RU2528467C2 - Стенд для испытания сопла - Google Patents

Стенд для испытания сопла Download PDF

Info

Publication number
RU2528467C2
RU2528467C2 RU2012157412/28A RU2012157412A RU2528467C2 RU 2528467 C2 RU2528467 C2 RU 2528467C2 RU 2012157412/28 A RU2012157412/28 A RU 2012157412/28A RU 2012157412 A RU2012157412 A RU 2012157412A RU 2528467 C2 RU2528467 C2 RU 2528467C2
Authority
RU
Russia
Prior art keywords
receiver
nozzle
mutually perpendicular
test
holes
Prior art date
Application number
RU2012157412/28A
Other languages
English (en)
Other versions
RU2012157412A (ru
Inventor
Юрий Яковлевич Фершалов
Тимофей Викторович Сазонов
Матвей Валерьевич Грибиниченко
Алексей Владимирович Куренский
Original Assignee
Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Дальневосточный Федеральный Университет" (Двфу)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Дальневосточный Федеральный Университет" (Двфу) filed Critical Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Дальневосточный Федеральный Университет" (Двфу)
Priority to RU2012157412/28A priority Critical patent/RU2528467C2/ru
Publication of RU2012157412A publication Critical patent/RU2012157412A/ru
Application granted granted Critical
Publication of RU2528467C2 publication Critical patent/RU2528467C2/ru

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

Изобретение относится к технике, связанной с испытанием сопл, и может быть использовано при проведении модельных испытаний. Устройство содержит подводящий трубопровод, соединенный с ресивером, выполненным с возможностью разъемного соединения с испытываемым соплом в двух взаимно перпендикулярных плоскостях посредством съемных фланцевых накладок и с возможностью опирания измерительными средствами на корпус ресивера, в котором подводящий трубопровод снабжен упругой вставкой. Кроме того, ресивер снабжен отверстиями, одно из которых выполнено в его торце, а другое на его боковой поверхности, причем горловины отверстий имеют одинаковые сечения и снабжены съемными фланцевыми накладками, выполненными с возможностью крепления в них испытываемого сопла в двух взаимно перпендикулярных направлениях. При этом в качестве измерительных средств используют однокомпонентные датчики силы, закрепленные на корпусе ресивера, измерительные штанги которых размещены в трех взаимно перпендикулярных направлениях, а их концы уперты в корпус ресивера с возможностью его удержания. Технический результат заключается в повышении точности измерения и эффективности испытаний сопла, а также снижении трудоемкости изготовления и эксплуатации устройства. 4 ил.

Description

Изобретение относится к технике, связанной с испытанием сопл, и может быть использовано при проведении модельных испытаний для определения угла выхода потока и коэффициента скорости сопл, преимущественно плоских, которые широко применяют для двигателей в судостроении, авиации, космонавтике, в мобильных электростанциях и других областях техники.
Известна конструкция стенда для определения вектора тяги двигателя с кососрезанным соплом, содержащая держатель испытываемого двигателя в виде рамы-обоймы, которая выполнена с возможностью опирания на измерительные средства, определяющие параметры в двух направлениях, часть из которых располагается на основании с возможностью небольших перемещений в горизонтальной плоскости (см. патент РФ №2274764, МПК F02K 9/96, дата публикации 20.04.2006).
Недостатком конструкции этого стенда является ограниченная область применения, недостаточная эффективность измерений, которые проводят в двух направлениях, а также низкая точность из-за возможности наличия систематической погрешности в ходе испытаний.
Известна конструкция стенда для испытания прямоточных воздушно-реактивных двигателей, содержащая трубопровод, присоединенный к емкости для сборки рабочего тела, соединенной с испытываемым двигателем, который выполнен с возможностью опирания на силоизмерительные средства (см. патент РФ №2261425, МПК G01M 15/00, дата публикации 27.09.2005).
Недостатком конструкции этого стенда является ограниченная область применения, недостаточная эффективность измерений, которые проводят в одном направлении, а также низкая точность из-за возможности наличия систематической погрешности в ходе испытаний.
В качестве ближайшего аналога принята установка для исследования единичных малых сопел, содержащая трубопровод, присоединенный к емкости для сборки рабочего тела, которая выполнена с возможностью установки испытываемого сопла в двух плоскостях с помощью фланцевого соединения и возможностью опирания на силоизмерительные средства (см. Наталевич А.С., «Воздушные микротурбины», 2 изд., перераб. и доп. - М., Машиностроение, 1979, стр.92-93, 192 с., ил.).
Недостатком ближайшего аналога является недостаточная эффективность измерений, которые проводят в одном направлении, повышенная трудоемкость эксплуатации из-за необходимости использования весов и игольчатой подставки, а также низкая точность из-за отсутствия учета правильности (соосности) установки испытываемого сопла на емкости для сборки рабочего тела и возможности наличия систематической погрешности в ходе испытаний.
Задачей, на решение которой направлено предлагаемое техническое решение, является разработка конструкции стенда, позволяющего произвести необходимые измерения простым способом и с высокой точностью и эффективностью.
Технический результат, достигаемый при решении поставленной задачи, выражается в повышении точности измерения и эффективности испытаний сопла благодаря возможности измерения реактивной силы по трем взаимно перпендикулярным осям, расширение области применения за счет возможности установки сопла в восьми различных положениях в пространстве (четыре взаимно перпендикулярных в вертикальной плоскости и четыре - в горизонтальной), а также снижении трудоемкости изготовления и эксплуатации устройства.
Указанная задача решается тем, что в стенде для испытания сопла, содержащем подводящий трубопровод, соединенный с ресивером, выполненным с возможностью разъемного соединения с испытываемым соплом в двух взаимно перпендикулярных плоскостях посредством съемных фланцевых накладок и с возможностью опирания измерительными средствами на корпус ресивера, подводящий трубопровод снабжен упругой вставкой, кроме того ресивер снабжен отверстиями, одно из которых выполнено в его торце, а другое на его боковой поверхности, причем горловины отверстий имеют одинаковые сечения и снабжены съемными фланцевыми накладками, выполненными с возможностью крепления в них испытываемого сопла в двух взаимно перпендикулярных направлениях, при этом в качестве измерительных средств используют однокомпонентные датчики силы, закрепленные на корпусе ресивера, измерительные штанги которых размещены в трех взаимно перпендикулярных направлениях, а их концы уперты в корпус ресивера с возможностью его удержания.
Сопоставительный анализ существенных признаков предлагаемого технического решения с существенными признаками аналогов свидетельствует о его соответствии критерию «новизна».
При этом отличительные признаки формулы изобретения решают следующие функциональные задачи.
Признак «подводящий трубопровод снабжен упругой вставкой» позволяет обеспечить подвод рабочего тела к ресиверу и повысить эффективность измерений благодаря возможности передвижения ресивера по трем взаимно перпендикулярным направлениям.
Признак «ресивер снабжен отверстиями, одно из которых выполнено в его торце, а другое на его боковой поверхности, причем горловины отверстий имеют одинаковые сечения и снабжены съемными фланцевыми накладками, выполненными с возможностью крепления в них испытываемого сопла в двух взаимно перпендикулярных направлениях» позволяет повысить эффективность измерений и расширить область применения благодаря возможности установки испытываемого сопла в восьми различных положениях в пространстве (четыре взаимно перпендикулярных в вертикальной плоскости и четыре - в горизонтальной).
Признак «в качестве измерительных средств используют однокомпонентные датчики силы, закрепленные на корпусе ресивера, измерительные штанги которых размещены в трех взаимно перпендикулярных направлениях, а их концы уперты в корпус ресивера с возможностью его удержания» позволяет повысить эффективность измерений благодаря возможности измерения реактивной силы отдельно по трем взаимно перпендикулярным направлениям при ресивере, удерживаемом с помощью измерительных штанг датчиков силы.
На фиг.1 изображен вид стенда сбоку с установленным испытываемым соплом.
На фиг.2 изображен вид стенда справа с установленным испытываемым соплом.
На фиг.3 изображен продольный разрез испытываемого сопла.
На фиг.4 изображена схема разложения реактивной силы.
На чертежах показаны подводящий трубопровод 1 с упругой вставкой 2 в виде сильфона, закрепленный в пространстве с помощью опоры 3, ресивер 4, испытываемое сопло 5, съемные фланцевые накладки 6, измерительные средства 7 в виде однокомпонентных датчиков силы с измерительными штангами 8, заглушка 9.
Упругая вставка 2 трубопровода 1 обеспечивает подвод рабочего тела и подвижность ресивера 4 в трех взаимно перпендикулярных направлениях.
Ресивер 4 выполнен цилиндрической формы для снижения трудоемкости изготовления, снижения материалоемкости и более равномерного распределения сжатого воздуха при испытаниях.
Испытываемое сопло 5 выполнено преимущественно плоским.
Съемные фланцевые накладки 6 выполнены симметричными, причем внутренний край каждой из съемных фланцевых накладок 6 отогнут под прямым углом для обеспечения возможности крепления между ними испытываемого сопла 5. Расстояние между параллельными внутренними краями закрепленных съемных фланцевых накладок 6 соответствует размеру испытываемого сопла 5.
Один конец каждой из измерительных штанг 8 фиксируется на ресивере 4, а другой конец снабжен завальцованым шариком, обеспечивающим возможность передвижения по измерительным средствам 7, и как следствие, возможность передвижения ресивера 4 по трем взаимно перпендикулярным направлениям. Перемещения измерительных штанг 8 по измерительным средствам 7 незначительны и не оказывают существенное влияние при измерении реактивной силы.
Способ осуществляют следующим образом.
Предварительно устанавливают в пространстве подводящий трубопровод 1 с помощью опоры 3, который затем соединяют с ресивером 4, установленным с возможностью его удержания с помощью измерительных штанг 8, которые также обеспечивают возможность передвижения ресивера 4 по измерительным средствам 7. Испытываемое сопло 5 присоединяют к торцу ресивера 4 с помощью съемных фланцевых накладок 6 в начальном положении, показанном на фиг.1. Горловину отверстия, расположенного на боковой поверхности ресивера 4, закрывают с помощью заглушки 9.
К стенду от компрессорной установки (на чертежах не показана) подводят сжатый воздух, который проходит через трубопровод 1 с упругой вставкой 2 и корпус ресивера 4. В испытываемом сопле 5 сжатый воздух расширяется до атмосферного давления. Реактивная сила, возникающая при истечении воздуха через испытываемое сопло 5, через измерительные штанги 8 передается на измерительные средства 7, при этом ресивер 4 совершает микроперемещения, необходимые для работы измерительных средств 7. После проведения необходимых измерений подвод сжатого воздуха прекращают.
Далее меняют положение испытываемого сопла 5 путем поворота на 90 градусов относительно начального положения и заново закрепляют с помощью съемных фланцевых накладок 6 на торце ресивера 4. Затем возобновляют подачу сжатого воздуха и снимают показания измерительных средств 7 при новом положении испытываемого сопла 5. Аналогично проводят необходимые измерения при положениях испытываемого сопла 5, полученных путем поворота относительно начального положения на 180 и 270 градусов.
На втором этапе испытаний испытываемое сопло 5 вертикально закрепляют на боковой поверхности ресивера 4 с помощью съемных фланцевых накладок 6. При этом горловину отверстия, расположенного с торца ресивера 4, закрывают с помощью заглушки 9.
Начальное положение испытываемого сопла 5 в горизонтальной плоскости аналогично положению испытываемого сопла 5 в вертикальной плоскости, изображенному на фиг.1. Затем подают сжатый воздух и снимают показания измерительных средств 7. Аналогично проводят необходимые измерения при положениях испытываемого сопла 5, полученных путем поворота относительно начального положения на 90, 180 и 270 градусов соответственно.
На заключительном этапе проводят анализ полученных данных и определение расчетных характеристик.
Реактивную силу определяют по формуле:
Figure 00000001
, где
F
Figure 00000002
- реактивная сила, Н;
Figure 00000003
- проекции реактивной силы, Н, соответственно на оси X, Y, Z.
Угол выхода потока определяют по формуле:
Figure 00000004
α = 90 arccos ( F F y | F | | F y | )
Figure 00000005
, где
α - угол выхода потока, град.
Коэффициент скорости сопла определяют по формуле:
ϕ = C 1 C 1 т е о р
Figure 00000006
, где
С1 - выходная скорость потока, м/с, определяемая по формуле:
С 1 = | F | G
Figure 00000007
, где
G - расход потока, кг/с;
С1 теор - теоретическая выходная скорость, определяемая по формуле:
Figure 00000004
C 1 т е о р = 2 k k 1 R T [ 1 ( P 2 P 1 ) k 1 k ]
Figure 00000008
, где
k - адиабатный коэффициент воздуха;
R - газовая постоянная для воздуха, Дж/(кг·К);
Т - температура перед соплом, К;
P1 - давление перед соплом, Па;
P2 - давление за соплом, Па.
Таким образом, конструкция заявляемого стенда повышает точность и эффективность измерений благодаря возможности закрепления сопла в восьми различных положениях, при которых проводятся испытания, а также исключению систематической погрешности и вследствие этого учета неправильности закрепления сопла.

Claims (1)

  1. Стенд для испытания сопла, содержащий подводящий трубопровод, соединенный с ресивером, выполненным с возможностью разъемного соединения с испытываемым соплом в двух взаимно перпендикулярных плоскостях посредством съемных фланцевых накладок и с возможностью опирания измерительными средствами на корпус ресивера, отличающийся тем, что подводящий трубопровод снабжен упругой вставкой, кроме того ресивер снабжен отверстиями, одно из которых выполнено в его торце, а другое на его боковой поверхности, причем горловины отверстий имеют одинаковые сечения и снабжены съемными фланцевыми накладками, выполненными с возможностью крепления в них испытываемого сопла в двух взаимно перпендикулярных направлениях, при этом в качестве измерительных средств используют однокомпонентные датчики силы, закрепленные на корпусе ресивера, измерительные штанги которых размещены в трех взаимно перпендикулярных направлениях, а их концы уперты в корпус ресивера с возможностью его удержания.
RU2012157412/28A 2012-12-25 2012-12-25 Стенд для испытания сопла RU2528467C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012157412/28A RU2528467C2 (ru) 2012-12-25 2012-12-25 Стенд для испытания сопла

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012157412/28A RU2528467C2 (ru) 2012-12-25 2012-12-25 Стенд для испытания сопла

Publications (2)

Publication Number Publication Date
RU2012157412A RU2012157412A (ru) 2014-06-27
RU2528467C2 true RU2528467C2 (ru) 2014-09-20

Family

ID=51216184

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012157412/28A RU2528467C2 (ru) 2012-12-25 2012-12-25 Стенд для испытания сопла

Country Status (1)

Country Link
RU (1) RU2528467C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2718100C1 (ru) * 2019-07-22 2020-03-30 Акционерное общество "Лётно-исследовательский институт имени М.М. Громова" Способ подготовки и проведения испытаний на работоспособность входных и выходных устройств авиационного двигателя в аэродромных условиях и стенд для его осуществления

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2261425C1 (ru) * 2004-02-09 2005-09-27 Федеральное государственное унитарное предприятие "Центральный институт авиационного моторостроения им. П.И. Баранова" Стенд для испытания прямоточных воздушно-реактивных двигателей
RU2274764C2 (ru) * 2003-12-16 2006-04-20 Федеральное государственное унитарное предприятие "Московский институт теплотехники" Стенд для определения вектора тяги двигателя с кососрезанным соплом

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2274764C2 (ru) * 2003-12-16 2006-04-20 Федеральное государственное унитарное предприятие "Московский институт теплотехники" Стенд для определения вектора тяги двигателя с кососрезанным соплом
RU2261425C1 (ru) * 2004-02-09 2005-09-27 Федеральное государственное унитарное предприятие "Центральный институт авиационного моторостроения им. П.И. Баранова" Стенд для испытания прямоточных воздушно-реактивных двигателей

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Наталевич А.С., "Воздушные микротурбины", 2 изд., перераб. и доп. - М., Машиностроение, 1979, стр.92-93., 192 с.; . *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2718100C1 (ru) * 2019-07-22 2020-03-30 Акционерное общество "Лётно-исследовательский институт имени М.М. Громова" Способ подготовки и проведения испытаний на работоспособность входных и выходных устройств авиационного двигателя в аэродромных условиях и стенд для его осуществления

Also Published As

Publication number Publication date
RU2012157412A (ru) 2014-06-27

Similar Documents

Publication Publication Date Title
EP1860416A2 (en) Thrust correction
CN102120071B (zh) 一种飞机发动机舱灭火剂浓度测量方法
CN103324849B (zh) 一种基于cfd斜风的输电杆塔单根杆件体型系数确定方法
RU2528467C2 (ru) Стенд для испытания сопла
Alba et al. Comparison of experimentally measured and computed second-mode disturbances in hypersonic boundary-layers
CN110371318A (zh) 一种动态变形下基于双重滤波器的传递对准方法
CN109974952A (zh) 一种用于管道振动试验的装置
CN108303206A (zh) 模拟真空环境下的微推力器推力测量系统
RU135799U1 (ru) Стенд для испытания сопла
RU129234U1 (ru) Стенд для испытания сопла
Hoberg et al. Characterization of Test Conditions in the Notre Dame Arc-Heated Wind Tunnel
Davis CFD validation experiment of a Mach 2.5 axisymmetric shock-wave/boundary-layer interaction
RU148270U1 (ru) Стенд для испытания сопла
RU148269U1 (ru) Стенд для испытания сопла
RU165696U1 (ru) Установка для исследования сопла
Jiang et al. Performance tests of JF-10 high-enthalpy shock tunnel with a FDC driver
JP2008026263A (ja) 質量測定装置および質量測定方法
RU2339928C1 (ru) Калибровочная аэродинамическая модель для определения систематических погрешностей и способ определения систематических погрешностей
RU127464U1 (ru) Стенд для измерения вертикальной нагрузки, воздействующей на объект авиационной техники
UA125544C2 (uk) Установка для випробування сопла повітряно-реактивного двигуна
Chen et al. The Design and Testing of an Electromechanically Actuated Pitot Probe to Characterize Flow in a Mach 7 Wind Tunnel
Zierep et al. Principles of Fluid Mechanics
Solomon et al. Design and build of a Benchtop hypersonic wind tunnel as a Senior Design Project
Fabijanic et al. Background Oriented Schlieren Techniques in an Axis-Symmetric Glass Blown Mach 5 Nozzle.
RU2748144C1 (ru) Аэродинамическая труба для исследования пылящих поверхностей

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20141226