RU2528285C1 - Способ антикоррозионной обработки сплавов алюминия - Google Patents

Способ антикоррозионной обработки сплавов алюминия Download PDF

Info

Publication number
RU2528285C1
RU2528285C1 RU2013126656/02A RU2013126656A RU2528285C1 RU 2528285 C1 RU2528285 C1 RU 2528285C1 RU 2013126656/02 A RU2013126656/02 A RU 2013126656/02A RU 2013126656 A RU2013126656 A RU 2013126656A RU 2528285 C1 RU2528285 C1 RU 2528285C1
Authority
RU
Russia
Prior art keywords
coating
solution
ifkhan
coatings
corrosion
Prior art date
Application number
RU2013126656/02A
Other languages
English (en)
Inventor
Сергей Валентинович Олейник
Юрий Александрович Кузенков
Юрий Игоревич Кузнецов
Владимир Сергеевич Руднев
Татьяна Петровна Яровая
Петр Максимович Недозоров
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт химии Дальневосточного отделения Российской академии наук
Федеральное государственное бюджетное учреждение науки Институт физической химии и электрохимии им. А.Н. Фрумкина Российской академии наук
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт химии Дальневосточного отделения Российской академии наук, Федеральное государственное бюджетное учреждение науки Институт физической химии и электрохимии им. А.Н. Фрумкина Российской академии наук filed Critical Федеральное государственное бюджетное учреждение науки Институт химии Дальневосточного отделения Российской академии наук
Priority to RU2013126656/02A priority Critical patent/RU2528285C1/ru
Application granted granted Critical
Publication of RU2528285C1 publication Critical patent/RU2528285C1/ru

Links

Landscapes

  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

Изобретение относится к способам защиты металлов от коррозии и предназначено для повышения коррозионной стойкости покрытий на сплавах алюминия, используемых в агрессивной хлоридсодержащей среде. Способ включает нанесение покрытия методом плазменно-электролитического оксидирования в биполярном гальваностатическом режиме в условиях микроплазменных разрядов при эффективной плотности тока iа=iк=5-10 А/дм2, продолжительности анодных и катодных импульсов 0,02 с в течение 5-10 мин в водном электролите, содержащем, г/л: тринатрийфосфат 45-55, тетраборат натрия 20-30 и вольфрамат натрия 3-5, и уплотнение нанесенного покрытия. Уплотнение осуществляют в водном растворе ингибитора коррозии, содержащего олеат натрия, а также алифатические или ароматические карбоновые кислоты, в качестве которого преимущественно используют ИФХАН-25 либо ИФХАН-39, путем погружения на 50-60 мин при температуре 95-100°C с последующей гидрофобизацией в этилацетатном растворе политетрафторэтилена. Технический результат - увеличение эффективности антикоррозионной обработки и обеспечение высоких показателей антикоррозионной защиты для широкого круга обрабатываемых сплавов алюминия при одновременном повышении экологической безопасности способа, улучшении условий труда и снижении затрат времени. 2 з.п. ф-лы, 1 табл., 13 пр.

Description

Изобретение относится к способам защиты металлов от коррозии и предназначено для повышения коррозионной стойкости покрытий на сплавах алюминия, используемых в агрессивной хлоридсодержащей среде.
Известные методы защиты металлов от коррозии осуществляются путем изоляции поверхности металла от коррозионной среды за счет нанесения защитных покрытий и пленок либо путем изменения электрохимического потенциала защищаемого материала по отношению к среде на границе фаз, а также модификацией коррозионной среды, обеспечивающей уменьшение ее агрессивности.
Наиболее распространенным способом борьбы с коррозией является пассивация поверхности металла путем нанесения защитных покрытий, осуществляемая до начала производственной эксплуатации металлической конструкции или изделия, при этом главной характеристикой защитных покрытий является их сплошность и отсутствие дефектов и открытых пор при хорошей адгезии к основному металлу.
Известные способы нанесения защитных антикоррозионных покрытий на конструкциях и изделиях из алюминия и его сплавов включают формирование на их поверхности труднорастворимых соединений: оксидов, гидроксидов, солей с помощью химических или электрохимических методов. Защитные покрытия, получаемые с использованием электрохимического оксидирования, а именно анодирования или плазменно-электролитического (в иной терминологии, плазменно-химического, микродугового, микроплазменного) оксидирования, являются более равномерными, однако поверхность таких покрытий обычно имеет открытые поры и для увеличения коррозионной стойкости пористого слоя необходимо его уплотнение и заполнение пор.
Известен способ уплотнения анодных оксидных покрытий на алюминии и его сплавах (пат. РФ №2073752, опубл. 1997.02.20), обеспечивающий повышение их коррозионной стойкости, который включает обработку кремнийорганическим олигомером, содержащим 10-100 г/л метилгидридсилазана формулы
Figure 00000001
при n=10-15 в гексане или гептане, и последующую термообработку при температуре 300-500°C в течение 1-2,5 часа. Однако коррозионная стойкость полученных после уплотнения покрытий, удовлетворительная при эксплуатации в различных климатических условиях, является недостаточной в среде, содержащей ионы хлора. Кроме того, в целом известная технология получения защитных покрытий обнаруживает типичные недостатки анодирования, такие как неэкологичность, вред для здоровья вследствие использования кислот, значительную продолжительность процесса.
Известен описанный в патенте ЕР №2145760, опубл. 2011.09.28, способ получения на сплавах алюминия покрытий, обладающих высокой коррозионной стойкостью в такой коррозионной среде, как морская вода, используемая для охлаждения в теплообменниках. Способ включает нанесение анодного оксидного слоя, толщиной от 1 до 20 мкм, полученного оксидированием в серной либо щавелевой кислоте либо в их смеси при плотности тока 80-100 А/м и напряжении 10-13B, нанесение на его поверхность грунтовочного покрытия путем погружения на 1-120 с в раствор фосфоновой (метил-, этил- либо винилфосфоновой) органической кислоты при температуре 50-100°C, а поверх грунтовочного покрытия - слоя фторполимера (сополимера трихлорфторэтилена и винилового эфира) либо фторполимерной краски, толщина которого составляет после высушивания от 1 до 100 мкм. Анодирование, проводимое при указанных значения напряжения и плотности тока, требует значительных затрат времени, что вместе с многоступенчатостью и необходимостью просушивания каждого наносимого слоя покрытия (грунтовочного, полимерного) усложняет известный способ, а использование серной и щавелевой кислот при анодировании делает его опасным для здоровья персонала и окружающей среды.
Известен способ обработки поверхности алюминия и его сплавов для получения покрытий, устойчивых к коррозии в морской воде (пат. CN №101429672, опубл. 2009.05.13), который включает предварительную обработку поверхности для ее выравнивания до микронного уровня, очистку и последующее анодирование с использованием постоянного тока, обеспечивающее формирование на поверхности наноразмерных пор. После этого алюминий или его сплав нагревают до 90-120°C, выдерживают при указанной температуре в течение 30-40 мин, охлаждают до комнатной температуры и затем путем пропитки или из паровой фазы на его поверхность наносят фторид кремния. Известному способу присущи все недостатки анодирования (значительная продолжительность процесса, вред для здоровья и окружающей среды), а необходимость проведения дополнительной операции по выравниванию обрабатываемой поверхности до микронного уровня, продолжительного нагрева изделия приводит к усложнению способа и увеличению затрат времени и энергии на его осуществление.
Известен способ антикоррозионной обработки вентильных металлов и их сплавов, в частности алюминия и его сплавов (з. США №2012031765, опубл. 2012.02.09), который сочетает плазменно-электролитическое оксидирование (ПЭО) и химическую пассивацию поверхности, предшествующую оксидированию, последующую за ней либо осуществляемую как до так и после оксидирования, и дополнительно может включать применение полимерных уплотнителей, а также нанесение завершающих слоев: жидкой краски, электрофоретической краски, порошкового покрытия, ПТФЭ и т.п. Перед обработкой деталь из алюминия либо его сплава обезжиривают в щелочном растворе, включающем анионное поверхностно-активное вещество, затем промывают в деионизированной (деминерализованной) воде. Плазменно-электролитическое оксидирование проводят в течение 5 мин в фосфат-силикатном электролите, pH 11, в биполярном импульсном режиме с частотой импульсов 2500 Гц при плотности тока 1 А/дм2, после чего промывают в деионизированной воде, при этом химическую пассивацию проводят путем погружения в один из возможных растворов: а) в щелочной раствор силана, б) в кислый раствор фторцирконата с добавкой гексафтортитановой кислоты либо в) в кислый раствор фторцирконата. Обработанную деталь из алюминия либо его сплава высушивают при 70°C в течение 1 часа и наносят завершающий слой, например порошка на основе полиэфира. К недостаткам известного способа относится необходимость использования сложного и дорогостоящего аппаратурного оснащения, включающего генератор высокочастотных импульсов тока. Кроме того, необходимость тщательного промежуточного промывания, нейтрализации и сушки поверхности изделия между операциями делает процесс нанесения покрытия прерывистым, увеличивает трудозатраты на его осуществление. В итоге известный способ является трудоемким и дорогостоящим.
Наиболее близким к заявляемому является способ антикоррозионной обработки сплавов алюминия (пат. США №5362569, опубл. 1994.11.08) путем нанесения анодного оксидного покрытия с дополнительной обработкой поверхности перед анодированием, в течение анодирования либо после анодирования гетероциклическим ароматическим азолом, преимущественно раствором бензотриазол-5-карбоксиловой кислоты или 2-меркаптобензотиазола в органическом растворителе, и уплотнением нанесенного анодного покрытия путем погружения в 1-10% спиртовый раствор жирной кислоты, преимущественно стеариновой кислоты в изопропаноле.
Известный способ обеспечивает эффективную защиту от коррозии только для одного типа алюминиевых сплавов, а именно медьсодержащих. Другим недостатком известного способа является использование серной и щавелевой кислот в качестве электролита анодирования, а также органических растворителей при дополнительной обработке, что делает его вредным для здоровья персонала и небезопасным с экологической точки. Кроме того, процесс анодирования связан со значительными затратами времени.
Задачей изобретения является создание эффективного и экологически безопасного способа антикоррозионной обработки сплавов алюминия различных систем легирования, обеспечивающего их коррозионную стойкость в хлоридных средах.
Технический результат предлагаемого технического решения заключается в увеличении эффективности антикоррозионной обработки и обеспечении высоких показателей антикоррозионной защиты для широкого круга обрабатываемых сплавов алюминия при одновременном повышении экологической безопасности способа, улучшении условий труда и снижении затрат времени.
Указанный технический результат обеспечивают способом антикоррозионной обработки изделий из сплавов алюминия, включающим нанесение покрытия с помощью электрохимической обработки в водном растворе электролита и уплотнение нанесенного покрытия, в котором, в отличие от известного, электрохимическую обработку осуществляют методом плазменно-электролитического оксидирования (ПЭО) в биполярном гальваностатическом режиме в условиях микроплазменных разрядов при эффективной плотности тока iа=iк=5-10 А/дм2, продолжительности анодных и катодных импульсов 0,02 с в течение 5-10 мин в электролите, содержащем, г/л:
тринатрийфосфат Na3PO4·12H2O 45-55
тетраборат натрия Na2B4O710H2O 20-30
вольфрамат натрия Na2WO42O 3-5,
при этом уплотнение покрытия осуществляют в водном растворе ингибитора коррозии на основе алифатических или ароматических карбоновых кислот, содержащего олеат натрия, при температуре 95-100°C путем погружения на 50-60 мин с последующей гидрофобизацией в этилацетатном растворе политетрафторэтилена.
Оптимальные результаты предлагаемый способ обеспечивает при уплотнении ПЭО покрытия в водном растворе ИФХАН-25.
Кроме того, высокие показатели антикоррозионной защиты достигаются при уплотнении ПЭО покрытия в водном растворе ИФХАН-39.
Способ осуществляют следующим образом.
На подготовленные, например, путем простой механической очистки либо в случае необходимости путем химической полировки, образцы, выполненные из сплавов алюминия, наносят покрытие с помощью плазменно-электролитического оксидирования в водном растворе электролита в биполярном (анодно-катодном) гальваностатическом импульсном режиме при эффективной плотности анодного и катодного токов 5-10 А/дм2 и одинаковой длительности анодного и катодного импульсов τак=0,02 с, обеспечивающем равномерное воздействие на обрабатываемую поверхность микроплазменных разрядов. Обработка в указанном режиме в течение 5-10 минут с использованием в качестве электролита следующего водного раствора, г/л: тринатрийфосфат Na3PO4·12H2O 45-55, тетраборат натрия Na2B4O7 10H2О 20-30 и вольфрамат натрия Na2WO4 2H2O 3-5 приводит к формированию ПЭО покрытий с разветвленной пористой поверхностью, толщина которых в зависимости от сплава алюминия находится в пределах 10-25 мкм.
Затем промытые и высушенные образцы с ПЭО покрытиями погружают в нагретый до кипения раствор ингибитора коррозии, в качестве которого предпочтительно используют ингибитор коррозии, содержащий олеат натрия CH3(CH2)7CH=CH(CH2)7COONa (ОЛН), а именно: ингибитор коррозии ИФХАН-25 (на основе ароматических карбоновых кислот) либо ингибитор коррозии ИФХАН-39 (на основе алифатических карбоновых кислот). Образцы выдерживают в растворе ингибитора коррозии при температуре 95-100°C в течение 50-60 мин, после чего просушивают на воздухе.
После обработки ингибитором коррозии дополнительно осуществляют гидрофобизацию покрытия в 5% растворе политетрафторэтилена в этилацетате путем однократного погружения и сушки на воздухе в течение 5 мин.
Предлагаемый способ обеспечивает максимальную антикоррозионную защиту обрабатываемых сплавов алюминия.
ПЭО покрытие обеспечивает механическую защиту поверхности сплава и благодаря разветвленной пористой структуре поверхности способствует повышению адгезии ингибитора коррозии и увеличению его содержания в защитном слое, при этом экспериментально установлено, что положительный эффект гидрофобизации проявляется только в случае ПЭО покрытий, обработанных ингибитором коррозии. Нанесение ингибитора коррозии непосредственно на поверхность сплава и гидрофобизация ненаполненных покрытий не приводят к увеличению антикоррозионной защиты и не позволяют достичь заявленного технического результата.
Примеры конкретного осуществления способа
Покрытия получали на плоских образцах (50×50 мм) из сплавов алюминия. Перед получением покрытий часть образцов химически полировали в смеси кислот H3PO4:H2SO4:HNO3=4:2:1 при 110-120°C, другую часть подвергали механической очистке.
Для формирования ПЭО покрытий использовали управляемый компьютером многофункциональный источник тока на базе серийного реверсивного тиристорного агрегата «ТЕР-4/460Н-2-2УХЛ4» (Россия). Противоэлектродом служил корпус ванны из нержавеющей стали.
После оксидирования, образцы с покрытиями промывали проточной водой, ополаскивали дистиллированной и сушили на воздухе.
Покрытия по прототипу на образцах сплава алюминия Д16 (российский аналог типичного медьсодержащего сплава 2024) получали путем их анодирования в растворе серной кислоты (200 г/л), анодной плотности тока 1 А/дм2 в течение 60 мин. Образцы с покрытиями промывали дистиллированной водой, сушили на воздухе, обрабатывали (однократное окунание) в изопропанольном растворе стеариновой кислоты (10 г/л) и сушили на воздухе.
Толщину сформированных покрытий оценивали с помощью толщиномера «ВТ-201» (Россия).
Защитные антикоррозионные свойства покрытий, полученных предлагаемым способом на алюминиевых сплавах различных систем легирования (АМц, Д16, В95, АМг-5), и покрытия, полученного по методу прототипа, испытывали путем полного погружения в 3% раствор хлорида натрия NaCl с добавкой 0,1% пероксида водорода H2O2 (pH 7,4). В процессе испытаний осуществляли ежедневный осмотр образцов и фиксировали (визуально) время возникновения первых коррозионных поражений (питтингов) на поверхности образцов.
В таких же условиях были испытаны антикоррозионные свойства ПЭО покрытий без наполнения, ПЭО покрытий, обработанных только ингибитором коррозии, и ПЭО покрытий, обработанных только гидрофобизирующим составом.
В качестве ингибитора коррозии были использованы водные растворы ИФХАН-25 (1 г/л) и ИФХАН-39 (10 г/л).
Гидрофобизацию покрытий осуществляли в 5% растворе политетрафторэтилена в этил ацетате.
Результаты испытаний приведены в таблице (примеры 1-4 - ПЭО покрытия без наполнения и те же ПЭО покрытия, обработанные гидрофобизатором; примеры 5-12 - ПЭО покрытия, обработанные только ингибитором коррозии, и покрытия, полученные по предлагаемому способу).
Пример 1
Один образец, выполненный из сплава АМц (%: 1,0-1,6 Mn; примеси (не более): 0,7 Fe; 0,6 Si; 0,2 Cu; 0,2 Ti; 0,1 Zn; 0,05 Mg; остальное Al), подвергали плазменно-электролитическому оксидированию в электролите, содержащем, г/л: Na3PO4·12H2O 45, Na2B4O7.10H2O 20, Na2WO4.2H2O 3, в анодно-катодном импульсном режиме при эффективной плотности анодного и катодного токов 5 А/дм2, длительности анодных и катодных импульсов 0,02 с в течение 10 мин.
Проводили коррозионные испытания полученного покрытия, как описано выше.
Другой образец этого же сплава с ПЭО покрытием, полученным в аналогичных условиях, обрабатывали гидрофобизирующим раствором, высушивали и также подвергали коррозионным испытаниям, как описано выше.
Результаты коррозионных испытаний полученных покрытий приведены в таблице.
Пример 2
Один образец, выполненный из сплава Д16 (%:Fe до 0.5, Si до 0.5, Mn 0.3-0.9, Ni до 0.1, Ti до 0.1, Al 90.8-94.7, Cu 3.8-4.9, Mg 2-1.8, Zn до 0.3, прочие примеси, каждая 0.05), подвергали плазменно-электролитическому оксидированию в электролите, содержащем, г/л: Na3PO4·12H2O 55, Na2B4O7.10H2O 30, Na2WO4.2H2O 5, в биполярном режиме при эффективной плотности анодного и катодного токов 10 А/дм2 в течение 5 мин.
Другой образец этого же сплава с нанесенным в аналогичных условиях ПЭО покрытием обрабатывали гидрофобизирующим раствором.
Оба образца подвергали идентичным коррозионным испытаниям, результаты которых приведены в таблице.
Пример 3
Один образец, выполненный из сплава В95 (%: Fe до 0.5, Si до 0.5, Mn 0.2-0.6, Cr 0.1-0.25, Ti до 0.05, Al 86.2-91.5, Cu 1.4-2, Mg 1.8-2.8, Zn 5-7, прочие примеси, каждая 0.05; всего 0.1), подвергали плазменно-электролитическому оксидированию в электролите, содержащем, г/л: Na3PO4·12H2O 55, Na2B4O7.10H2O 20, Na2WO4.2H2O 3, в биполярном режиме при эффективной плотности анодного и катодного токов 10 А/дм2 в течение 10 мин. Затем проводили его коррозионные испытания.
Другой образец этого же сплава с нанесенным в аналогичных условиях ПЭО покрытием после гидрофобизирующей обработки также подвергали коррозионным испытаниям.
Результаты испытаний приведены в таблице.
Пример 4
Один образец, выполненный из сплава алюминия АМг-5 (%: Fe до 0,5, Si до 0,5, Mn 0,5-0,8, Ti 0,02-0,1, Al 91,9-94,68, Cu до 0,1, Be 0,0002-0,005, Mg 4,8-5,8, Zn до 0,2), подвергали плазменно-электролитическому оксидированию в электролите, содержащем, г/л: Na3PO4·12H2O 45, Na2B4O7.10H2O 30, Na2WO4.2H2О 5, в условиях примера 1 при эффективной плотности анодного и катодного токов 5 А/дм2 в течение 5 мин.
Другой образец этого же сплава с нанесенным в аналогичных условиях ПЭО покрытием обрабатывали гидрофобизирующим раствором.
Оба образца подвергали коррозионным испытаниям, результаты которых приведены в таблице.
Пример 5
Один образец сплава алюминия АМц с ПЭО покрытием, нанесенным по примеру 1, обрабатывали в растворе ИФХАН-25 при 95°C в течение 60 мин. Другой образец этого же сплава с ПЭО покрытием после обработки ингибитором коррозии дополнительно обрабатывали в гидрофобизирующем растворе.
Результаты коррозионных испытаний покрытий для обоих образцов приведены в таблице.
Пример 6
Один образец сплава алюминия Д16 с ПЭО покрытием, нанесенным по примеру 2, обрабатывали в растворе ИФХАН-25 при 100°C в течение 50 мин. Другой образец этого же сплава после обработки ингибитором коррозии дополнительно обрабатывали в гидрофобизирующем растворе.
Результаты коррозионных испытаний полученных покрытий приведены в таблице.
Пример 7
Один образец сплава алюминия В 95 с ПЭО покрытием, нанесенным по примеру 1, обрабатывали в растворе ИФХАН-25 при 100°C в течение 50 мин. Другой образец этого же сплава после обработки ингибитором дополнительно обрабатывали в гидрофобизирующем растворе.
Результаты коррозионных испытаний полученных покрытий приведены в таблице.
Пример 8
Один образец сплава алюминия АМг-5 с ПЭО покрытием, нанесенным по примеру 2, обрабатывали в растворе ИФХАН-25 при 100°C в течение 50 мин. Другой образец этого же сплава после этого дополнительно обрабатывали в гидрофобизирующем растворе.
Результаты коррозионных испытаний полученных покрытий приведены в таблице.
Пример 9
Один образец сплава алюминия АМц с ПЭО покрытием, нанесенным по примеру 1, обрабатывали в растворе ИФХАН-39 при 95°C в течение 60 мин. Другой образец этого сплава после этого дополнительно обрабатывали в гидрофобизирующем растворе.
Результаты коррозионных испытаний полученных покрытий приведены в таблице.
Пример 10
Один образец сплава алюминия Д16 с ПЭО покрытием, нанесенным по примеру 2, обрабатывали в растворе ИФХАН-39 при 95°C в течение 50 мин. Другой образец этого сплава после этого дополнительно обрабатывали в гидрофобизирующем растворе.
Результаты коррозионных испытаний полученных покрытий приведены в таблице.
Пример 11
Один образец сплава алюминия В95 с ПЭО покрытием, нанесенным по примеру 1, обрабатывали в растворе ИФХАН-39 при 100°C в течение 50 мин. Другой образец этого сплава после этого дополнительно обрабатывали в гидрофобизирующем растворе.
Результаты коррозионных испытаний полученных покрытий приведены в таблице.
Пример 12
Один образец сплава алюминия АМг-5 с ПЭО покрытием, нанесенным по примеру 2, обрабатывали в растворе ИФХАН-39 при 95°C в течение 60 мин. Другой образец этого сплава после этого дополнительно обрабатывали в гидрофобизирующем растворе.
Результаты коррозионных испытаний полученных покрытий приведены в таблице.
В таблице также приведены результаты коррозионных испытаний для покрытия, полученного по способу-прототипу.
Таблица
Результаты коррозионных испытаний
Пример Марка сплава Толщина покрытия, мкм Способ наполнения покрытия Время образования первых коррозионных поражений, суток Способ наполнения покрытия /гидрофобизация Время образования первых коррозионных поражений, суток
1 АМц 24 Без наполнения 5 Без наполнения/гидрофобизация 4
2 Д16 14 Без наполнения 2 Без наполнения/гидрофобизация 2
3 В95 11 Без наполнения 2 Без наполнения/гидрофобизация 2
4 АМг-5 11 Без наполнения 4 Без наполнения/гидрофобизация 4
5 АМц 24 ИФХАН-25 8 ИФХАН-25/гидрофобизация 18
6 Д16 14 ИФХАН-25 7 ИФХАН-25/гидрофобизация 17
7 В95 11 ИФХАН-25 7 ИФХАН-25/гидрофобизация 17
8 АМг-5 11 ИФХАН-25 8 ИФХАН-25/гидрофобизация 18
9 АМц 24 ИФХАН-39 12 ИФХАН-39/гидрофобизация 68
10 Д16 14 ИФХАН-39 11 ИФХАН-39/гидрофобизация 61
11 В95 11 ИФХАН-39 15 ИФХАН-39/гидрофобизация 65
12 АМг-5 11 ИФХАН-39 11 ИФХАН-39/гидрофобизация 61
Прототип Д16 12 Раствор стеариновой кислоты в изопропаноле, 10 г/л 6

Claims (3)

  1. Способ антикоррозионной обработки изделий из сплавов алюминия, включающий нанесение покрытия с помощью электрохимической обработки в водном растворе электролита и уплотнение нанесенного покрытия, отличающийся тем, что электрохимическую обработку осуществляют методом плазменно-электролитического оксидирования в биполярном гальваностатическом режиме в условиях микроплазменных разрядов при эффективной плотности тока iа=iк=5-10 А/дм2, продолжительности анодных и катодных импульсов 0,02 с в течение 5-10 мин в электролите, содержащем, г/л:
    тринатрийфосфат Na3PO4·12H2O 45-55 тетраборат натрия Na2B4O710H2O 20-30 вольфрамат натрия Na2WO42O 3-5,

    при этом уплотнение покрытия осуществляют в водном растворе ингибитора коррозии на основе алифатических или ароматических карбоновых кислот, содержащего олеат натрия, при температуре 95-100°C путем погружения на 50-60 мин с последующей гидрофобизацией в этилацетатном растворе политетрафторэтилена.
  2. 2. Способ по п.1, отличающийся тем, что наполнение покрытий осуществляют в водном растворе ингибитора коррозии ИФХАН-39.
  3. 3. Способ по п.1, отличающийся тем, что наполнение покрытий осуществляют в водном растворе ингибитора коррозии ИФХАН-25.
RU2013126656/02A 2013-06-10 2013-06-10 Способ антикоррозионной обработки сплавов алюминия RU2528285C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013126656/02A RU2528285C1 (ru) 2013-06-10 2013-06-10 Способ антикоррозионной обработки сплавов алюминия

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013126656/02A RU2528285C1 (ru) 2013-06-10 2013-06-10 Способ антикоррозионной обработки сплавов алюминия

Publications (1)

Publication Number Publication Date
RU2528285C1 true RU2528285C1 (ru) 2014-09-10

Family

ID=51540311

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013126656/02A RU2528285C1 (ru) 2013-06-10 2013-06-10 Способ антикоррозионной обработки сплавов алюминия

Country Status (1)

Country Link
RU (1) RU2528285C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2602903C1 (ru) * 2015-07-13 2016-11-20 Федеральное государственное бюджетное образовательное учреждение высшего образования "Саратовский государственный технический университет имени Гагарина Ю.А." (СГТУ имени Гагарина Ю.А.) Способ получения износостойких покрытий на изделиях из алюминия и его сплавов
CN110607548A (zh) * 2019-10-24 2019-12-24 中国工程物理研究院材料研究所 一种铝或铝合金表面微弧氧化膜层的制备方法
EP4063540A2 (en) 2021-12-30 2022-09-28 Politechnika Slaska Method of producing porous oxide layers on aluminum containing polymeric corrosion inhibitors

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5362569A (en) * 1993-03-22 1994-11-08 Bauman Albert J Anodizing and duplex protection of aluminum copper alloys
RU2263163C1 (ru) * 2004-07-30 2005-10-27 Институт химии Дальневосточного отделения Российской академии наук (статус государственного учреждения) (Институт химии ДВО РАН) Способ плазменно-электролитического оксидирования вентильных металлов и их сплавов
RU2353716C1 (ru) * 2007-10-24 2009-04-27 Институт химии Дальневосточного отделения Российской академии наук (статус государственного учреждения) (Институт химии ДВО РАН) Способ получения защитных покрытий на стали
RU2483144C1 (ru) * 2011-12-16 2013-05-27 Учреждение Российской академи наук Институт химии Дальневосточного отделения Российской академии наук (ИХ ДВО РАН) Способ получения композитных полимер-оксидных покрытий на вентильных металлах и их сплавах

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5362569A (en) * 1993-03-22 1994-11-08 Bauman Albert J Anodizing and duplex protection of aluminum copper alloys
RU2263163C1 (ru) * 2004-07-30 2005-10-27 Институт химии Дальневосточного отделения Российской академии наук (статус государственного учреждения) (Институт химии ДВО РАН) Способ плазменно-электролитического оксидирования вентильных металлов и их сплавов
RU2353716C1 (ru) * 2007-10-24 2009-04-27 Институт химии Дальневосточного отделения Российской академии наук (статус государственного учреждения) (Институт химии ДВО РАН) Способ получения защитных покрытий на стали
RU2483144C1 (ru) * 2011-12-16 2013-05-27 Учреждение Российской академи наук Институт химии Дальневосточного отделения Российской академии наук (ИХ ДВО РАН) Способ получения композитных полимер-оксидных покрытий на вентильных металлах и их сплавах

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2602903C1 (ru) * 2015-07-13 2016-11-20 Федеральное государственное бюджетное образовательное учреждение высшего образования "Саратовский государственный технический университет имени Гагарина Ю.А." (СГТУ имени Гагарина Ю.А.) Способ получения износостойких покрытий на изделиях из алюминия и его сплавов
CN110607548A (zh) * 2019-10-24 2019-12-24 中国工程物理研究院材料研究所 一种铝或铝合金表面微弧氧化膜层的制备方法
EP4063540A2 (en) 2021-12-30 2022-09-28 Politechnika Slaska Method of producing porous oxide layers on aluminum containing polymeric corrosion inhibitors

Similar Documents

Publication Publication Date Title
Gnedenkov et al. Localized corrosion of the Mg alloys with inhibitor-containing coatings: SVET and SIET studies
Abdel-Gawad et al. Characterization and corrosion behavior of anodized aluminum alloys for military industries applications in artificial seawater
Laleh et al. Investigation of rare earth sealing of porous micro-arc oxidation coating formed on AZ91D magnesium alloy
Toorani et al. Effect of lanthanum nitrate on the microstructure and electrochemical behavior of PEO coatings on AZ31 Mg alloy
Qiu et al. Corrosion resistance of Mg− Al LDH/Mg (OH) 2/silane− Ce hybrid coating on magnesium alloy AZ31
Golru et al. Morphological analysis and corrosion performance of zirconium based conversion coating on the aluminum alloy 1050
Guo et al. Microarc oxidation of corrosion resistant ceramic coating on a magnesium alloy
Venugopal et al. Effect of micro arc oxidation treatment on localized corrosion behaviour of AA7075 aluminum alloy in 3.5% NaCl solution
Dan et al. Corrosion behavior of rare earth cerium based conversion coating on aluminum alloy
Guo et al. Corrosion behavior of micro-arc oxidation coating on AZ91D magnesium alloy in NaCl solutions with different concentrations
Liu et al. Characterization and corrosion behavior of plasma electrolytic oxidation coated AZ91-T6 magnesium alloy
Chen et al. Healing effects of LDHs nanoplatelets on MAO ceramic layer of aluminum alloy
Sobolev et al. Comparison of plasma electrolytic oxidation coatings on Al alloy created in aqueous solution and molten salt electrolytes
Kwolek Hard anodic coatings on aluminum alloys
Guo et al. Characterization of highly corrosion-resistant nanocrystalline Ni coating electrodeposited on Mg–Nd–Zn–Zr alloy from a eutectic-based ionic liquid
RU2543580C1 (ru) Способ получения защитных покрытий на сплавах магния
Yan et al. Anodizing of AZ91D magnesium alloy using environmental friendly alkaline borate-biphthalate electrolyte
RU2528285C1 (ru) Способ антикоррозионной обработки сплавов алюминия
Janqour et al. Optimization of coating process parameters and surface characterization for vanadium-based conversion coating on 2024 aluminum alloy
Song et al. Performance of composite coating on AZ31B magnesium alloy prepared by anodic polarization and electroless electrophoresis coating
Huanhuan et al. Study of corrosion protection of the composite films on A356 aluminum alloy
CN103409785B (zh) 一种钛合金表面降低海生物附着的纳米涂层制备方法
Lee et al. Characterization of ceramic oxide layer produced on commercial al alloy by plasma electrolytic oxidation in various KOH concentrations
Hamdy et al. Deposition, characterization and electrochemical properties of permanganate-based coating treatments over ZE41 Mg-Zn-rare earth alloy
Fang et al. Study on the effect of acetate ions on the sealing treatment for anodic oxide film of 6063 aluminum alloy