамы 21, проходит с наклоном к внутренней части передней рамы для обеспечения указанного изгиба.
Неподвижный участок, обеспечивающий соединение с рамой профиля 44, может быть расположен в нижней или верхней части относительно углубления 51.
После отведения обтекателя 30 по направлению к нижней части гондолы профиль 44 восстанавливает свое исходное положение.
Как и в других рассмотренных вариантах выполнения, к верхнему по потоку концу обтекателя 30 может быть прикреплен задник 34.
Кроме того, в соответствии с фиг.16 и 17, другой вариант профиля обеспечивает целостность наружных и внутренних аэродинамических линий гондолы, соответственно, в виде сильфона 45 и 46.
Эти сильфоны 45, 46 имеют форму и размеры, как и в других вариантах выполнения, обеспечивающие аэродинамическую целостность между передней рамой 21 и обтекателем 30, когда обтекатель не находится в положении изменения сечения сопла.
Во время перемещения обтекателя 30 в направлении вверх по потоку к передней раме 21, как показано на фиг.17, верхний по потоку конец обтекателя 30 опирается на сильфоны 45, 46, которые сжимаются, освобождая проход для дополнительного продвижения обтекателя к передней раме 21.
После отведения обтекателя 30 каждый сильфон 45, 46 восстанавливает свое исходное положение.
Количество гофров каждого из сильфонов определяется так, чтобы не превышать их предел упругости.
В третьем варианте выполнения, показанном на фиг.14 и 15, узел 40, обеспечивающий целостность наружной и внутренней линий гондолы, содержит недеформируемый жесткий профиль 47, 48, связанный с упругим возвратным средством.
Более точно, он содержит профиль 47, 48, прикрепленный к одному концу элемента пружинного типа, который сам прикреплен противоположным концом к опорной конструкции 49.
Опорная конструкция 49 может быть либо встроена в переднюю раму 21, как показано для наружной поверхности гондолы, либо выполнена независимо от передней рамы 21, но прикреплена к ней, как показано для внутренней поверхности передней рамы 21.
Аналогично другим вариантам выполнения профиль 47, 48 имеет форму и размеры, обеспечивающие его вмещение в углубления 50, 51 между передней рамой 21 и обтекателем 30, а также целостность аэродинамических линий между указанными элементами.
Помимо этого, во время перемещения обтекателя 30 в направлении вверх по потоку к передней раме 21, как показано на фиг.15, передний конец обтекателя 30 примыкает к профилю 47, 46, которые сжимаются благодаря пружине, освобождая проход для продвижения обтекателя 30 к передней раме 21.
Направление перемещения профиля определяется направлением действия контактных напряжений на стыке профиля 47, 48 и верхнего по потоку конца подвижного обтекателя 30.
Во всех предложенных вариантах выполнения рассматриваемый профиль может быть выполнен в виде одной детали или сборочного узла.
Специалистам в данной области техники следует понимать, что в сравнении с гондолами предшествующего уровня техники, гондола, предлагающая сопло, изменяемое на этапах взлета и приземления посредством перемещения подвижного обтекателя из его закрытого положения к верхней по потоку неподвижной конструкции гондолы, в то же время не имеет какого-либо разрыва аэродинамических линий в направляющем канале во время этапа полета.
Естественно, данное изобретение никоим образом не ограничивается только рассмотренными вариантами выполнения гондолы, которые приведены в качестве примеров, но распространяется на все возможные альтернативные варианты.
Таким образом, данное изобретение может использоваться с гондолой, которая не содержит механизмов реверсирования тяги.
Данное изобретение также может использоваться с гондолой, содержащей устройство реверсирования тяги, содержащее выше по потоку закрылки реверсора тяги под каскадными лопатками, и подвижный обтекатель, связанный ниже по потоку от гондолы с подвижными панелями для обеспечения изменения сечения реактивного сопла.
Кроме того, в одном альтернативном варианте выполнения данного изобретения аэродинамическая целостность может быть получена посредством неотъемлемой части подвижного обтекателя, сжимаемой передней рамой во время перемещения указанного обтекателя в направлении верхней части гондолы.

Claims (12)

1. Гондола, содержащая верхнюю по потоку неподвижную конструкцию (20), подвижный обтекатель (30), и нижнее по потоку сопло с переменным сечением, причем указанный подвижный обтекатель (30) продолжен на его нижнем по потоку конце указанным соплом с переменным сечением, причем указанный обтекатель (30) установлен на указанной неподвижной конструкции (20) с возможностью перемещения, в частности, по ходу движения так, чтобы изменять сечение указанного сопла, отличающаяся тем, что указанная гондола дополнительно содержит обеспечивающий аэродинамическую целостность узел (40), выполненный между неподвижной конструкцией (20) и подвижным обтекателем (30), причем указанный узел (40) содержит упругое средство, способное сжиматься между неподвижной конструкцией и указанным подвижным обтекателем, когда обтекатель находится в верхнем по потоку участке его хода движения, и способное растягиваться, когда обтекатель находится в нижнем по потоку участке его хода движения, обеспечивая аэродинамическую целостность линий между указанной неподвижной конструкцией (20) и указанным подвижным обтекателем (30).
2. Гондола по п.1, отличающаяся тем, что обеспечивающий аэродинамическую непрерывность узел (40) содержит упругий профиль (41, 42) из материала типа эластомера.
3. Гондола по п.1, отличающаяся тем, что обеспечивающий аэродинамическую непрерывность узел (40) содержит жесткий профиль (43, 44, 47, 48), способный к упругой деформации.
4. Гондола по п.3, отличающаяся тем, что указанный профиль выполнен из проволочной пружины, пластинчатой пружины или по типу сильфона.
5. Гондола по п.1, отличающаяся тем, что обеспечивающий аэродинамическую непрерывность узел (40) содержит недеформируемый жесткий профиль (47, 48), связанный с упругими возвратными средствами.
6. Гондола по любому из пп.2-5, отличающаяся тем, что указанный профиль (41, 42, 43, 44, 45, 46, 47, 48) выполнен в виде одной детали или представляет собой сборку из нескольких деталей или секций.
7. Гондола по п.1, отличающаяся тем, что обеспечивающий аэродинамическую непрерывность узел (40) обеспечивает аэродинамическую целостность наружных линий между верхней неподвижной (20) конструкцией и подвижным обтекателем (30).
8. Гондола по п.1, отличающаяся тем, что обеспечивающий аэродинамическую непрерывность узел (40) обеспечивает аэродинамическую целостность внутренних линий между неподвижной конструкцией (20) и подвижным обтекателем (30).
9. Гондола по любому из пп.1-5 или 7-8, отличающаяся тем, что верхний по потоку конец подвижного обтекателя (30) выполнен с возможностью присоединения к нему задника (33, 34).
10. Гондола по любому из пп.1-5 или 7-8, отличающаяся тем, что обеспечивающий аэродинамическую непрерывность элемент (40) выполнен как неотъемлемая часть неподвижной конструкции (20).
11. Гондола по любому из пп.1-5 или 7-8, отличающаяся тем, что обеспечивающий аэродинамическую непрерывность элемент (40) выполнен как неотъемлемая часть подвижного обтекателя (30).
12. Гондола по любому из пп.1-5 или 7-8, отличающаяся тем, что она содержит нижнюю по потоку секцию, снабженную средством реверсирования тяги.
RU2011115146/11A 2008-09-24 2009-07-10 Гондола с переменным сечением сопла RU2532682C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0805243A FR2936222B1 (fr) 2008-09-24 2008-09-24 Nacelle a section de tuyere variable
FR08/05243 2008-09-24
PCT/FR2009/000861 WO2010034893A1 (fr) 2008-09-24 2009-07-10 Nacelle à section de tuyère variable

Publications (2)

Publication Number Publication Date
RU2011115146A RU2011115146A (ru) 2012-10-27
RU2532682C2 true RU2532682C2 (ru) 2014-11-10

Family

ID=40614873

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011115146/11A RU2532682C2 (ru) 2008-09-24 2009-07-10 Гондола с переменным сечением сопла

Country Status (9)

Country Link
US (1) US8919667B2 (ru)
EP (1) EP2326555A1 (ru)
CN (1) CN102131705B (ru)
BR (1) BRPI0917696A2 (ru)
CA (1) CA2734417A1 (ru)
CO (1) CO6361863A2 (ru)
FR (1) FR2936222B1 (ru)
RU (1) RU2532682C2 (ru)
WO (1) WO2010034893A1 (ru)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2962492B1 (fr) * 2010-07-07 2012-08-03 Aircelle Sa Dispositif d'inversion de poussee avec jonction aerodynamique de cadre avant
FR2966434B1 (fr) * 2010-10-21 2013-05-31 Sagem Defense Securite Systeme d'actionnement pour un ensemble de propulsion d'un avion
GB201117824D0 (en) * 2011-10-17 2011-11-30 Rolls Royce Plc Variable area nozzle for gas turbine engine
US9103298B2 (en) * 2011-12-29 2015-08-11 Rohr, Inc. Seal for a variable area fan nozzle
FR3008071B1 (fr) 2013-07-04 2017-07-28 Aircelle Sa Nacelle de turboreacteur a tuyere variable
US9765729B2 (en) * 2013-10-17 2017-09-19 Rohr, Inc. Thrust reverser fan ramp with blocker door pocket
US9856742B2 (en) * 2015-03-13 2018-01-02 Rohr, Inc. Sealing system for variable area fan nozzle
US10184426B2 (en) * 2015-06-22 2019-01-22 Rohr, Inc. Thrust reverser with forward positioned blocker doors
FR3087751B1 (fr) * 2018-10-25 2022-03-25 Safran Nacelles Piece de lissage aerodynamique pour nacelle d’ensemble propulsif d’aeronef et procede d’assemblage s’y rapportant
US11802523B2 (en) * 2020-12-12 2023-10-31 Rohr, Inc. Multi-lobed bullnose ramp

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0488453A1 (fr) * 1990-11-28 1992-06-03 Conception Aeronautique Du Sud Ouest Tuyère d'éjection variable pour moteur à réaction
US5778459A (en) * 1997-02-10 1998-07-14 Guerin; Phillip M. Method and apparatus for injecting chemicals into the water of a toilet bowl
RU2237184C2 (ru) * 2002-10-10 2004-09-27 Открытое акционерное общество "Авиадвигатель" Реверсивное устройство наружного контура турбореактивного двухконтурного двигателя
RU2276280C1 (ru) * 2004-10-28 2006-05-10 Открытое акционерное общество Научно-производственное объединение "Искра" Раздвижное сопло ракетного двигателя
RU2315887C2 (ru) * 2005-12-23 2008-01-27 Открытое акционерное общество "Авиадвигатель" Турбореактивный двигатель сверхвысокой степени двухконтурности
FR2902839B1 (fr) * 2006-06-21 2011-09-30 Aircelle Sa Inverseur de poussee formant une tuyere adaptative

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4278220A (en) * 1979-03-30 1981-07-14 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Thrust reverser for a long duct fan engine
FR2621082A1 (fr) * 1987-09-30 1989-03-31 Hispano Suiza Sa Inverseur de poussee de turboreacteur a portes munies d'une plaque au profil de veine
FR2638207B1 (fr) * 1988-10-20 1990-11-30 Hispano Suiza Sa Inverseur de poussee de turboreacteur, a portes pivotantes equilibrees
US5778659A (en) * 1994-10-20 1998-07-14 United Technologies Corporation Variable area fan exhaust nozzle having mechanically separate sleeve and thrust reverser actuation systems
US5806302A (en) * 1996-09-24 1998-09-15 Rohr, Inc. Variable fan exhaust area nozzle for aircraft gas turbine engine with thrust reverser
FR2757215B1 (fr) * 1996-12-12 1999-01-22 Hispano Suiza Sa Inverseur de poussee de turboreacteur a portes comportant des aubes deflectrices associees a la structure fixe
FR2758161B1 (fr) * 1997-01-09 1999-02-05 Hispano Suiza Sa Inverseur de poussee a grilles a installation de verin de commande optimisee
FR2760788B1 (fr) * 1997-03-13 1999-05-07 Hispano Suiza Sa Inverseur de poussee de turboreacteur a portes a structure externe plaquee
FR2804474B1 (fr) * 2000-01-27 2002-06-28 Hispano Suiza Sa Inverseur de poussee a grilles aubagees de deviation a structure arriere fixe
GB0025666D0 (en) * 2000-10-19 2000-12-06 Short Brothers Plc Aircraft propulsive power unit
US20080010969A1 (en) * 2006-07-11 2008-01-17 Thomas Anthony Hauer Gas turbine engine and method of operating same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0488453A1 (fr) * 1990-11-28 1992-06-03 Conception Aeronautique Du Sud Ouest Tuyère d'éjection variable pour moteur à réaction
US5778459A (en) * 1997-02-10 1998-07-14 Guerin; Phillip M. Method and apparatus for injecting chemicals into the water of a toilet bowl
RU2237184C2 (ru) * 2002-10-10 2004-09-27 Открытое акционерное общество "Авиадвигатель" Реверсивное устройство наружного контура турбореактивного двухконтурного двигателя
RU2276280C1 (ru) * 2004-10-28 2006-05-10 Открытое акционерное общество Научно-производственное объединение "Искра" Раздвижное сопло ракетного двигателя
RU2315887C2 (ru) * 2005-12-23 2008-01-27 Открытое акционерное общество "Авиадвигатель" Турбореактивный двигатель сверхвысокой степени двухконтурности
FR2902839B1 (fr) * 2006-06-21 2011-09-30 Aircelle Sa Inverseur de poussee formant une tuyere adaptative

Also Published As

Publication number Publication date
RU2011115146A (ru) 2012-10-27
CO6361863A2 (es) 2012-01-20
FR2936222A1 (fr) 2010-03-26
FR2936222B1 (fr) 2011-04-01
EP2326555A1 (fr) 2011-06-01
US8919667B2 (en) 2014-12-30
US20110174899A1 (en) 2011-07-21
CN102131705B (zh) 2014-06-18
WO2010034893A1 (fr) 2010-04-01
CN102131705A (zh) 2011-07-20
BRPI0917696A2 (pt) 2015-12-01
CA2734417A1 (fr) 2010-04-01

Similar Documents

Publication Publication Date Title
RU2532682C2 (ru) Гондола с переменным сечением сопла
US8505307B2 (en) Translating variable area fan nozzle with split beavertail fairings
US9410500B2 (en) Movable cascade turbojet thrust reverser having translatable reverser cowl causing variation in jet nozzle
US8256204B2 (en) Aircraft engine thrust reverser
US7093793B2 (en) Variable cam exhaust nozzle
CA2460598C (en) Confluent variable exhaust nozzle
US4176792A (en) Variable area exhaust nozzle
RU2499904C2 (ru) Гондола двухконтурного турбореактивного двигателя
US6966175B2 (en) Rotary adjustable exhaust nozzle
RU2538348C2 (ru) Устройство реверса тяги
US20090188233A1 (en) Thrust reverser forming an adaptive nozzle
CN102105669B (zh) 具有活动山形件的用于涡轮喷气发动机舱的噪声消减装置以及相关的发动机舱
EP3244051A1 (en) Gas turbine engine with thrust reverser assembly and method of operating
US20150267643A1 (en) Thrust reverser with pivoting cascades
US11519362B2 (en) Turbofan comprising a system comprising a screen for closing off the bypass duct
US9759087B2 (en) Translating variable area fan nozzle providing an upstream bypass flow exit
US10458362B2 (en) Turbojet nacelle provided with a thrust reverser, including cut-outs to avoid the movable slat of an aircraft wing
CN109563788A (zh) 反推装置组件
US20190285028A1 (en) Thrust reverser cascade
EP2278147B1 (en) Translating variable area fan nozzle providing an upstream bypass flow exit
RU2435056C2 (ru) Гондола для двухконтурного турбореактивного двигателя с высокой степенью двухконтурности
US20160108852A1 (en) Thrust reverser for a turbojet engine nacelle, comprising cascades partially integrated in the cowls
US11885281B2 (en) Thrust reverser with flaps controlled by a mechanism equipped with aeronautical bellcranks
US2874538A (en) Thrust reverser for jet engine
EP2239449B1 (en) Nacelle assembly for turbofan aircraft engines

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20160711