RU2529316C2 - Устройство для регулирования расхода флюида - Google Patents

Устройство для регулирования расхода флюида Download PDF

Info

Publication number
RU2529316C2
RU2529316C2 RU2012122630/03A RU2012122630A RU2529316C2 RU 2529316 C2 RU2529316 C2 RU 2529316C2 RU 2012122630/03 A RU2012122630/03 A RU 2012122630/03A RU 2012122630 A RU2012122630 A RU 2012122630A RU 2529316 C2 RU2529316 C2 RU 2529316C2
Authority
RU
Russia
Prior art keywords
diode
fluid
channel
hydraulic
sleeve
Prior art date
Application number
RU2012122630/03A
Other languages
English (en)
Other versions
RU2012122630A (ru
Inventor
Роджер Л. ШУЛЬЦ
Роберт Л. ПИПКИН
Трейвис В. КАВЕНДЕР
Original Assignee
Халлибертон Энерджи Сервисез, Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Халлибертон Энерджи Сервисез, Инк. filed Critical Халлибертон Энерджи Сервисез, Инк.
Publication of RU2012122630A publication Critical patent/RU2012122630A/ru
Application granted granted Critical
Publication of RU2529316C2 publication Critical patent/RU2529316C2/ru

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/12Methods or apparatus for controlling the flow of the obtained fluid to or in wells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/206Flow affected by fluid contact, energy field or coanda effect [e.g., pure fluid device or system]
    • Y10T137/2087Means to cause rotational flow of fluid [e.g., vortex generator]
    • Y10T137/2104Vortex generator in interaction chamber of device

Abstract

Группа изобретений относится к горному делу и может быть применена для регулирования потока флюида в скважине. Способ включает обеспечение гидравлического диода в канале гидравлического сообщения со скважиной и перемещение флюида через гидравлический диод. При этом гидравлический диод расположен внутри скважины. Инструмент содержит трубчатую диодную втулку, имеющую диодное отверстие, трубчатую внутриканальную втулку, концентрически установленную внутри диодной втулки, причем внутриканальная втулка содержит внутренний канал, находящийся в гидравлическом сообщении с диодным отверстием, и трубчатую наружноканальную втулку, внутри которой концентрически установлена диодная втулка. Причем наружноканальная втулка содержит наружный канал, находящийся в гидравлическом сообщении с диодным отверстием. Причем в этом инструменте форма диодного отверстия, положение внутреннего канала относительно диодного отверстия и положение наружного канала относительно диодного отверстия определяют сопротивление потоку флюида, текущего во внутренний канал из наружного канала, и другое сопротивление потоку флюида, текущего в наружный канал из внутреннего канала. Технический результат заключается в повышении эффективности регулирования потока флюида в скважине. 3 н. и 16 з.п. ф-лы, 13 ил.

Description

Область техники, к которой относится изобретение
Изобретение относится к инструментам для обслуживания скважин.
Уровень техники
Некоторые инструменты для обслуживания скважин создают множество протоков между внутренней частью инструмента для обслуживания скважин и стволом скважины. Однако протекание флюида через подобное множество протоков может происходить в нежелательном и/или негомогенном режиме. Колебание в режиме перемещения флюида через множество протоков может быть обусловлено колебаниями параметров флюида в окружающей углеводородной формации и/или может быть обусловлено нарушением рабочего режима инструмента для обслуживания скважин, таким как непреднамеренное закупоривание протоков твердыми частицами.
Раскрытие изобретения
Предлагается способ обслуживания скважины, включающий создание гидравлического диода в канале для гидравлического сообщения со скважины и перемещение флюида через гидравлический диод.
Предлагается также инструмент для регулирования расхода флюида, включающий трубчатую диодную втулку, имеющую диодное отверстие, трубчатую внутриканальную втулку, установленную концентрически внутри диодной втулки, причем внутриканальная втулка содержит внутренний канал, имеющий гидравлическое сообщение с диодным отверстием, и трубчатую наружноканальную втулку, внутри которой концентрически установлена диодная втулка, причем наружноканальная втулка содержит наружный канал, имеющий гидравлическое сообщение с диодным отверстием, причем форма диодного отверстия, положение внутреннего канала относительно диодного отверстия и положение наружного канала относительно диодного отверстия определяют гидравлическое сопротивление перемещению флюида во внутренний канал из наружного канала и другое гидравлическое сопротивление перемещению флюида в наружный канал из внутреннего канала.
Предлагается далее способ добычи углеводородов из подземной формации, включающий нагнетание пара в скважину, которая проникает в подземную формацию, паровую активацию движения углеводородов в подземной формации и извлечение, по крайней мере, части движущихся углеводородов, причем, по крайней мере, один поток среди потока нагнетаемого пара или потока извлекаемых углеводородов регулируют с помощью гидравлического диода.
Предлагается далее инструмент для регулирования расхода флюида, предназначенный для обслуживания скважины, который включает гидравлический диод, имеющий вход с низким гидравлическим сопротивлением и вход с высоким гидравлическим сопротивлением, причем гидравлический диод имеет такую конфигурацию, чтобы он мог создавать более высокое гидравлическое сопротивление флюиду, перемещающемуся на вход с низким гидравлическим сопротивлением от входа с высоким гидравлическим сопротивлением с некоторой массовой скоростью, чем гидравлическое сопротивление флюиду, перемещающемуся на вход с высоким гидравлическим сопротивлением от входа с низким гидравлическим сопротивлением с этой же массовой скоростью. Этот инструмент для регулирования расхода флюида может далее включать трубчатую диодную втулку, имеющую диодное отверстие, внутриканальную втулку, установленную, по существу, концентрически внутри диодной втулки, причем внутриканальная втулка имеет внутренний канал, и наружноканальную втулку, установленную, по существу, концентрически вокруг диодной втулки, причем наружноканальная втулка имеет наружный канал. Внутренний канал может быть связан со входом с низким гидравлическим сопротивлением, а наружный канал может быть связан со входом с высоким гидравлическим сопротивлением. Внутренний канал может быть связан со входом с высоким гидравлическим сопротивлением, а наружный канал может быть связан со входом с низким гидравлическим сопротивлением. Диодная втулка может перемещаться относительно внутриканальной втулки так, чтобы внутренний канал мог оказаться связанным со входом с низким гидравлическим сопротивлением, и диодная втулка может перемещаться относительно наружноканальной втулки так, чтобы наружный канал мог оказаться связанным со входом с высоким гидравлическим сопротивлением. Гидравлический диод может иметь такую конфигурацию, чтобы можно было генерировать флюидный вихрь при перемещении флюида от входа с высоким гидравлическим сопротивлением до входа с низким гидравлическим сопротивлением. Инструмент для регулирования расхода флюида может иметь такую конфигурацию, чтобы можно было перемещать флюид между внутренним каналом инструмента для регулирования расхода флюида и скважиной.
Краткое описание чертежей
На фиг.1 приведено аксонометрическое изображение с вырезом инструмента для регулирования расхода флюида согласно варианту воплощения этого изобретения.
На фиг.2 приведено частичное сечение инструмента для регулирования расхода флюида, показанного на фиг.1, вдоль плоскости сечения А-А на фиг.1.
На фиг.3 приведено частичное сечение инструмента для регулирования расхода флюида, показанного на фиг.1, вдоль плоскости сечения В-В на фиг.1.
На фиг.4 приведено частичное сечение инструмента для регулирования расхода флюида согласно другому варианту воплощения этого изобретения.
На фиг.5 приведено другое частичное сечение инструмента для регулирования расхода флюида, показанного на фиг.4.
На фиг.6 приведено упрощенное схематическое изображение множества инструментов для регулирования расхода флюида, изображенных на фиг.1, соединенных друг с другом и образующих участок спусковой колонны, согласно варианту воплощения этого изобретения.
На фиг.7 приведено сечение системы обслуживания скважин, включающей множество инструментов для регулирования расхода флюида, изображенных на фиг.1, и множество инструментов для регулирования расхода флюида, изображенных на фиг.5.
На фиг.8 приведено аксонометрическое изображение диодной втулки согласно другому примеру воплощения этого изобретения.
На фиг.9 приведено ортогональное изображение диодного отверстия инструмента для регулирования расхода флюида, показанного на фиг.1, в развернутом на плоскую поверхность виде.
На фиг.10 приведено ортогональное изображение диодного отверстия диодной втулки, изображенной на фиг.8, в развернутом на плоскую поверхность виде.
На фиг.11 приведено ортогональное изображение диодного отверстия согласно другому примеру воплощения этого изобретения.
На фиг.12 приведено ортогональное изображение диодного отверстия согласно еще одному примеру воплощения этого изобретения.
На фиг.13 приведено ортогональное изображение диодного отверстия согласно еще другому примеру воплощения этого изобретения.
Осуществление изобретения
На этих фигурах и в последующем описании сходные детали и части обычно обозначаются на всех фигурах и в описании одними и теми же номерами. Изображения на фигурах необязательно выполнены в одном и том же масштабе. Некоторые детали изобретения могут быть показаны в увеличенном виде или изображены несколько схематически, а некоторые детали обычных элементов могут быть не показаны, чтобы повысить четкость изображения и упростить его описание.
Если только нет других указаний, любое использование в любой форме терминов «соединять, присоединять», «вводить в зацепление, в контакт», «сцеплять», «прикреплять» ("connect," "engage," "couple," "attach") или любых других терминов, обозначающих взаимодействие между элементами, не подразумевает, что следует ограничиваться прямым взаимодействием между этими элементами. Эти термины охватывают также непрямое взаимодействие между описываемыми элементами. В последующем описании и формуле изобретения термины «включающий» и «содержащий» ("including" и "comprising") используются в расширительном смысле, т.е. они используются в значении «включающий, содержащий (какие-либо элементы), но не ограничивающийся только (этими элементами)». Обозначение пространственных отношений с помощью определений "up," "upper," "upward," "upstream" подразумевает нахождение ближе к выходу на поверхность, а определения "down," "lower," "downward," "downstream" подразумевают нахождение ближе к забою скважины, независимо от ориентации самой скважины. Термин «зона» или «продуктивная зона» используется здесь для обозначения отдельных частей скважины, предназначенных для обработки или добычи, и они могут относиться ко всей углеводородной формации в целом или к отдельным участкам одной формации, таким как горизонтально и/или вертикально расположенные участки одной и той же формации.
Термин «инструмент зональной изоляции» используется здесь для обозначения снабженного приводом устройства любого типа, предназначенного для регулирования расхода флюидов или для изоляции зон повышенного давления в скважине, включая пробку-мост, пробку для закупоривания трещин и пакер-пробку, но не ограничиваясь только ими. Термин «инструмент зональной изоляции» может использоваться и для постоянно действующего устройства и для извлекаемого устройства.
Термин «пробка-мост» будет использоваться здесь для обозначения скважинного инструмента, который можно размещать и устанавливать так, чтобы изолировать нижнюю часть скважины под скважинным инструментом от верхней части скважины над скважинным инструментом. Термин «пробка-мост» может использоваться и для постоянно действующего устройства и для извлекаемого устройства.
Термины «перемычка», «уплотнение», «герметизация» и «гидравлическое уплотнение» используются здесь в значении «идеальное уплотнение» и «неидеальное уплотнение». «Идеальное уплотнение» может относиться к ограничению потока (закупориванию), которое полностью прекращает поступление флюида через или сквозь ограничитель потока и заставляет флюид течь в другом направлении или прекращать течение. «Неидеальное уплотнение» может относиться к ограничению потока (закупориванию), которое значительно снижает поступление флюида через или сквозь ограничитель потока и заставляет значительную часть флюида течь в другом направлении или прекращать течение.
Различные упомянутые выше характеристики, а также другие особенности и характеристики, описанные ниже более подробно, будут очевидными для сведущих в этой области после ознакомления с подробным описанием примеров воплощения этого изобретения, снабженным ссылками на прилагаемые фигуры.
На фиг.1 приведено аксонометрическое изображение инструмента 100 для регулирования расхода флюида согласно примеру воплощения этого изобретения. Как будет показано ниже, понятно, что один или несколько деталей инструмента 100 могут быть установлены, в сущности, коаксиально центральной оси 102. Инструмент 100 обычно включает четыре коаксиально установленные и/или коаксиальные цилиндрические трубы, описанные ниже более подробно. Если рассматривать их в порядке следования от центра к периферии, то инструмент 100 содержит в самом центре внутриканальную втулку 104, затем диодную втулку 106, наружноканальную втулку 108, а на самой периферии наружный перфорированный хвостовик 110. Различные детали инструмента 100, изображенного на фиг.1, показаны на аксонометрическом изображении на различном удалении вдоль продольной оси, чтобы дать более ясное представление об их особенностях. В частности, хотя это и не отражено на фиг.1, в некоторых примерах воплощения все втулки среди внутриканальной втулки 104, диодной втулки 106, наружноканальной втулки 108 и наружного перфорированного хвостовика 110 могут иметь примерно одинаковую продольную длину. Инструмент 100 включает далее множество гидравлических диодов 112, которые имеют такую конфигурацию, чтобы можно было обеспечивать протекание флюида между самым внутренним каналом 114 инструмента 100 и кольцевым зазором 116 между наружноканальной втулкой 108 и наружным перфорированным хвостовиком 110. Внутриканальная втулка 104 имеет множество внутренних отверстий 118, а наружноканальная втулка 108 имеет множество наружных каналов 120. Диодная втулка 106 имеет множество диодных отверстий 122. Разные внутренние каналы 118, наружные каналы 120 и диодные отверстия 122 установлены друг относительно друга так, чтобы каждое диодной отверстие 122 могло быть связанным с одним внутренним каналом 118 и одним наружным каналом 120.
Далее каждое диодное отверстие 122 имеет вход 124 с высоким сопротивлением и вход 126 с низким сопротивлением. Однако термины «отверстие 124 с высоким сопротивлением» и «отверстие 126 с низким сопротивлением» не следует воспринимать так, что флюид может поступать в диодное отверстие 122 только через входы 124, 126. Вместо этого термин «отверстие 124 с высоким сопротивлением» следует считать показывающим, что диодное отверстие 122 имеет такую геометрию, что оно больше способствует повышению сопротивления перемещению флюида через гидравлический диод 112 при поступлении флюида через вход 124 с высоким сопротивлением и вытекании через вход 126 с низким сопротивлением, чем повышению сопротивления перемещению флюида через гидравлический диод 112 при поступлении флюида через вход 126 с низким сопротивлением и вытекании через вход 124 с высоким сопротивлением. Инструмент 100 изображен на фиг.1-4 имеющим такую конфигурацию, когда внутренние каналы 118 связаны со входами 126 с низким сопротивлением, тогда как наружные каналы 120 связаны со входами 124 с высоким сопротивлением. Другими словами, когда инструмент 100 имеет такую конфигурацию, как показано на фиг.1-4, поток флюида, поступающий из протока 116 в канал 114 через гидравлические диоды 112, испытывает большее сопротивление, чем поток флюида, поступающий из канала 114 в проток 116 через гидравлические диоды 112. В этом примере воплощения инструмента 100 диодные отверстия 122 имеют такую конфигурацию, чтобы можно было обеспечивать указанное выше направление течения, зависящее от сопротивления перемещению флюида, заставляя флюид проходить по вихревой траектории перед тем, как выходить из диодного отверстия 122 через вход 126 с низким сопротивлением. Однако в альтернативных примерах воплощения диодные отверстия 122 могут иметь любую другую подходящую геометрию, чтобы можно было создавать диодно-гидравлический эффект при протекании флюида через гидравлические диоды 112.
На фиг.2 и 3 показаны частичные сечения инструмента 100, изображенного на фиг.1. На фиг.2 показано частичное сечение вдоль плоскости сечения А-А на фиг.1, а на фиг.3 показано частичное сечение вдоль плоскости сечения В-В на фиг.1. На фиг.2 показано, что существует проток между пространством вне наружного перфорированного хвостовика 110 и пространством, ограниченным диодным отверстием 122. В частности, пространство вне наружного перфорированного хвостовика 110 сообщается с пространством, образованным наружным каналом 120, через прорезь 128 в наружном перфорированном хвостовике 110. Однако в альтернативных примерах воплощения перфорированный хвостовик 110 может иметь просверленные отверстия, сочетать просверленные отверстия с прорезями 128 и/или иметь другие подходящие отверстия. Понятно, что перфорированный хвостовик 110 может носить характер какого-либо другого подходящего хвостовика с щелевидными продольными отверстиями, хвостовика с проволочной обмоткой и/или перфорированного хвостовика. В этом примере воплощения и при этой конфигурации наружный канал 120 имеет гидравлическое сообщение с пространством, ограниченным входом 124 с высоким сопротивлением диодного отверстия 122. На фиг.3 показано, что пространство, ограниченное входом 126 с низким сопротивлением диодного отверстия 122, имеет гидравлическое сообщение с пространством, ограниченным внутренним каналом 118. Внутренний канал 118 имеет гидравлическое сообщение с каналом 114, являясь тем самым последним участком протока между пространством вне наружного перфорированного хвостовика 110 и каналом 114. Понятно, что диодное отверстие 122 может разграничивать пространство, которое простирается в виде примерно концентрической орбиты вокруг центральной оси 102. Конфигурацию инструмента 100, показанного на фиг.2 и 3, можно назвать «регулирующей приток конфигурацией», поскольку гидравлический диод 112 имеет такую конфигурацию, чтобы можно было оказывать большее сопротивление потоку, поступающему в канал 114 через гидравлический диод 112, чем потоку, вытекающему из канала 114 через гидравлический диод 112.
На фиг.4 и 5 показаны частичные сечения изображенного на фиг.1 инструмента 100, который имеет альтернативную конфигурацию. В частности, в то время как инструмент 100, имеющий такую конфигурацию, как на фиг.1, оказывает более высокое сопротивление потоку, поступающему из зазора 116 в канал 114, инструмент 100' на фиг.4 и 5 имеет конфигурацию, оказывающую противоположное действие. Иначе говоря, инструмент 100', показанный на фиг.4 и 5, имеет такую конфигурацию, чтобы можно было оказывать большее сопротивление потоку, поступающему из канала 114 в зазор 116. На фиг.4 показано, что существует проток между пространством вне наружного перфорированного хвостовика 110 и пространством, ограниченным диодным отверстием 122. В частности, прорезь 128 в наружном перфорированном хвостовике 110 связывает пространство вне наружного перфорированного хвостовика 110 с пространством, образованным наружным каналом 120. В этом примере воплощения и при этой конфигурации наружный канал 120 имеет гидравлическое сообщение с пространством, ограниченным входом 126 с низким сопротивлением диодного отверстия 122. На фиг.5 показано, что пространство, ограниченное входом 124 с высоким сопротивлением диодного отверстия 122, имеет гидравлическое сообщение с пространством, ограниченным внутренним каналом 118. Внутренний канал 118 имеет гидравлическое сообщение с каналом 114, являясь тем самым последним участком протока между пространством вне наружного перфорированного хвостовика 110 и каналом 114. Соответственно, конфигурацию, показанную на фиг.4 и 5, можно назвать «регулирующей отток конфигурацией», поскольку гидравлический диод 112 имеет такую конфигурацию, чтобы можно было оказывать большее сопротивление потоку, вытекающему из канала 114 через гидравлический диод 112, чем потоку, поступающему в канал 114 через гидравлический диод 112.
На фиг.6 приведено упрощенное изображение двух соединенных друг с другом инструментов 100. Понятно, что в некоторых примерах воплощения инструменты 100 могут включать соединители 130, имеющие такую конфигурацию, чтобы можно было соединять инструменты 100 друг с другом и/или другими компонентами спусковой колонны скважины. Понятно, что в этом примере воплощения инструменты 100 имеют такую конфигурацию, чтобы можно было соединить друг с другом два инструмента 100 таким образом, как показано на фиг.4, и чтобы отверстия 114 имели гидравлическое сообщение друг с другом. Однако в этом примере воплощения предусмотрены уплотнения и/или другие подходящие детали, чтобы можно было разделять зазоры 116 соседних и соединенных инструментов 100. В альтернативных примерах воплощения инструменты 100 могут быть соединены друг с другом с помощью труб, элементов спусковой колонны или любыми другими подходящими устройствами для соединения инструментов 100 и обеспечения гидравлического сообщения.
На фиг.7 показана система 200 обслуживания скважин, имеющая такую конфигурацию, чтобы можно было добывать и/или извлекать углеводороды методом гравитационного дренирования при закачке пара. Система 200 включает нагнетательную установку 202 для обслуживания скважин (например, буровую установку, установку для закачивания пробуренной скважины или установку для капитального ремонта скважин), которая находится на земной поверхности 204 вокруг нагнетательной скважины 206, проникающей в подземную формацию 208.
Хотя на фиг.7 и показана нагнетательная установка 202 для обслуживания скважин, в некоторых примерах воплощения с системой 200 может быть связана не обслуживающая установка 202, а стандартное наземное устьевое оборудование (или подземное устьевое оборудование в некоторых примерах воплощения). Нагнетательная скважина 206 может быть пробурена в подземной формации 208 с использованием любой подходящей технологии бурения. Нагнетательная скважина 206 проходит примерно вертикально вниз от земной поверхности 204 над вертикальным участком 210 нагнетательной скважины, отклоняется от вертикали относительно земной поверхности 204 над отклонившимся участком 212 нагнетательной скважины и переходит в горизонтальный участок 214 нагнетательной скважины.
Система 200 включает далее экстракционную обслуживающую установку 216 (например, буровую установку, установку для заканчивания пробуренной скважины или установку для капитального ремонта скважин), которая находится на земной поверхности 204 вокруг ствола скважины 218, проникающей в подземную формацию 208. Хотя на фиг.7 и показана экстракционная обслуживающая установка 216, в некоторых примерах воплощения с системой 200 может быть связана не обслуживающая установка 216, а стандартное наземное устьевое оборудование (или подземное устьевое оборудование в некоторых примерах воплощения). Ствол скважины 218 может быть пробурен в подземной формации 208 с использованием любой подходящей технологии бурения. Ствол скважины 218 проходит почти вертикально вниз от земной поверхности 204 над вертикальным участком 220 ствола скважины, отклоняется от вертикали относительной земной поверхности 204 над отклоняющимся участком 222 ствола скважины и переходит в горизонтальный участок 224 ствола скважины. Часть горизонтального участка 224 ствола скважины расположена на некотором расстоянии прямо под горизонтальным участком 214 нагнетательной скважины. В некоторых примерах воплощения участки 214, 224 могут быть в вертикальном направлении расположены на расстоянии около пяти метров друг от друга.
Система 200 включает далее нагнетательную спусковую колонну 226 (например, эксплуатационную колонну), содержащую множество инструментов 100', каждый из которых имеет конфигурацию, соответствующую регулирующей отток конфигурации. Аналогичным образом система 200 включает экстракционную спусковую колонну 228 (например, эксплуатационную колонну), содержащую множество инструментов 100, каждый из которых имеет конфигурацию, соответствующую регулирующей приток конфигурации. Понятно, что можно использовать кольцевые устройства зональной изоляции 230, чтобы изолировать кольцевые пространства нагнетательной скважины 206, связанные с инструментами 100', друг от друга в нагнетательной скважине 206. Аналогичным образом можно использовать кольцевые устройства зональной изоляции 230, чтобы изолировать друг от друга кольцевые пространства ствола скважины 218, связанные с инструментами 100.
Хотя описанная выше система 200 содержит две отдельные скважины 206, 218, альтернативные примеры воплощения могут иметь другую конфигурацию. Например, в некоторых примерах воплощения спусковые колонны 226, 228 могут быть расположены в одной скважине. Или же вертикальные участки спусковых колонн 226, 228 могут находиться в общей скважине, но они могут расходиться из общего вертикального участка в разные отклоняющиеся и/или горизонтальные участки скважины. Или же вертикальные участки спусковых колонн 226, 228 могут находиться в разных вертикальных участках скважины, но могут сходиться в совместном горизонтальном участке скважины. В каждом из описанных выше примеров воплощения инструменты 100 и 100' можно использовать совместно и/или порознь, чтобы подавать флюиды в скважину с регулирующей отток конфигурацией и/или извлекать флюиды из скважины с регулирующей приток конфигурацией. Далее в альтернативных примерах воплощения любые сочетания инструментов 100 и 100' могут находиться в совместной скважине и/или среди множества скважин, и инструменты 100 и 100' могут быть связаны с разными и/или совместными изолированными кольцевыми пространствами скважин, причем кольцевые пространства в некоторых примерах воплощения по меньшей мере частично ограничены одним или несколькими устройствами зональной изоляции 230.
Во время эксплуатации можно нагнетать пар в нагнетательную спусковую колонну 226 и выпускать его из инструментов 100' в формацию 208. Введение пара в формацию 208 может уменьшать вязкость некоторых углеводородов под действием нагнетаемого пара, в результате под действием силы тяжести подвергшиеся действию пара углеводороды увлекаются в сторону забоя скважины и попадают в ствол скважины 218. С помощью ствола спусковой колонны 228 можно поддерживать такое внутрискважинное давление (например, перепад давления), которое способствует извлечению подвергшихся действию пара углеводородов в экстракционную спусковую колонну 228 через инструменты 100. После этого углеводороды можно выкачивать из ствола скважины 218 и подавать в хранилище углеводородов и/или в систему для подачи углеводородов (т.е. в трубопровод).
Понятно, что каналы 114 инструментов 100, 100' могут представлять собой участки внутренних каналов ствола спусковой колонны 228 и нагнетательной спусковой колонны 226, соответственно. Понятно также, что флюид, поступающий в инструменты 100, 100' и/или вытекающий из инструментов 100, 100', можно считать поступающим в ствол скважину 218 и нагнетательную скважину 206 и/или вытекающим из ствола скважины 218 и нагнетательной скважины 206, соответственно. Значит, настоящее изобретение предполагает перемещение флюидов между скважиной и спусковой колонной, сообщающейся со скважиной через гидравлический диод. В некоторых примерах воплощения гидравлические диоды представляют собой участок спусковой колонны и/или инструмента спусковой колонны.
Понятно, что в некоторых примерах воплощения гидравлический диод может избирательно проводить регулирование расхода флюида, таким образом, чтобы сопротивление потоку флюида возрастало, когда массовая скорость протекания флюида достигает максимального значения. Предлагаемые гидравлические диоды могут обеспечивать линейную и/или нелинейную кривую зависимости сопротивления от массовой скорости протекания флюида через них. Например, когда массовая скорость протекания флюида через гидравлический диод возрастает почти линейно, сопротивление потоку флюида может возрастать экспоненциально. Понятно, что такой характер изменения сопротивления потоку флюида может способствовать более однородному распределению массовой скорости протекания флюида среди разных гидравлических диодов в одном инструменте для регулирования расхода флюида 100, 100'. Например, когда массовая скорость протекания флюида через первый гидравлический диод инструмента возрастает, сопротивление дальнейшему увеличению скорости протекания флюида через первый гидравлический диод инструмента может возрастать, способствуя тем самым протеканию флюида через второй гидравлический диод инструмента, а иначе скорость протекания флюида через этот инструмент продолжала бы понижаться.
Понятно, что внутренние каналы 118, наружные каналы 120, диодные отверстия 122 и прорези 128 могут быть созданы в металлических трубах с использованием лазерной резки, чтобы придать им раскрытые здесь особенности. Далее сравнительно плотную посадку между гидравлическими диодами 106 и внутриканальной втулкой 104, и наружноканальной втулкой 108 можно обеспечить путем точного соблюдения допусков на диаметр труб путем нанесения на компоненты смоляных и/или эпоксидных покрытий и/или другими подходящими методами. В некоторых примерах воплощения посадку диодной втулки 106 на внутриканальную втулку 104 можно производить путем нагревания диодной втулки 106 и охлаждения внутриканальной втулки 104. Нагревание диодной втулки 106 может приводить к равномерному ее расширению, а охлаждение внутриканальной втулки 104 может приводить к равномерному ее сужению. В этих, расширенном и суженном, состояниях можно обеспечить допуск на сборку, который больше допуска на посадку, и тем самым облегчить посадку внутриканальной втулки 104 в диодную втулку 106. Аналогичный процесс можно использовать при посадке диодной втулки 106 в наружноканальную втулку 108, но только теперь диодная втулка 106 подвергается охлаждению, а нагреванию подвергается наружноканальная втулка.
В альтернативных примерах воплощения диодная втулка 106 может быть подвижной относительно внутриканальной втулки 104 и наружноканальной втулки 108, чтобы можно было избирательно менять конфигурацию инструмента 100 для регулирования расхода флюида, переходя от регулирующей отток конфигурации к регулирующей приток конфигурации и/или от регулирующей приток конфигурации к регулирующей отток конфигурации. Например, инструменты 100, 100' могут иметь конфигурацию, обеспечивающую подобное изменение конфигурации при продольном смещении диодной втулки 106 относительно внутриканальной втулки 104 и наружноканальной втулки 108, при повороте диодной втулки 106 относительно внутриканальной втулки 104 и наружноканальной втулки 108 или при смещении и повороте. В других альтернативных примерах воплощения инструмент для регулирования расхода флюида может содержать больше или меньше гидравлических диодов, гидравлические диоды могут находиться ближе друг к другу или дальше друг от друга, разные гидравлические диоды в одном инструменте могут обеспечивать множество максимальных скоростей течения флюида, и/или один инструмент может содержать комбинацию диодов, имеющих конфигурацию для регулирования притока, и других гидравлических диодов, имеющих конфигурацию для регулирования оттока.
Понятно также, что протоки флюида, связанные с гидравлическими диодами, могут иметь такую конфигурацию, чтобы можно было поддерживать максимальное поперечное сечение и предотвращать забивание твердыми частицами. Соответственно, гидравлические диоды могут выполнять функцию регулирования расхода без чрезмерного увеличения вероятности забивания протоков. Понятно, что в этом изобретении термин «гидравлический диод» может отличаться от простого обратного клапана. В частности, гидравлические диоды 112, согласно настоящему изобретению, не могут полностью прекращать поступление флюида в определенном направлении, скорее они могут иметь такую конфигурацию, чтобы можно было создавать переменное сопротивление протеканию флюида через гидравлические диоды, в зависимости от направления протекания флюида. Гидравлические диоды 112 могут иметь такую конфигурацию, которая позволяет флюиду течь от входа 124 с высоким сопротивлением до входа 126 с низким сопротивлением, позволяя вместе с тем флюиду течь от входа 126 с низким сопротивлением до входа 124 с высоким сопротивлением. Конечно, направление протекания флюида через гидравлический диод 112 может зависеть от режима работы, связанной с использованием гидравлического диода 112.
На фиг.8 показан альтернативный пример воплощения диодной втулки 300. Диодная втулка 300 содержит диодные отверстия 302, каждое из которых имеет вход с высоким сопротивлением и вход с низким сопротивлением. Понятно, что системы и способы, описанные выше на примере использования внутриканальных втулок 104, наружноканальных втулок 108 и наружных перфорированных хвостовиков 110, можно использовать для избирательной компоновки инструмента, содержащего диодную втулку 300, чтобы создать определенным образом направленное сопротивление протеканию флюида между каналами 114 и зазорами 116. В этом примере воплощения диодные отверстия 302 концентрически охватывают центральную ось 102. В этом примере воплощения поток флюида, текущий в направлении, показанном стрелками 304, обычно испытывает более высокое сопротивление, чем аналогичный поток флюида, текущий в противоположном направлении. Конечно, другие альтернативные примеры воплощения диодных втулок и диодных отверстий могут иметь другую форму и/или другую ориентацию.
На фиг.9 приведено ортогональное изображение формы диодного отверстия 122 в развернутом на плоскую поверхность виде.
На фиг.10 приведено ортогональное изображение формы диодного отверстия 302 в развернутом на плоскую поверхность виде.
На фиг.11 приведено ортогональное изображение диодного отверстия 400. Диодное отверстие 400 имеет обычно такую конфигурацию, чтобы перемещение флюида в обратном направлении 402 испытывало более высокое сопротивление, чем перемещение флюида в прямом направлении 404. Понятно, что геометрия внутреннего сужения потока 406 способствует созданию описанной выше направленной разницы в сопротивлениях протеканию флюида.
На фиг.12 приведено ортогональное изображение диодного отверстия 500. Диодное отверстие 500 имеет обычно такую конфигурацию, чтобы перемещение
флюида в обратном направлении 502 испытывало более высокое сопротивление, чем перемещение флюида в прямом направлении 504. Диодное отверстие 500 имеет конфигурацию, рассчитанную на использование обтекаемых преград 506, которые создают препятствия протеканию флюида через диодное отверстие 500. Преграды 506 могут быть прикреплены к внутриканальной втулке 104, диодной втулке 106 и/или наружноканальной втулке 108 или могут быть формованы с одной или несколькими из этих втулок как единое целое заодно. В некоторых примерах осуществления воплощения преграды 506 могут быть приварены или каким-либо иным образом прикреплены к внутриканальной втулке 104.
На фиг.13 приведено ортогональное изображение диодного отверстия 600. Диодное отверстие 600 имеет обычно такую конфигурацию, чтобы перемещение флюида в обратном направлении 602 испытывало более высокое сопротивление, чем перемещение флюида в прямом направлении 604. Диодное отверстие 600 имеет конфигурацию, рассчитанную на использование обтекаемых преград 606, которые создают препятствия протеканию флюида сквозь диодное отверстие 600. Преграды 606 могут быть прикреплены к внутриканальной втулке 104, диодной втулке 106 и/или наружноканальной втулке 108 или могут быть формованы с одной или несколькими из этих втулок как единое целое. В некоторых примерах воплощения преграды 606 могут быть приварены или каким-либо иным образом прикреплены к внутриканальной втулке 104.
Приведено описание по меньшей мере одного примера воплощения, а изменения, сочетания и/или модификации примера (примеров) воплощения и/или признаки примера (примеров) воплощения, вносимые специалистом, обладающим обычными знаниями в данной области, не выходят за пределы объема этого изобретения. Альтернативные примеры воплощения, полученные в результате комбинирования, интегрирования и/или исключения признаков примера (примеров) воплощения, также не выходят за пределы объема этого изобретения. Если четко выражены диапазоны или ограничения числовых значений, то такие диапазоны или ограничения должны, понятно, включать итеративные диапазоны и ограничения подобной величины, не выходящие за пределы четко выраженных диапазонов или ограничений (например, диапазон «примерно от 1 примерно до 10» включает значения 2, 3, 4 и т.д., а ограничение «больше, чем 0,10» включает значения 0,11, 0,12, 0,13 и т.д.). Например, если установлен диапазон числового значения, имеющий нижний предел RI и верхний предел Ru, то подразумевается любое число, находящееся внутри этого диапазона. В частности, внутри этого диапазона подразумеваются следующие численные значения R=RI+k*(Ru-RI), где k - переменная, составляющая от 1 процента до 100 процентов с 1-процентным приращением, т.е. k составляет 1 процент, 2 процента, 3 процента, 4 процента, 5 процентов, …50 процентов, 51 процент, 52 процента, …95 процентов, 96 процентов, 97 процентов, 98 процентов, 99 процентов или 100 процентов. Более того, любой числовой диапазон, охваченный двумя R числами, показанными выше, также считается заданным. Использование термина «необязательно» (optionally) в отношении любого элемента в формуле изобретения означает, что этот элемент является необходимым или же этот элемент не является необходимым, причем оба варианта считаются входящими в объем этого изобретения. Использование терминов более широкого значения, таких как «включает» (comprises), «содержит» (includes) и «имеет» (having), должно подразумевать и использование терминов, имеющих менее широкое значение, таких как «состоит из» (consisting of), «состоит в сущности из» (consisting essentially of) и «включает главным образом» (comprised substantially of). Соответственно, объем охраны не ограничивается приведенным выше описанием и определяется приведенной далее формулой, причем в этот объем входят все эквиваленты объектов формулы изобретения. Любой из пунктов формулы включен в описание для раскрытия сущности, и любой пункт формулы представляет собой пример воплощения настоящего изобретения. Обсуждение включенной ссылки не является признанием ее за прототип, особенно если дата приоритета этой заявки предшествует дате опубликования такой ссылки. Описание все патентов, заявок на патент и публикаций ограничивается в этом описании ссылкой на полное их содержание.
На рассмотрение передаются следующие конкретные примеры воплощения:
1. Способ обслуживания скважины, включающий:
создание гидравлического диода в канале для гидравлического сообщения со скважиной и перемещение флюида через гидравлический диод.
2. Способ согласно примеру воплощения 1, в котором гидравлический диод расположен внутри скважины.
3. Способ согласно примеру воплощения 1 или 2, в котором перемещение представляет собой удаление флюида из скважины.
4. Способ согласно примеру воплощения 3, в котором флюид представляет собой углеводороды, добытые из углеводородной формации, с которой связана скважина.
5. Способ согласно примеру воплощения 1 или 2, в котором перемещение представляет собой подачу флюида в скважину.
6. Способ согласно примеру воплощения 5, в котором флюид представляет собой пар.
7. Способ согласно любому из предыдущих примеров воплощения, в котором гидравлический диод обеспечивает нелинейное увеличение сопротивления перемещению флюида в ответ на линейное увеличение массового расхода флюида, текущего через гидравлический диод.
8. Способ согласно любому из предыдущих примеров воплощения, в котором гидравлический диод находится в гидравлическом сообщении с внутренним каналом спусковой колонны.
9. Инструмент для регулирования расхода флюида, включающий:
трубчатую диодную втулку, имеющую диодное отверстие;
трубчатую внутриканальную втулку, установленную концентрически внутри диодной втулки, причем внутриканальная втулка содержит внутренний канал, находящийся в гидравлическом сообщении с диодным отверстием; и
трубчатую наружноканальную втулку, внутри которой концентрически установлена диодная втулка, причем наружноканальная втулка содержит наружный канал, находящийся в гидравлическом сообщении с диодным отверстием;
в котором форма диодного отверстия, положение внутреннего канала относительно диодного отверстия и положение наружного канала относительно диодного отверстия определяют сопротивление потоку флюида, перемещающегося во внутренний канал из наружного канала, и другое сопротивление потоку флюида, перемещающегося в наружный канал из внутреннего канала.
10. Инструмент для регулирования расхода флюида согласно примеру воплощения 9, в котором диодное отверстие имеет такую конфигурацию, чтобы создавать вихревой диод.
11. Инструмент для регулирования расхода флюида согласно примеру воплощения 9 или 10, который содержит еще и перфорированный хвостовик, внутри которого концентрически установлена наружноканальная втулка, таким образом, чтобы между перфорированным хвостовиком и наружноканальной втулкой оставался зазор.
12. Инструмент для регулирования расхода флюида согласно примеру воплощения 9, 10 или 11, в котором сопротивление потоку флюида подвергается нелинейному изменению в ответ на линейное изменение массового расхода флюида, перемещающегося между внутренним каналом и наружным каналом.
13. Способ добычи углеводородов из подземной формации, включающий:
нагнетание пара в скважину, которая проникает в подземную формацию, причем пар способствует движению углеводородов в подземной формации; и добычу по меньшей мере части движущихся углеводородов;
в котором по меньшей мере один поток среди потоков нагнетаемого пара и
добываемых углеводородов регулируется гидравлическим диодом.
14. Способ согласно примеру воплощения 13, в котором добыча движущихся углеводородов происходит по меньшей мере частично под действием силы тяжести.
15. Способ согласно примеру воплощения 13 или 14, в котором пар нагнетают в то место формации, которое расположено выше места, из которого добывают углеводороды.
16. Способ согласно примеру воплощения 13 или 14, в котором пар нагнетают в первый участок скважины, а углеводороды добывают на втором участке скважины.
17. Способ согласно примеру воплощения 16, в котором первый участок и второй участок скважины смещены друг относительно друга в вертикальном направлении.
18. Способ согласно примеру воплощения 16, в котором первый участок и второй участок скважины являются горизонтальными участками скважины, которые связаны с совместным вертикальным участком скважины.
19. Способ согласно примеру воплощения 13, 14, 15, 16, 17 или 18, в котором пар нагнетают через гидравлический диод, имеющий регулирующую отток конфигурацию, а углеводороды добывают через гидравлический диод, имеющий регулирующую приток конфигурацию.
20. Способ согласно примеру воплощения 19, в котором по меньшей мере один из гидравлических диодов связан с изолированным кольцевым пространством скважины, которое по меньшей мере частично ограничено устройством зональной изоляции.

Claims (19)

1. Способ обслуживания скважины, включающий: обеспечение гидравлического диода в канале для гидравлического сообщения со скважиной, причем гидравлический диод расположен внутри скважины; и перемещение флюида через гидравлический диод.
2. Способ по п.1, отличающийся тем, что перемещение флюида представляет собой удаление флюида из скважины.
3. Способ по п.2, отличающийся тем, что флюид представляет собой углеводороды, добытые из углеводородной формации, с которой связана скважина.
4. Способ по п.1, отличающийся тем, что перемещение флюида представляет собой подачу флюида в скважину.
5. Способ по п.4, отличающийся тем, что флюид представляет собой пар.
6. Способ по п.1, отличающийся тем, что гидравлический диод обеспечивает нелинейное увеличение сопротивления потоку флюида в ответ на линейное увеличение массового расхода флюида, текущего через гидравлический диод.
7. Способ по п.1, отличающийся тем, что гидравлический диод находится в гидравлическом сообщении с внутренним каналом спусковой колонны.
8. Инструмент для регулирования расхода флюида, включающий: трубчатую диодную втулку, имеющую диодное отверстие; трубчатую внутриканальную втулку, установленную концентрически внутри диодной втулки, причем внутриканальная втулка содержит внутренний канал, находящийся в гидравлическом сообщении с диодным отверстием; и трубчатую наружноканальную втулку, внутри которой концентрически установлена диодная втулка, причем наружноканальная втулка содержит наружный канал, находящийся в гидравлическом сообщении с диодным отверстием; причем форма диодного отверстия, положение внутреннего канала относительно диодного отверстия и положение наружного канала относительно диодного отверстия определяют сопротивление потоку флюида, перемещающегося во внутренний канал из наружного канала, и другое сопротивление потоку флюида, перемещающегося в наружный канал из внутреннего канала.
9. Инструмент по п.8, отличающийся тем, что диодное отверстие имеет конфигурацию, обеспечивающую создание вихревого диода.
10. Инструмент по п.8 или 9, включающий перфорированный хвостовик, внутри которого концентрически установлена наружноканальная втулка, таким образом, чтобы между перфорированным хвостовиком и наружноканальной втулкой оставался зазор.
11. Инструмент по п.8 или 9, отличающийся тем, что сопротивление потоку флюида меняется нелинейно в ответ на линейное изменение массового расхода флюида, перемещающегося между внутренним каналом и наружным каналом.
12. Способ добычи углеводородов из подземной формации, включающий: нагнетание пара в скважину, которая проникает в подземную формацию, причем пар способствует движению углеводородов в подземной формации; и добычу, по меньшей мере, части движущихся углеводородов; причем, по меньшей мере, один поток среди потоков нагнетаемого пара и добываемых углеводородов регулируется гидравлическим диодом.
13. Способ по п.12, отличающийся тем, что добыча движущихся углеводородов происходит, по меньшей мере, частично под действием силы тяжести.
14. Способ по п.12 или 13, отличающийся тем, что пар нагнетают в то место формации, которое расположено выше места, из которого добывают углеводороды.
15. Способ по п.12 или 13, отличающийся тем, что пар нагнетают на первом участке скважины, а углеводороды добывают на втором участке скважины.
16. Способ по п.15, отличающийся тем, что первый участок и второй участок скважины смещены друг относительно друга в вертикальном направлении.
17. Способ по п.15, отличающийся тем, что первый участок и второй участок скважины являются горизонтальными участками скважины, которые связаны с совместным вертикальным участком скважины.
18. Способ по п.12 или 13, отличающийся тем, что пар нагнетают через гидравлический диод, имеющий регулирующую отток конфигурацию, а углеводороды добывают через гидравлический диод, имеющий регулирующую приток конфигурацию.
19. Способ по п.18, отличающийся тем, что, по меньшей мере, один из гидравлических диодов связан с изолированным кольцевым пространством скважины, которое, по меньшей мере, частично ограничено устройством зональной изоляции.
RU2012122630/03A 2009-12-10 2010-12-06 Устройство для регулирования расхода флюида RU2529316C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/635,612 US8291976B2 (en) 2009-12-10 2009-12-10 Fluid flow control device
US12/635,612 2009-12-10
PCT/US2010/059121 WO2011071830A2 (en) 2009-12-10 2010-12-06 Fluid flow control device

Publications (2)

Publication Number Publication Date
RU2012122630A RU2012122630A (ru) 2014-01-20
RU2529316C2 true RU2529316C2 (ru) 2014-09-27

Family

ID=44141641

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012122630/03A RU2529316C2 (ru) 2009-12-10 2010-12-06 Устройство для регулирования расхода флюида

Country Status (14)

Country Link
US (1) US8291976B2 (ru)
EP (1) EP2510187B1 (ru)
CN (1) CN102725478B (ru)
AU (1) AU2010328400B2 (ru)
BR (1) BR112012013850B1 (ru)
CA (1) CA2782343C (ru)
CO (1) CO6501126A2 (ru)
DK (1) DK2510187T3 (ru)
EC (1) ECSP12011960A (ru)
MX (1) MX2012006575A (ru)
MY (1) MY168716A (ru)
RU (1) RU2529316C2 (ru)
SG (1) SG181544A1 (ru)
WO (1) WO2011071830A2 (ru)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2633598C1 (ru) * 2016-09-09 2017-10-13 Олег Николаевич Журавлев Автономное устройство регулирования потока флюида в скважине
RU2643377C1 (ru) * 2016-09-09 2018-02-01 Олег Николаевич Журавлев Способ выравнивания потока флюида при закачке
RU178922U1 (ru) * 2018-01-10 2018-04-23 Владимир Александрович Чигряй Устройство регулирования притока флюида
RU179815U1 (ru) * 2018-01-10 2018-05-24 Владимир Александрович Чигряй Устройство регулирования притока флюида
RU184369U1 (ru) * 2018-05-30 2018-10-24 Публичное акционерное общество "Татнефть" имени В.Д. Шашина Устройство для направления потока жидкости

Families Citing this family (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9109423B2 (en) 2009-08-18 2015-08-18 Halliburton Energy Services, Inc. Apparatus for autonomous downhole fluid selection with pathway dependent resistance system
US8469107B2 (en) * 2009-12-22 2013-06-25 Baker Hughes Incorporated Downhole-adjustable flow control device for controlling flow of a fluid into a wellbore
US8469105B2 (en) * 2009-12-22 2013-06-25 Baker Hughes Incorporated Downhole-adjustable flow control device for controlling flow of a fluid into a wellbore
US8708050B2 (en) 2010-04-29 2014-04-29 Halliburton Energy Services, Inc. Method and apparatus for controlling fluid flow using movable flow diverter assembly
US8561704B2 (en) * 2010-06-28 2013-10-22 Halliburton Energy Services, Inc. Flow energy dissipation for downhole injection flow control devices
US8851180B2 (en) 2010-09-14 2014-10-07 Halliburton Energy Services, Inc. Self-releasing plug for use in a subterranean well
US8602106B2 (en) 2010-12-13 2013-12-10 Halliburton Energy Services, Inc. Downhole fluid flow control system and method having direction dependent flow resistance
WO2012087431A1 (en) * 2010-12-20 2012-06-28 Exxonmobil Upstream Research Company Systems and methods for stimulating a subterranean formation
EP2694776B1 (en) 2011-04-08 2018-06-13 Halliburton Energy Services, Inc. Method and apparatus for controlling fluid flow in an autonomous valve using a sticky switch
US9074466B2 (en) * 2011-04-26 2015-07-07 Halliburton Energy Services, Inc. Controlled production and injection
US8596366B2 (en) 2011-09-27 2013-12-03 Halliburton Energy Services, Inc. Wellbore flow control devices comprising coupled flow regulating assemblies and methods for use thereof
SG11201400998RA (en) 2011-09-27 2014-04-28 Halliburton Energy Services Inc Wellbore flow control devices comprising coupled flow regulating assemblies and methods for use thereof
US9016390B2 (en) 2011-10-12 2015-04-28 Halliburton Energy Services, Inc. Apparatus and method for providing wellbore isolation
AU2011380525B2 (en) 2011-10-31 2015-11-19 Halliburton Energy Services, Inc Autonomus fluid control device having a movable valve plate for downhole fluid selection
DK2748417T3 (en) 2011-10-31 2016-11-28 Halliburton Energy Services Inc AUTONOM fluid control device WITH A reciprocating VALVE BOREHULSFLUIDVALG
WO2013070219A1 (en) * 2011-11-10 2013-05-16 Halliburton Energy Services,Inc. Rotational motion-inducing variable flow resistance systems having a sidewall fluid outlet and methods for use thereof in a subterranean formation
BR112014011842B1 (pt) * 2011-11-18 2020-06-23 Halliburton Energy Services, Inc Dispositivo para controlar o fluxo de fluido de forma autônoma em um poço subterrâneo e método de manutenção de um furo de poço
EP3269923B1 (en) * 2011-12-06 2019-10-09 Halliburton Energy Services Inc. Bidirectional downhole fluid flow control system and method
MY167298A (en) * 2012-01-27 2018-08-16 Halliburton Energy Services Inc Series configured variable flow restrictors for use in a subterranean well
US9217316B2 (en) 2012-06-13 2015-12-22 Halliburton Energy Services, Inc. Correlating depth on a tubular in a wellbore
US9404349B2 (en) * 2012-10-22 2016-08-02 Halliburton Energy Services, Inc. Autonomous fluid control system having a fluid diode
AU2012393585B2 (en) * 2012-10-29 2016-05-05 Halliburton Energy Services, Inc. Subterranean well tools with directionally controlling flow layer
US9127526B2 (en) 2012-12-03 2015-09-08 Halliburton Energy Services, Inc. Fast pressure protection system and method
US9695654B2 (en) 2012-12-03 2017-07-04 Halliburton Energy Services, Inc. Wellhead flowback control system and method
US9683426B2 (en) 2012-12-31 2017-06-20 Halliburton Energy Services, Inc. Distributed inflow control device
WO2014112970A1 (en) * 2013-01-15 2014-07-24 Halliburton Energy Services, Inc. Remote-open inflow control device with swellable actuator
US9316095B2 (en) 2013-01-25 2016-04-19 Halliburton Energy Services, Inc. Autonomous inflow control device having a surface coating
US9371720B2 (en) 2013-01-25 2016-06-21 Halliburton Energy Services, Inc. Autonomous inflow control device having a surface coating
CA2909423A1 (en) * 2013-05-15 2014-11-20 Halliburton Energy Services, Inc. Downhole adjustable steam injection mandrel
EP3027846B1 (en) 2013-07-31 2018-10-10 Services Petroliers Schlumberger Sand control system and methodology
GB2528821B (en) 2013-08-01 2020-03-11 Landmark Graphics Corp Algorithm for optimal ICD configuration using a coupled wellbore-reservoir model
KR101394129B1 (ko) * 2013-09-30 2014-05-14 한국건설기술연구원 다단식 지하유입구
WO2015065346A1 (en) * 2013-10-30 2015-05-07 Halliburton Energy Services, Inc. Adjustable autonomous inflow control devices
CA2926609A1 (en) * 2013-11-26 2015-06-04 Halliburton Energy Services, Inc. Improved fluid flow control device
US9765617B2 (en) 2014-05-09 2017-09-19 Halliburton Energy Services, Inc. Surface fluid extraction and separator system
WO2015176158A1 (en) * 2014-05-20 2015-11-26 Rapid Design Group Inc. Method and apparatus of steam injection of hydrocarbon wells
US9638000B2 (en) 2014-07-10 2017-05-02 Inflow Systems Inc. Method and apparatus for controlling the flow of fluids into wellbore tubulars
US9903536B2 (en) * 2014-08-26 2018-02-27 The Johns Hopkins University Passive diode-like device for fluids
US10000996B2 (en) 2014-09-02 2018-06-19 Baker Hughes, A Ge Company, Llc Flow device and methods of creating different pressure drops based on a direction of flow
US9909399B2 (en) 2014-09-02 2018-03-06 Baker Hughes, A Ge Company, Llc Flow device and methods of creating different pressure drops based on a direction of flow
CN107076184B (zh) * 2014-09-29 2019-02-12 樂那拉·邀媧攀崑 用于产生流体的旋流的装置
US9644461B2 (en) * 2015-01-14 2017-05-09 Baker Hughes Incorporated Flow control device and method
WO2016133953A1 (en) * 2015-02-17 2016-08-25 Weatherford Technology Holdings, Llc Injection distribution device
US9816348B2 (en) 2015-03-24 2017-11-14 Halliburton Energy Services, Inc. Downhole flow control assemblies and methods of use
NO347698B1 (en) * 2015-03-24 2024-02-26 Halliburton Energy Services Inc Downhole flow control assemblies and methods of use
GB2538550B (en) * 2015-05-21 2017-11-29 Statoil Petroleum As Method for achieving zonal control in a wellbore when using casing or liner drilling
GB201511665D0 (en) * 2015-07-03 2015-08-19 Delphi Int Operations Lux Srl Valve
US10214991B2 (en) 2015-08-13 2019-02-26 Packers Plus Energy Services Inc. Inflow control device for wellbore operations
AU2015410656B2 (en) * 2015-09-30 2021-05-20 Halliburton Energy Services, Inc. Downhole fluid flow control system and method having autonomous flow control
US10354763B2 (en) 2015-12-07 2019-07-16 Ge-Hitachi Nuclear Energy Americas Llc Piping enhancement for backflow prevention in a multiple loop, metal cooled nuclear reactor system
BR112018067528A2 (pt) * 2016-03-03 2019-01-02 Dayco Ip Holdings Llc válvula de retenção de diodo fluídico
CA2923831C (en) * 2016-03-15 2023-03-07 Heiner Ophardt Valvular conduit
WO2017223005A1 (en) 2016-06-20 2017-12-28 Schlumberger Technology Corporation Viscosity dependent valve system
US11613963B2 (en) 2017-07-24 2023-03-28 Halliburton Energy Services, Inc. Flow control system for a non-newtonian fluid in a subterranean well
WO2019098986A1 (en) 2017-11-14 2019-05-23 Halliburton Energy Services, Inc. Adjusting the zonal allocation of an injection well with no moving parts and no intervention
WO2019104150A1 (en) * 2017-11-21 2019-05-31 Aestus Energy Storage, LLC Heat sink vessel
US10794162B2 (en) 2017-12-12 2020-10-06 Baker Hughes, A Ge Company, Llc Method for real time flow control adjustment of a flow control device located downhole of an electric submersible pump
US11441403B2 (en) 2017-12-12 2022-09-13 Baker Hughes, A Ge Company, Llc Method of improving production in steam assisted gravity drainage operations
US10550671B2 (en) * 2017-12-12 2020-02-04 Baker Hughes, A Ge Company, Llc Inflow control device and system having inflow control device
WO2019125993A1 (en) 2017-12-18 2019-06-27 Schlumberger Technology Corporation Autonomous inflow control device
US11428072B2 (en) 2017-12-27 2022-08-30 Floway, Inc. Adaptive fluid switches for autonomous flow control
US10060221B1 (en) 2017-12-27 2018-08-28 Floway, Inc. Differential pressure switch operated downhole fluid flow control system
CN109779577A (zh) * 2019-03-18 2019-05-21 东北石油大学 一种采用环通人造井底对水平井进行控制的装置
CN109720715B (zh) * 2019-03-21 2020-07-28 衢州瑞展信息科技有限公司 一种浇浸设备中的出料控制机构
US11596885B2 (en) 2019-05-07 2023-03-07 Bendix Commercial Vehicle Systems Llc Oil sequestering spin-on cartridge
CA3166276A1 (en) * 2020-10-16 2022-04-21 Ncs Multistage Inc. Fluid pressure-activated valve assembly with flow restriction and systems and methods for in situ operations
US11719236B2 (en) * 2021-06-17 2023-08-08 United States Department Of Energy Flow control valve
US11930875B2 (en) 2021-07-12 2024-03-19 John Hooman Kasraei Impact reduction system for personal protective devices
US20230123308A1 (en) * 2021-10-15 2023-04-20 Repro-Med Systems, Inc. System and method for configurable flow controller
US11846140B2 (en) 2021-12-16 2023-12-19 Floway Innovations Inc. Autonomous flow control devices for viscosity dominant flow
US11885196B1 (en) 2022-10-24 2024-01-30 Cnpc Usa Corporation Retrievable packer with slotted sleeve release

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU773367A1 (ru) * 1979-04-27 1980-10-23 Донецкий Ордена Трудового Красного Знамени Политехнический Институт Гаситель гидравлических ударов
SU1183770A1 (ru) * 1983-07-11 1985-10-07 Донецкий Ордена Трудового Красного Знамени Политехнический Институт Устройство дл гашени гидравлического удара
SU805684A1 (ru) * 1979-02-27 1995-02-27 Татарский Государственный Научно-Исследовательский И Проектный Институт Нефтяной Промышленности Способ разработки залежи высоковязкой нефти и битума
US6345963B1 (en) * 1997-12-16 2002-02-12 Centre National D 'etudes Spatiales (C.N.E.S.) Pump with positive displacement
RU2326233C2 (ru) * 2006-04-14 2008-06-10 Леонид Николаевич Платов Скважинный фильтр

Family Cites Families (121)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1329559A (en) 1916-02-21 1920-02-03 Tesla Nikola Valvular conduit
US2762437A (en) 1955-01-18 1956-09-11 Egan Apparatus for separating fluids having different specific gravities
US2945541A (en) 1955-10-17 1960-07-19 Union Oil Co Well packer
US2849070A (en) 1956-04-02 1958-08-26 Union Oil Co Well packer
US2981332A (en) 1957-02-01 1961-04-25 Montgomery K Miller Well screening method and device therefor
US2981333A (en) 1957-10-08 1961-04-25 Montgomery K Miller Well screening method and device therefor
US3186484A (en) * 1962-03-16 1965-06-01 Beehler Vernon D Hot water flood system for oil wells
US3233622A (en) * 1963-09-30 1966-02-08 Gen Electric Fluid amplifier
US3375842A (en) * 1964-12-23 1968-04-02 Sperry Rand Corp Fluid diode
US3461897A (en) * 1965-12-17 1969-08-19 Aviat Electric Ltd Vortex vent fluid diode
US3477506A (en) 1968-07-22 1969-11-11 Lynes Inc Apparatus relating to fabrication and installation of expanded members
US3730673A (en) * 1971-05-12 1973-05-01 Combustion Unltd Inc Vent seal
US4268245A (en) * 1978-01-11 1981-05-19 Combustion Unlimited Incorporated Offshore-subsea flares
US4307204A (en) 1979-07-26 1981-12-22 E. I. Du Pont De Nemours And Company Elastomeric sponge
US4276943A (en) 1979-09-25 1981-07-07 The United States Of America As Represented By The Secretary Of The Army Fluidic pulser
US4287952A (en) 1980-05-20 1981-09-08 Exxon Production Research Company Method of selective diversion in deviated wellbores using ball sealers
US4393928A (en) * 1981-08-27 1983-07-19 Warnock Sr Charles E Apparatus for use in rejuvenating oil wells
US4491186A (en) 1982-11-16 1985-01-01 Smith International, Inc. Automatic drilling process and apparatus
JP2644730B2 (ja) 1986-03-24 1997-08-25 株式会社日立製作所 微量流体移送装置
US4974674A (en) 1989-03-21 1990-12-04 Westinghouse Electric Corp. Extraction system with a pump having an elastic rebound inner tube
US4998585A (en) 1989-11-14 1991-03-12 Qed Environmental Systems, Inc. Floating layer recovery apparatus
US5333684A (en) 1990-02-16 1994-08-02 James C. Walter Downhole gas separator
CA2034444C (en) 1991-01-17 1995-10-10 Gregg Peterson Method and apparatus for the determination of formation fluid flow rates and reservoir deliverability
GB9127535D0 (en) 1991-12-31 1992-02-19 Stirling Design Int The control of"u"tubing in the flow of cement in oil well casings
NO306127B1 (no) 1992-09-18 1999-09-20 Norsk Hydro As Fremgangsmate og produksjonsror for produksjon av olje eller gass fra et olje- eller gassreservoar
US5337808A (en) 1992-11-20 1994-08-16 Natural Reserves Group, Inc. Technique and apparatus for selective multi-zone vertical and/or horizontal completions
NO954352D0 (no) 1995-10-30 1995-10-30 Norsk Hydro As Anordning for innströmningsregulering i et produksjonsrör for produksjon av olje eller gass fra et olje- og/eller gassreservoar
US5730223A (en) 1996-01-24 1998-03-24 Halliburton Energy Services, Inc. Sand control screen assembly having an adjustable flow rate and associated methods of completing a subterranean well
US5896928A (en) 1996-07-01 1999-04-27 Baker Hughes Incorporated Flow restriction device for use in producing wells
US5693225A (en) 1996-10-02 1997-12-02 Camco International Inc. Downhole fluid separation system
US5803179A (en) 1996-12-31 1998-09-08 Halliburton Energy Services, Inc. Screened well drainage pipe structure with sealed, variable length labyrinth inlet flow control apparatus
GB2356879B (en) 1996-12-31 2001-07-25 Halliburton Energy Serv Inc Production fluid drainage apparatus
NO305259B1 (no) 1997-04-23 1999-04-26 Shore Tec As FremgangsmÕte og apparat til bruk ved produksjonstest av en forventet permeabel formasjon
GB2325949B (en) 1997-05-06 2001-09-26 Baker Hughes Inc Flow control apparatus and method
US6015011A (en) 1997-06-30 2000-01-18 Hunter; Clifford Wayne Downhole hydrocarbon separator and method
GB9713960D0 (en) 1997-07-03 1997-09-10 Schlumberger Ltd Separation of oil-well fluid mixtures
US6009951A (en) 1997-12-12 2000-01-04 Baker Hughes Incorporated Method and apparatus for hybrid element casing packer for cased-hole applications
GB2341405B (en) 1998-02-25 2002-09-11 Specialised Petroleum Serv Ltd Circulation tool
US6253861B1 (en) 1998-02-25 2001-07-03 Specialised Petroleum Services Limited Circulation tool
NO982609A (no) 1998-06-05 1999-09-06 Triangle Equipment As Anordning og fremgangsmåte til innbyrdes uavhengig styring av reguleringsinnretninger for regulering av fluidstrøm mellom et hydrokarbonreservoar og en brønn
GB9816725D0 (en) 1998-08-01 1998-09-30 Kvaerner Process Systems As Cyclone separator
WO2000045031A1 (en) 1999-01-29 2000-08-03 Schlumberger Technology Corporation Controlling production
OA11859A (en) 1999-04-09 2006-03-02 Shell Int Research Method for annular sealing.
US6367547B1 (en) 1999-04-16 2002-04-09 Halliburton Energy Services, Inc. Downhole separator for use in a subterranean well and method
US6679324B2 (en) 1999-04-29 2004-01-20 Shell Oil Company Downhole device for controlling fluid flow in a well
US6279651B1 (en) * 1999-07-20 2001-08-28 Halliburton Energy Services, Inc. Tool for managing fluid flow in a well
US6478091B1 (en) 2000-05-04 2002-11-12 Halliburton Energy Services, Inc. Expandable liner and associated methods of regulating fluid flow in a well
US7455104B2 (en) 2000-06-01 2008-11-25 Schlumberger Technology Corporation Expandable elements
WO2002014647A1 (en) 2000-08-17 2002-02-21 Chevron U.S.A. Inc. Method and apparatus for wellbore separation of hydrocarbons from contaminants with reusable membrane units containing retrievable membrane elements
US6817416B2 (en) 2000-08-17 2004-11-16 Abb Offshore Systems Limited Flow control device
NO312478B1 (no) 2000-09-08 2002-05-13 Freyer Rune Fremgangsmåte for å tette ringrom ved oljeproduksjon
GB0022411D0 (en) 2000-09-13 2000-11-01 Weir Pumps Ltd Downhole gas/water separtion and re-injection
FR2815073B1 (fr) 2000-10-09 2002-12-06 Johnson Filtration Systems Elements de drain ayant une crepine consitituee de tiges creuses pour collecter notamment des hydrocarbures
US6371210B1 (en) 2000-10-10 2002-04-16 Weatherford/Lamb, Inc. Flow control apparatus for use in a wellbore
US20040011534A1 (en) 2002-07-16 2004-01-22 Simonds Floyd Randolph Apparatus and method for completing an interval of a wellbore while drilling
US6695067B2 (en) 2001-01-16 2004-02-24 Schlumberger Technology Corporation Wellbore isolation technique
GB2388136B (en) 2001-01-26 2005-05-18 E2Tech Ltd Device and method to seal boreholes
US6622794B2 (en) 2001-01-26 2003-09-23 Baker Hughes Incorporated Sand screen with active flow control and associated method of use
MY134072A (en) 2001-02-19 2007-11-30 Shell Int Research Method for controlling fluid into an oil and/or gas production well
NO314701B3 (no) 2001-03-20 2007-10-08 Reslink As Stromningsstyreanordning for struping av innstrommende fluider i en bronn
US6644412B2 (en) 2001-04-25 2003-11-11 Weatherford/Lamb, Inc. Flow control apparatus for use in a wellbore
NO313895B1 (no) 2001-05-08 2002-12-16 Freyer Rune Anordning og fremgangsmÕte for begrensning av innströmning av formasjonsvann i en brönn
US6786285B2 (en) 2001-06-12 2004-09-07 Schlumberger Technology Corporation Flow control regulation method and apparatus
US6857475B2 (en) 2001-10-09 2005-02-22 Schlumberger Technology Corporation Apparatus and methods for flow control gravel pack
US6957703B2 (en) 2001-11-30 2005-10-25 Baker Hughes Incorporated Closure mechanism with integrated actuator for subsurface valves
NO316108B1 (no) 2002-01-22 2003-12-15 Kvaerner Oilfield Prod As Anordninger og fremgangsmåter for nedihulls separasjon
US7096945B2 (en) 2002-01-25 2006-08-29 Halliburton Energy Services, Inc. Sand control screen assembly and treatment method using the same
US6719051B2 (en) 2002-01-25 2004-04-13 Halliburton Energy Services, Inc. Sand control screen assembly and treatment method using the same
US7644773B2 (en) 2002-08-23 2010-01-12 Baker Hughes Incorporated Self-conforming screen
NO318165B1 (no) 2002-08-26 2005-02-14 Reslink As Bronninjeksjonsstreng, fremgangsmate for fluidinjeksjon og anvendelse av stromningsstyreanordning i injeksjonsstreng
US6935432B2 (en) 2002-09-20 2005-08-30 Halliburton Energy Services, Inc. Method and apparatus for forming an annular barrier in a wellbore
US6840325B2 (en) 2002-09-26 2005-01-11 Weatherford/Lamb, Inc. Expandable connection for use with a swelling elastomer
FR2845617B1 (fr) 2002-10-09 2006-04-28 Inst Francais Du Petrole Crepine a perte de charge controlee
NO318358B1 (no) 2002-12-10 2005-03-07 Rune Freyer Anordning ved kabelgjennomforing i en svellende pakning
US6834725B2 (en) 2002-12-12 2004-12-28 Weatherford/Lamb, Inc. Reinforced swelling elastomer seal element on expandable tubular
US6907937B2 (en) 2002-12-23 2005-06-21 Weatherford/Lamb, Inc. Expandable sealing apparatus
US6857476B2 (en) 2003-01-15 2005-02-22 Halliburton Energy Services, Inc. Sand control screen assembly having an internal seal element and treatment method using the same
US6886634B2 (en) 2003-01-15 2005-05-03 Halliburton Energy Services, Inc. Sand control screen assembly having an internal isolation member and treatment method using the same
US7207386B2 (en) 2003-06-20 2007-04-24 Bj Services Company Method of hydraulic fracturing to reduce unwanted water production
GB2424020B (en) 2003-11-25 2008-05-28 Baker Hughes Inc Swelling layer inflatable
EA008563B1 (ru) 2004-03-11 2007-06-29 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Способ установки кольцевого уплотнителя на трубчатый элемент для скважины
NO325434B1 (no) 2004-05-25 2008-05-05 Easy Well Solutions As Fremgangsmate og anordning for a ekspandere et legeme under overtrykk
US7367393B2 (en) * 2004-06-01 2008-05-06 Baker Hughes Incorporated Pressure monitoring of control lines for tool position feedback
DE602005015710D1 (de) 2004-06-25 2009-09-10 Shell Int Research Sieb zur steuerung der sandproduktion in einem bohrloch
DE602005014791D1 (de) 2004-06-25 2009-07-16 Shell Int Research Filter zur zuflussregelung von feststoffteilen in einem bohrloch
US7290606B2 (en) 2004-07-30 2007-11-06 Baker Hughes Incorporated Inflow control device with passive shut-off feature
WO2006015277A1 (en) 2004-07-30 2006-02-09 Baker Hughes Incorporated Downhole inflow control device with shut-off feature
US7296633B2 (en) 2004-12-16 2007-11-20 Weatherford/Lamb, Inc. Flow control apparatus for use in a wellbore
CA2530995C (en) 2004-12-21 2008-07-15 Schlumberger Canada Limited System and method for gas shut off in a subterranean well
US8011438B2 (en) 2005-02-23 2011-09-06 Schlumberger Technology Corporation Downhole flow control with selective permeability
US7640990B2 (en) * 2005-07-18 2010-01-05 Schlumberger Technology Corporation Flow control valve for injection systems
US7455115B2 (en) * 2006-01-23 2008-11-25 Schlumberger Technology Corporation Flow control device
US8453746B2 (en) 2006-04-20 2013-06-04 Halliburton Energy Services, Inc. Well tools with actuators utilizing swellable materials
US7708068B2 (en) 2006-04-20 2010-05-04 Halliburton Energy Services, Inc. Gravel packing screen with inflow control device and bypass
US7469743B2 (en) 2006-04-24 2008-12-30 Halliburton Energy Services, Inc. Inflow control devices for sand control screens
US7802621B2 (en) 2006-04-24 2010-09-28 Halliburton Energy Services, Inc. Inflow control devices for sand control screens
MY163991A (en) * 2006-07-07 2017-11-15 Statoil Petroleum As Method for flow control and autonomous valve or flow control device
US20080035330A1 (en) 2006-08-10 2008-02-14 William Mark Richards Well screen apparatus and method of manufacture
US20080041582A1 (en) 2006-08-21 2008-02-21 Geirmund Saetre Apparatus for controlling the inflow of production fluids from a subterranean well
US20080041581A1 (en) 2006-08-21 2008-02-21 William Mark Richards Apparatus for controlling the inflow of production fluids from a subterranean well
US20080041588A1 (en) 2006-08-21 2008-02-21 Richards William M Inflow Control Device with Fluid Loss and Gas Production Controls
US20080041580A1 (en) 2006-08-21 2008-02-21 Rune Freyer Autonomous inflow restrictors for use in a subterranean well
US7909088B2 (en) 2006-12-20 2011-03-22 Baker Huges Incorporated Material sensitive downhole flow control device
US20080283238A1 (en) 2007-05-16 2008-11-20 William Mark Richards Apparatus for autonomously controlling the inflow of production fluids from a subterranean well
US7789145B2 (en) * 2007-06-20 2010-09-07 Schlumberger Technology Corporation Inflow control device
CA2639557A1 (en) 2007-09-17 2009-03-17 Schlumberger Canada Limited A system for completing water injector wells
AU2008305337B2 (en) 2007-09-25 2014-11-13 Schlumberger Technology B.V. Flow control systems and methods
US8312931B2 (en) 2007-10-12 2012-11-20 Baker Hughes Incorporated Flow restriction device
US20090095468A1 (en) 2007-10-12 2009-04-16 Baker Hughes Incorporated Method and apparatus for determining a parameter at an inflow control device in a well
US7913765B2 (en) 2007-10-19 2011-03-29 Baker Hughes Incorporated Water absorbing or dissolving materials used as an in-flow control device and method of use
US8069921B2 (en) 2007-10-19 2011-12-06 Baker Hughes Incorporated Adjustable flow control devices for use in hydrocarbon production
US20090101354A1 (en) 2007-10-19 2009-04-23 Baker Hughes Incorporated Water Sensing Devices and Methods Utilizing Same to Control Flow of Subsurface Fluids
US7918272B2 (en) 2007-10-19 2011-04-05 Baker Hughes Incorporated Permeable medium flow control devices for use in hydrocarbon production
WO2009067021A2 (en) 2007-11-23 2009-05-28 Aker Well Service As Method and device for determination of fluid inflow to a well
US7918275B2 (en) 2007-11-27 2011-04-05 Baker Hughes Incorporated Water sensitive adaptive inflow control using couette flow to actuate a valve
US8474535B2 (en) 2007-12-18 2013-07-02 Halliburton Energy Services, Inc. Well screen inflow control device with check valve flow controls
US7757761B2 (en) 2008-01-03 2010-07-20 Baker Hughes Incorporated Apparatus for reducing water production in gas wells
NO20080081L (no) 2008-01-04 2009-07-06 Statoilhydro Asa Fremgangsmate for autonom justering av en fluidstrom gjennom en ventil eller stromningsreguleringsanordning i injektorer ved oljeproduksjon
NO20080082L (no) 2008-01-04 2009-07-06 Statoilhydro Asa Forbedret fremgangsmate for stromningsregulering samt autonom ventil eller stromningsreguleringsanordning
CA2620335C (en) * 2008-01-29 2011-05-17 Dustin Bizon Gravity drainage apparatus
US8893804B2 (en) * 2009-08-18 2014-11-25 Halliburton Energy Services, Inc. Alternating flow resistance increases and decreases for propagating pressure pulses in a subterranean well

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU805684A1 (ru) * 1979-02-27 1995-02-27 Татарский Государственный Научно-Исследовательский И Проектный Институт Нефтяной Промышленности Способ разработки залежи высоковязкой нефти и битума
SU773367A1 (ru) * 1979-04-27 1980-10-23 Донецкий Ордена Трудового Красного Знамени Политехнический Институт Гаситель гидравлических ударов
SU1183770A1 (ru) * 1983-07-11 1985-10-07 Донецкий Ордена Трудового Красного Знамени Политехнический Институт Устройство дл гашени гидравлического удара
US6345963B1 (en) * 1997-12-16 2002-02-12 Centre National D 'etudes Spatiales (C.N.E.S.) Pump with positive displacement
RU2326233C2 (ru) * 2006-04-14 2008-06-10 Леонид Николаевич Платов Скважинный фильтр

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2633598C1 (ru) * 2016-09-09 2017-10-13 Олег Николаевич Журавлев Автономное устройство регулирования потока флюида в скважине
RU2643377C1 (ru) * 2016-09-09 2018-02-01 Олег Николаевич Журавлев Способ выравнивания потока флюида при закачке
RU178922U1 (ru) * 2018-01-10 2018-04-23 Владимир Александрович Чигряй Устройство регулирования притока флюида
RU179815U1 (ru) * 2018-01-10 2018-05-24 Владимир Александрович Чигряй Устройство регулирования притока флюида
RU184369U1 (ru) * 2018-05-30 2018-10-24 Публичное акционерное общество "Татнефть" имени В.Д. Шашина Устройство для направления потока жидкости
RU184369U9 (ru) * 2018-05-30 2018-11-22 Публичное акционерное общество "Татнефть" имени В.Д. Шашина Устройство для направления потока жидкости

Also Published As

Publication number Publication date
MY168716A (en) 2018-11-29
MX2012006575A (es) 2012-06-28
CA2782343A1 (en) 2011-06-16
DK2510187T3 (da) 2014-01-27
AU2010328400A1 (en) 2012-06-21
ECSP12011960A (es) 2012-07-31
CN102725478A (zh) 2012-10-10
US20110139453A1 (en) 2011-06-16
AU2010328400B2 (en) 2016-05-12
WO2011071830A3 (en) 2011-12-01
EP2510187A2 (en) 2012-10-17
BR112012013850B1 (pt) 2019-07-02
EP2510187B1 (en) 2013-10-23
BR112012013850A2 (pt) 2016-05-10
CA2782343C (en) 2015-01-27
SG181544A1 (en) 2012-07-30
CO6501126A2 (es) 2012-08-15
WO2011071830A2 (en) 2011-06-16
RU2012122630A (ru) 2014-01-20
US8291976B2 (en) 2012-10-23
CN102725478B (zh) 2015-01-28

Similar Documents

Publication Publication Date Title
RU2529316C2 (ru) Устройство для регулирования расхода флюида
EP3194714B1 (en) Autonomous flow control system and methodology
US10745996B2 (en) Circulation valve
US9140096B2 (en) Valve system
NO314701B1 (no) Strömningsstyreanordning for struping av innströmmende fluider i en brönn
US10487603B2 (en) System and method for flow diversion
US9863197B2 (en) Downhole valve spanning a tool joint and methods of making and using same
WO2015069295A1 (en) Internal adjustments to autonomous inflow control devices
US10233723B2 (en) Autonomous well valve
CN104271872A (zh) 可调节流动控制装置
US9068426B2 (en) Fluid bypass for inflow control device tube
US10513907B2 (en) Top-down squeeze system and method
RU2804386C1 (ru) Колонна заканчивания многоствольной скважины, система многоствольной скважины и способ добычи из системы многоствольной скважины
WO2021146070A1 (en) Inflow control system
CA2961304A1 (en) Method of manufacturing a side pocket mandrel body
CN104040109B (zh) 具有流体二极管的自主流体控制系统