RU2527988C2 - Улучшенные способы размещения и отклонения текучих сред в подземных пластах - Google Patents

Улучшенные способы размещения и отклонения текучих сред в подземных пластах Download PDF

Info

Publication number
RU2527988C2
RU2527988C2 RU2012112472/03A RU2012112472A RU2527988C2 RU 2527988 C2 RU2527988 C2 RU 2527988C2 RU 2012112472/03 A RU2012112472/03 A RU 2012112472/03A RU 2012112472 A RU2012112472 A RU 2012112472A RU 2527988 C2 RU2527988 C2 RU 2527988C2
Authority
RU
Russia
Prior art keywords
fluid
subterranean formation
flow
introducing
fluids
Prior art date
Application number
RU2012112472/03A
Other languages
English (en)
Other versions
RU2012112472A (ru
Inventor
Герард ГЛАСБЕРГЕН
Томас Д. УЭЛТОН
Даниал ГУАЛТЬЕРИ
Original Assignee
Хэллибертон Энерджи Сервисиз, Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Хэллибертон Энерджи Сервисиз, Инк. filed Critical Хэллибертон Энерджи Сервисиз, Инк.
Publication of RU2012112472A publication Critical patent/RU2012112472A/ru
Application granted granted Critical
Publication of RU2527988C2 publication Critical patent/RU2527988C2/ru

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/13Methods or devices for cementing, for plugging holes, crevices or the like
    • E21B33/138Plastering the borehole wall; Injecting into the formation
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures

Landscapes

  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Examining Or Testing Airtightness (AREA)
  • Processing Of Solid Wastes (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Footwear And Its Accessory, Manufacturing Method And Apparatuses (AREA)

Abstract

Группа изобретений относится к способам, которые могут быть применимыми в обработке подземных пластов, и, более конкретно, к усовершенствованным способам размещения и/или отклонения обрабатывающих текучих сред в подземных пластах. Способ включает введение первого закупоривающего материала в подземный пласт, через который проходит ствол скважины, для уменьшения или предотвращения потока текучей среды в первую часть подземного пласта. Определяют уменьшение или предотвращение первым закупоривающим материалом потока текучей среды в первую часть подземного пласта. Вводят часть первой текучей среды во вторую часть подземного пласта, имеющую большее гидравлическое сопротивление потоку текучей среды, чем первая часть подземного пласта. Вводят второй закупоривающий материал в подземный пласт, через который проходит ствол скважины, для уменьшения или предотвращения потока текучей среды во вторую часть подземного пласта. Вводят часть второй текучей среды в первую часть подземного пласта с первой скоростью потока. Удаляют первый закупоривающий материал из подземного пласта. Определяют, когда первый закупоривающий материал, по меньшей мере частично, был удален из подземного пласта, посредством мониторинга температуры в этой части подземного пласта. Вводят вторую текучую среду в первую часть подземного пласта. Техническим результатом является повышение эффективности изоляции. 2 н. и 10 з.п. ф-лы, 8 ил.

Description

ПРЕДПОСЫЛКИ ИЗОБРЕТЕНИЯ
[0001] Изобретение относится к способам, которые могут быть применимыми в обработке подземных пластов, и, более конкретно, к усовершенствованным способам размещения и/или отклонения обрабатывающих текучих сред в подземных пластах.
[0002] Обрабатывающие текучие среды могут быть использованы в многообразных подземных обработках. Применяемый здесь термин «обработка» или «обрабатывание» имеет отношение к любой подземной операции, в которой используют текучую среду в связи с желательной функцией и/или для желательной цели. Термины «обработка» или «обрабатывание», как применяемые здесь, не подразумевают какое-нибудь конкретное действие текучей среды или любого конкретного ее компонента. Примеры общеупотребительных подземных обработок включают, но не ограничиваются таковыми, бурильные операции, обработки перед набивкой, операции по гидравлическому разрыву пласта, операции перфорирования, работы по предварительному промыванию скважин, обработки по последующей промывке скважин, обработки для борьбы с поступлением песка (например, гравийная набивка), кислотные обработки (например, кислотная обработка материнской породы или кислотная обработка трещины), обработки с гидроразрывом пласта и заполнением скважинного фильтра гравием в одной операции, работы по цементированию, обработки для борьбы с водопроявлениями, обработки для регулирования водоотдачи (например, гелевые тампоны) и работы по очистке ствола буровой скважины.
[0003] В подземных обработках часто, желательно, обрабатывать интервал подземного пласта, который имеет секции с переменными проницаемостью, пористостью, повреждением и/или пластовыми давлениями и тем самым может принимать переменные количества определенных обрабатывающих текучих сред. Например, низкое пластовое давление в определенных зонах подземного пласта или материнской горной породы, или проппантная набивка с высокой пористостью могут обуславливать поглощение этой частью более значительных количеств определенных обрабатывающих текучих сред. Может оказаться затруднительным достижение равномерного распределения обрабатывающей текучей среды по всему интервалу. Например, обрабатывающая текучая среда может преимущественно поступать в части интервала с низким гидравлическим сопротивлением потоку текучей среды в ущерб частям интервала с более высоким гидравлическим сопротивлением потоку текучей среды. В некоторых ситуациях эти интервалы с переменным гидравлическим сопротивлением потоку могут быть водоносными интервалами. В других случаях часть интервала с низким гидравлическим сопротивлением потоку текучей среды может представлять собой колено или изгиб ствола буровой скважины, в которые может преимущественно поступать обрабатывающая текучая среда. В еще других примерах часть интервала с низким гидравлическим сопротивлением потоку текучей среды может представлять собой стык многоствольной скважины, в который может предпочтительно поступать обрабатывающая текучая среда.
[0004] В традиционных способах обработки таких подземных пластов, как только была проведена обработка частей подземного пласта с меньшим гидравлическим сопротивлением потоку текучей среды, эта зона может быть загерметизирована с использованием разнообразных способов отклонения обрабатывающих текучих сред к частям интервала с большим гидравлическим сопротивлением потоку текучей среды. Такие способы могут включать, помимо всего прочего, нагнетание дисперсных материалов, вспененных материалов, пробок, пакеров или блокирующих полимеров (например, сшитых водных гелей) в интервал, чтобы по существу перекрывать высокопроницаемые части подземного пласта, как только они были обработаны, тем самым отклоняя нагнетаемые впоследствии текучие среды к частям подземного пласта с большим гидравлическим сопротивлением потоку текучей среды.
[0005] Хотя применение этих способов отклонения было успешным, могли иметь место недостатки. Например, во многих случаях по меньшей мере некоторая часть закупоривающего материала может быть непреднамеренно размещена в части подземного пласта с большим гидравлическим сопротивлением потоку текучей среды, что может затруднять или предотвращать совершенную обработку этой части. Более того, в ситуациях, где часть пласта с меньшим гидравлическим сопротивлением потоку текучей среды была подвергнута гидроразрыву, определенные типы избирательно закупоривающих добавок (например, дисперсных материалов) могут быть не в состоянии эффективно герметизировать зону без применения огромных объемов избирательно закупоривающей добавки, размещение которой может быть дорогостоящим и/или удаление может быть затруднительным.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
[0006] Настоящее изобретение относится к способам, которые могут быть применимыми в обработке подземных пластов, и, более конкретно, к усовершенствованным способам размещения и/или отклонения обрабатывающих текучих сред в подземных пластах.
[0007] В одном варианте исполнения способы согласно настоящему изобретению включают в себя стадии, на которых вводят закупоривающий материал в пронизанный стволом скважины подземный пласт, чтобы уменьшить или предотвратить поток текучей среды в первую часть подземного пласта, вводят часть первой текучей среды во вторую часть подземного пласта, имеющую большее гидравлическое сопротивление потоку текучей среды, чем первая часть подземного пласта, обеспечивают удаление закупоривающего материала из подземного пласта после того, как по меньшей мере часть первой текучей среды была введена во вторую часть подземного пласта, и вводят часть второй текучей среды в первую часть подземного пласта.
[0008] В еще одном варианте исполнения способы согласно настоящему изобретению включают стадии, на которых вводят закупоривающий материал в пронизанный стволом скважины подземный пласт, чтобы уменьшить или предотвратить поток текучей среды в первую часть подземного пласта, вводят часть первой текучей среды во вторую часть подземного пласта, имеющую большее гидравлическое сопротивление потоку текучей среды, чем первая часть подземного пласта, обеспечивают удаление закупоривающего материала из подземного пласта после того, как по меньшей мере часть первой текучей среды была введена во вторую часть подземного пласта, и вводят часть второй текучей среды в первую часть подземного пласта со скоростью, достаточной для создания или расширения одной или более трещин в первой части подземного пласта.
[0009] В одном варианте исполнения способы согласно настоящему изобретению включают стадии, на которых вводят первый закупоривающий материал в пронизанный стволом скважины подземный пласт, чтобы уменьшить или предотвратить течение текучей среды в первую часть подземного пласта, определяют, когда первый закупоривающий материал уменьшил или предотвратил поток текучей среды в первую часть подземного пласта, вводят часть первой текучей среды во вторую часть подземного пласта, имеющую большее гидравлическое сопротивление потоку текучей среды, чем первая часть подземного пласта, вводят второй закупоривающий материал в пронизанный стволом скважины подземный пласт, чтобы уменьшить или предотвратить поток текучей среды во вторую часть подземного пласта, вводят часть второй текучей среды в первую часть подземного пласта с первой скоростью потока, обеспечивают удаление первого закупоривающего материала из подземного пласта, определяют, когда первый закупоривающий материал, по меньшей мере частично, был удален из подземного пласта, мониторингом температуры в этой части подземного пласта и вводят вторую текучую среду в первую часть подземного пласта.
[0010] Признаки и преимущества настоящего изобретения будут понятны квалифицированным специалистам в данной области техники. В то время как квалифицированными специалистами в этой области техники могут быть сделаны многочисленные изменения, такие изменения находятся в пределах области изобретения.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
[0011] Приведенные чертежи иллюстрируют определенные аспекты некоторых вариантов осуществления настоящего изобретения и не должны быть использованы для ограничения или определения объема изобретения.
[0012] Фиг.1-8 иллюстрируют стадии, выполняемые в одном варианте исполнения способов согласно настоящему изобретению.
ОПИСАНИЕ ПРЕДПОЧТИТЕЛЬНЫХ ВАРИАНТОВ ИСПОЛНЕНИЯ
[0013] Настоящее изобретение относится к способам, которые могут быть применимыми в обработке подземных пластов, и, более конкретно, к усовершенствованным способам размещения и/или отклонения обрабатывающих текучих сред в подземных пластах.
[0014] Способы согласно настоящему изобретению в основном включают стадии, на которых вводят закупоривающий материал в пронизанный стволом скважины подземный пласт, чтобы уменьшить или предотвратить течение текучей среды в первую часть подземного пласта, вводят первую текучую среду во вторую часть подземного пласта, имеющую большее гидравлическое сопротивление потоку текучей среды, чем первая часть подземного пласта, обеспечивают удаление закупоривающего материала из подземного пласта после того, как по меньшей мере часть первой текучей среды была введена во вторую часть подземного пласта, и вводят вторую текучую среду в первую часть подземного пласта. Термин «закупоривающий материал», используемый здесь, означает и имеет отношение главным образом к материалу, который действует для уменьшения или предотвращения, временного или постоянного, потока текучей среды в конкретное местоположение, обычно находящееся в подземном пласте, причем материал служит для того, чтобы, по меньшей мере частично, блокировать местоположение и, тем самым, заставить текучую среду «отклониться» в другое местоположение. Термин «гидравлическое сопротивление потоку текучей среды» применен для обозначения снижения скорости, с которой текучая среда будет притекать в область и/или протекать через нее при фиксированной скорости нагнетания. Применяемое здесь «гидравлическое сопротивление потоку текучей среды» может быть обусловлено низкой сквозной пористостью части пласта и/или пониженной способностью части пласта принимать или пропускать текучие среды, например, вследствие высокого пластового давления. Например, низкое пластовое давление в определенных областях подземного пласта или материнской горной породы либо проппантная набивка с высокой пористостью могут обуславливать поглощение этой частью увеличенных количеств определенных обрабатывающих текучих сред и, тем самым, снижать их «гидравлическое сопротивление потоку текучей среды». Еще один фактор, который может влиять на «гидравлическое сопротивление потоку текучей среды» части подземного пласта, может представлять собой низкую проницаемость в определенных зонах подземного пласта или материнской горной породы, которая может позволить этой части пласта или материнской горной породы поглощать увеличенные количества определенных обрабатывающих текучих сред и, тем самым, также снижать ее «гидравлическое сопротивление потоку текучей среды».
[0015] Способы согласно настоящему изобретению главным образом применяют для обработки подземных пластов, имеющих части с различающимися величинами гидравлического сопротивления потоку текучей среды. В некоторых ситуациях эти части с переменными величинами гидравлического сопротивления потоку текучей среды могут включать водоносные интервалы. В других случаях часть подземного пласта с низким гидравлическим сопротивлением потоку текучей среды может включать колено или изгиб ствола буровой скважины, в которые может преимущественно поступать обрабатывающая текучая среда. В других дополнительных вариантах исполнения часть подземного пласта с низким гидравлическим сопротивлением потоку текучей среды может представлять собой стык многоствольной буровой скважины, в который может предпочтительно поступать обрабатывающая текучая среда. Среди многих преимуществ настоящего изобретения, некоторые из каковых здесь не упомянуты, в определенных вариантах исполнения способы согласно настоящему изобретению могут упрощать улучшенный контроль над размещением обрабатывающих текучих сред в подземном пласте, повышенную производительность текучих сред в разнообразных подземных обработках и/или более совершенную обработку частей подземного пласта с гидравлическим сопротивлением потоку текучей среды.
[0016] Подземные пласты, обрабатываемые в способах согласно настоящему изобретению, могут представлять собой любой подземный пласт, имеющий по меньшей мере две части с различными величинами гидравлического сопротивления потоку текучей среды. По меньшей мере одна часть подземного пласта в основном является пронизанной одним или более стволами скважин, пробуренными в любом направлении через пласт. В определенных вариантах исполнения весь ствол буровой скважины или его часть, проходящие через подземный пласт, могут включать обсадные трубы или колонны, размещенные в стволе скважины («обсаженный ствол скважины» или «частично обсаженный ствол скважины»), среди других целей, для облегчения добычи текучих сред из пласта и выведения по стволу буровой скважины на поверхность. В других вариантах исполнения ствол буровой скважины может быть «необсаженным стволом скважины», который не имеет обсадной колонны. В тех вариантах исполнения, где ствол буровой скважины представляет собой обсаженный ствол скважины или частично обсаженный ствол скважины, может быть необходимым создание перфораций в обсадной колонне до или во время исполнения способа согласно настоящему изобретению, помимо всего прочего, чтобы обеспечить возможность перемещения текучей среды между каналом обсадной колонны и соседней частью подземного пласта. Эти перфорации могут быть сделаны любыми средствами или способом, известными в технологии. В определенных вариантах исполнения, где обсадная колонна является перфорированной, может быть желательным перфорирование обсадной колонны с более высокой плотностью перфорации в зоне, смежной с частью или частями подземного пласта, имеющими большее гидравлическое сопротивление потоку текучей среды, среди других соображений, для усиления течения текучей среды в эту часть.
[0017] Закупоривающий(щие) материал(лы), используемый(мые) в настоящем изобретении, может(гут) включать любой материал или комбинацию материалов, которые действуют для уменьшения или предотвращения, временного или постоянного, течения текучей среды в конкретное местоположение в подземном пласте, причем материал служит для того, чтобы, по меньшей мере частично, блокировать местоположение и тем самым заставить текучую среду «отклониться» в другое местоположение. Примеры материалов, которые могут быть пригодными для применения в качестве закупоривающего материала в настоящем изобретении, включают, но не ограничиваются таковыми, текучие среды (например, текучие среды на водной основе и/или на неводной основе), эмульсии, гели (включающие, но не ограничивающиеся таковыми, вязкоупругие поверхностно-активные гели), поверхностно-активные вещества (например, мыла или вязкоупругие поверхностно-активные вещества), вспененные материалы, дисперсные материалы (например, карбонат кальция, кремнеземная мука), определенные полимеры, модификаторы относительной проницаемости, разлагаемые материалы (например, сложные полиэфиры, ортоэфиры, полиортоэфиры, полиангидриды, полимолочная кислота, дегидратированные органические или неорганические соединения, безводный борат, соли органических кислот или любые их производные), смолы (например, водорастворимые смолы, маслорастворимые смолы и т.д.), шары, пакеры (например, направленные пакеры и пакеры для избирательной закачки), уплотняющие шарики для перфораций, скважинные регуляторы дебита, песчаные пробки, пакер-пробки и тому подобные. «Разлагаемые материалы» включают такие материалы, которые способны подвергаться необратимому разложению в забое буровой скважины. Термин «необратимый», используемый здесь, означает, что разлагаемый закупоривающий агент, будучи разложившимся, не должен вновь кристаллизоваться или опять переходить в твердое состояние в забое буровой скважины, например, разлагаемый закупоривающий агент должен разлагаться на месте, но не должен вновь кристаллизоваться или опять переходить в твердое состояние на месте. Термины «разложение» или «разлагаемый» имеют отношение как к двум относительно предельным случаям гидролитического разложения, которым может подвергаться разлагаемый закупоривающий агент, например, объемной эрозии и поверхностной эрозии, так и к любому этапу разложения между этими двумя ситуациями. Это разложение, помимо всего прочего, может быть результатом химической реакции или термического воздействия, или реакции, инициированной излучением. Термин «производное» определяется здесь включающим любое соединение, которое получено из одного из перечисленных соединений, например, замещением одного атома в указанном соединении еще одним атомом или группой атомов, перегруппировкой двух или более атомов в указанном соединении, ионизацией перечисленных соединений или созданием соли указанного соединения. Примеры имеющихся в продаже на рынке материалов, которые могут быть пригодными закупоривающими материалами в способах согласно настоящему изобретению, включают такие продукты, доступные под торговыми наименованиями GUIDONSM AGS, BIOVERTTM, BARACARB®, OSR 100TM, MATRISEAL®, все из которых производятся фирмой Halliburton Energy Services, Дункан, Оклахома. Другие примеры закупоривающих материалов, которые могут быть пригодными для применения в способах согласно настоящему изобретению, также могут включать такие, которые описаны в патентах США №№ 6983798 и 6896058 и патентной заявке США с серийным № 12/501881 (поданной 13 июля 2009 г.), содержание которых включено здесь ссылкой во всей полноте.
[0018] Выбор закупоривающего материала, в том числе желательного размера и формы любого дисперсного закупоривающего материала, в способах согласно настоящему изобретению может зависеть, среди прочих факторов, от типа подземного пласта (например, характеристик горной породы), присутствия или отсутствия обсадной колонны в подземном пласте, состава используемой(мых) обрабатывающей(щих) текучей(чих) среды(д), температуры подземного пласта, размера перфораций, желательного временного режима и скорости его удаления и любых последующих обработок, выполняемых после исполнения способа согласно настоящему изобретению. Например, если закупоривающий материал должен быть размещен в части ствола скважины, которая является необсаженной, закупоривающий материал должен быть выбран так, чтобы он был способен формировать фильтрационный осадок на внутренней стенке ствола буровой скважины. В других вариантах исполнения размер частиц дисперсного закупоривающего материала может быть выбран так, чтобы проницаемость для текучей среды этих дисперсных материалов в набивке была относительно низкой. Квалифицированному специалисту в этой области технологии, имеющему благоприятную возможность располагать этим описанием в плане этих и прочих факторов, будут понятными пригодные и/или предпочтительные материалы в качестве закупоривающих материалов для конкретного варианта применения настоящего изобретения.
[0019] Закупоривающий материал, используемый в настоящем изобретении (то есть, закупоривающий материал, применяемый для уменьшения или предотвращения течения текучей среды в часть подземного пласта с меньшим гидравлическим сопротивлением потоку текучей среды), должен быть разлагаемым, растворимым или иным образом удаляемым некоторыми известными в технологии способами. В определенных вариантах исполнения этот закупоривающий материал может быть выбран как материал, который разлагается или растворяется в присутствии текучей среды, используемой для обработки части подземного пласта с меньшим гидравлическим сопротивлением потоку текучей среды (или ее компонента), и/или промежуточной текучей среды, вводимой в пласт после того, как была обработана часть пласта с большим гидравлическим сопротивлением потоку текучей среды. В определенных вариантах исполнения закупоривающий материал может быть выбран как материал, который является просто удаляемым по прошествии времени.
[0020] В определенных вариантах исполнения в подземный пласт необязательно может быть введен второй закупоривающий материал, среди прочих причин, для уменьшения или предотвращения течения текучей среды в часть подземного пласта с большим гидравлическим сопротивлением потоку текучей среды после того, как по меньшей мере часть первой текучей среды была введена в эту часть подземного пласта. В определенных вариантах исполнения необязательный второй закупоривающий материал может быть выбран так, чтобы он не был по существу разлагаемым, растворимым или иным образом удаляемым текучей средой, используемой для обработки части подземного пласта с меньшим гидравлическим сопротивлением потоку текучей среды, или не был по существу разлагаемым, растворимым или иным образом удаляемым этой текучей средой в пределах конкретного периода времени, отведенного для обработки. Однако такой второй закупоривающий материал может быть удаляемым иным образом (например, удаляемым после длительного периода времени), даже если он не является удаляемым в вышеизложенных условиях. Например, если для обработки части подземного пласта с меньшим гидравлическим сопротивлением потоку текучей среды применяют водную текучую среду, то может быть нежелательным использование второго закупоривающего материала, который разлагается или растворяется в присутствии воды, такого как полимолочная кислота. Квалифицированному специалисту в этой области технологии, имеющему благоприятную возможность располагать этим описанием, будут понятными закупоривающие материалы, надлежащие для таких вариантов применения, в зависимости, помимо всего прочего, от используемых текучих сред, продолжительности обработки, условий в обрабатываемом пласте и других факторов.
[0021] Первая и вторая текучие среды, применяемые в способах согласно настоящему изобретению, могут включать любую пластовую текучую среду или обрабатывающую текучую среду, используемую или находящуюся в подземных пластах или обработках. Как применяемый здесь, термин «обрабатывающая текучая среда» главным образом имеет отношение к любой текучей среде, которая может быть использована для подземных работ в связи с желательной функцией и/или для желательной цели. Термин «обрабатывающая текучая среда» не подразумевает какого-нибудь конкретного действия, оказываемого текучей средой или любым ее компонентом. Эти текучие среды могут быть использованы для выполнения одной или более подземных обработок или операций, которые могут включать любую подземную обработку или операцию, известную в технологии. Примеры обычных подземных обработок включают, но не ограничиваются таковыми, бурильные операции, обработки перед набивкой, операции по гидравлическому разрыву пласта, операции перфорирования, работы по предварительному промыванию скважин, обработки для последующей промывки скважин, обработки для борьбы с поступлением песка (например, гравийная набивка), кислотные обработки (например, кислотная обработка материнской породы или кислотная обработка трещины), обработки с гидроразрывом пласта и заполнением скважинного фильтра гравием в одной операции, работы по цементированию, обработки для борьбы с водопроявлениями и работы по очистке ствола буровой скважины.
[0022] В зависимости от типа выполняемой обработки текучая среда может включать в себя любую обрабатывающую текучую среду, известную в технологии. Примеры обрабатывающих текучих сред, которые могут быть пригодными, включают текучие среды для гидроразрыва пласта, текучие среды для гравийной обсыпки, текучие среды для обработки перед набивкой, текучие среды для набивки, текучие среды для предварительной промывки, текучие среды для последующей промывки, кислотные текучие среды, текучие среды для затвердевания, цементирующие текучие среды, текучие среды для промывания ствола буровой скважины, текучие среды для заканчивания скважин, водные текучие среды (например, пресная вода, соленая вода, рассолы и т.д.), неводные текучие среды (например, минеральные масла, синтетические масла, сложные эфиры и т.д.), текучие среды на основе углеводородов (например, керосин, ксилол, толуол, дизельное топливо, масла и т.д.), вспененные текучие среды (например, жидкость, которая включает газ), гели, эмульсии, газы и тому подобные. Текучие среды, применяемые в настоящем изобретении, необязательно могут включать одну или более из любых добавок, известных в технологии, при условии, что такие добавки не мешают другим компонентам текучей среды или другим элементам, присутствующим во время ее применения. Примеры таких дополнительных добавок включают, но не ограничиваются таковыми: соли, мыла, поверхностно-активные вещества, вспомогательные поверхностно-активные вещества, карбоновые кислоты, кислоты, добавки для регулирования водоотдачи, газ, пенообразователи, ингибиторы коррозии, ингибиторы образования отложений, сшивающие реагенты, катализаторы, стабилизаторы глин, биоциды, понизители трения, противопенные добавки, средства для закупоривания трещин, диспергаторы, коагулянты, поглотители H2S, поглотители кислорода, смазочные средства, загустители, брекеры, утяжелители, модификаторы относительной проницаемости, смолы, дисперсные материалы (например, дисперсные проппанты), смачивающие средства, реагенты для упрочнения покрытий и тому подобные. Квалифицированному специалисту в этой области технологии, имеющему благоприятную возможность располагать этим описанием, будут понятными типы добавок, которые могут быть включены в текучие среды для конкретного варианта применения.
[0023] В определенных вариантах исполнения вторая текучая среда может быть использована не только для обработки части подземного пласта с меньшим гидравлическим сопротивлением потоку текучей среды, но также она может быть применена для удаления по меньшей мере части закупоривающего материала, использованного для отклонения текучей среды при обработке части(тей) с большим гидравлическим сопротивлением потоку текучей среды. В вариантах исполнения, где вторую текучую среду применяют таким путем, вторая текучая среда может быть введена поначалу при более низкой величине расхода потока или втечение кратковременной начальной стадии, с последующим значительным снижением величины расхода потока, помимо всего прочего, чтобы позволить второй текучей среде впитаться в закупоривающий материал для облегчения его удаления. В некоторых вариантах исполнения ствол буровой скважины может быть заглушен втечение некоторого периода времени, среди других целей, чтобы позволить закупоривающему материалу прореагировать со второй текучей средой и быть удаленным. Как только закупоривающий материал, по меньшей мере частично, был удален, величину расхода потока второй текучей среды можно увеличить, чтобы позволить текучей среде проникать в часть пласта с меньшим гидравлическим сопротивлением потоку текучей среды.
[0024] Чтобы проиллюстрировать один вариант исполнения способов согласно настоящему изобретению, нижеследующий пример одного варианта осуществления изобретения разъяснен с привлечением фиг.1-8. Нижеследующий пример никоим образом не следует считать ограничивающим или определяющим всю область изобретения в целом.
[0025] На фиг.1 показан вид сбоку подземного пласта, пронизанного стволом скважины с обсадной колонной 10, размещенной в стволе скважины. Ствол скважины проходит через две зоны 20 и 30 подземного пласта, в котором гидравлическое сопротивление потоку текучей среды зоны 30 является более высоким, чем гидравлическое сопротивление потоку текучей среды зоны 20. Фиг.2 показывает перфорации 12, созданные в обсадной колонне 10. В этом варианте исполнения часть обсадной колонны, смежная с зоной 30, была перфорирована с большей плотностью перфорации, чем в зоне 20. На фиг.3 показано, что закупоривающий материал 14 размещают для блокирования зоны 20 и отклонения текучей среды, протекающей в ствол скважины, к другим частям подземного пласта. На фиг.4 показано, что обрабатывающую текучую среду 16 вводят в зону 30, несмотря на большее гидравлическое сопротивление потоку текучей среды зоны 30, поскольку закупоривающий материал 14 отклоняет текучую среду от зоны 20. На фиг.5 показана зона 30, полностью обработанная обрабатывающей текучей средой 16, куда могут входить такие обработки, как гидравлический разрыв пласта (то есть введение текучей среды со скоростью, достаточной для создания или расширения одной или более трещин в подземном пласте), кислотная обработка, обработка ингибитором образования отложений и/или любая другая подземная обработка, известная в технологии. Как только зона 30 была обработана в достаточной мере (что может быть установлено любым известным в технологии способом, некоторые из которых описаны ниже в абзацах [0027]-[0029]), закупоривающий материал 18 может быть размещен для блокирования обработанной зоны 30 и отклонения текучих сред в стволе буровой скважины в другие части подземного пласта. Фиг.6 иллюстрирует следующую стадию этого варианта исполнения, на которой обрабатывающую текучую среду 40 вводят в ствол скважины и скорость нагнетания снижают для обеспечения размещения текучей среды в стволе скважины. В определенных вариантах исполнения эта текучая среда может контактировать с закупоривающим материалом 18 без существенного растворения, разложения или иным образом удаления закупоривающего материала 18. Однако обрабатывающая текучая среда 40 может быть составлена так, чтобы растворять, разлагать или иным образом удалять большую часть или весь закупоривающий материал 14, как показано на фиг.7. Как показано на фиг.8, если скорость нагнетания обрабатывающей текучей среды 40 увеличивают, обрабатывающая текучая среда 40 внедряется в зону 20 (в определенных вариантах исполнения, вместо этого в данный момент может быть введена текучая среда, отличающаяся от обрабатывающей текучей среды 40). Как показано, обрабатывающую текучую среду 40 отклоняют от зоны 30 закупоривающим материалом 18 и затем обрабатывают зону 20 (например, подвергают гидроразрыву пласта, кислотной обработке и т.д.) обрабатывающей текучей средой 40.
[0026] В определенных вариантах исполнения способы согласно настоящему изобретению необязательно могут включать в себя введение одной или более буферных текучих сред до или после любой из прочих стадий способов согласно настоящему изобретению, среди прочих целей, для изолирования различных текучих сред, используемых для обработки пласта в разные периоды времени. Эти буферные текучие среды могут включать в себя любую текучую среду, известную в технологии, такую как водные текучие среды (например, пресная вода, соленая вода, рассолы и т.д.), неводные текучие среды (например, минеральные масла, синтетические масла, сложные эфиры и т.д.), текучие среды на углеводородной основе (например, керосин, ксилол, толуол, дизельное топливо, масла и т.д.), вспененные текучие среды (например, жидкость, которая включает газ), гели, эмульсии, газы и тому подобные. Эти необязательные буферные текучие среды могут включать одну или более дополнительных добавок, известных в технологии, при условии, что такие добавки не мешают другим компонентам текучей среды или другим элементам, присутствующим во время ее применения.
[0027] В определенных вариантах исполнения способы согласно настоящему изобретению необязательно могут включать в себя мониторинг потока одной или более текучих сред (например, первой и/или второй текучих сред) по меньшей мере в части подземного пласта во время исполнения всего или части способа согласно настоящему изобретению, например, для обеспечения того, чтобы части подземного пласта с большим гидравлическим сопротивлением потоку текучей среды были обработаны до удаления закупоривающего материала, для определения присутствия или отсутствия первого или второго закупоривающего материала в пласте и/или для определения, действительно ли первый и/или второй закупоривающий материал отклоняет текучие среды, введенные в подземный пласт. Это может быть выполнено любым способом или комбинацией способов, известных в технологии. В определенных вариантах исполнения это может быть сделано мониторингом давления текучей среды на поверхности ствола буровой скважины, проходящей через подземный пласт, куда вводят текучие среды. Например, если давление текучей среды на поверхности возрастает, это может показывать, что текучая среда отклонена в часть подземного пласта с большим гидравлическим сопротивлением потоку текучей среды. Эти способы могут включать разнообразные методы каротажа скважин и/или методы компьютеризованного отслеживания текучих сред, известные в технологии, которые пригодны для мониторинга течения текучих сред. Примеры имеющихся в продаже на рынке эксплуатационных систем, включающих зондирование поверхностного давления текучих сред, которые могут быть пригодными для применения в способах согласно настоящему изобретению, включают такие, которые доступны под торговым наименованием EZ-GAUGETM от фирмы Halliburton Energy Services, Дункан, Оклахома.
[0028] В определенных вариантах исполнения мониторинг течения одной или более текучих сред по меньшей мере в части подземного пласта может быть проведен, отчасти, с использованием способа распределенного измерения температуры. Эти способы могут включать серию стадий. В основном, устройство для измерения температуры (например, термопары, термисторы или оптоволоконные кабели) может быть размещено в стволе скважины, проходящей через часть подземного пласта, на постоянной основе или с возможностью извлечения, для регистрации температурных данных в пласте и/или в стволе буровой скважины. В определенных вариантах применения оптоволоконный кабель может быть предварительно вмонтирован в обсадную колонну перед тем, как обсадную колонну опускают в ствол буровой скважины. В определенных вариантах применения может быть желательным применение дополнительного устройства (например, гибких насосно-компрессорных труб малого диаметра) или текучей среды для размещения оптоволоконного кабеля в стволе буровой скважины. В определенных вариантах исполнения можно установить базовый температурный профиль для всего подземного пласта или его части и затем отслеживать изменения температуры для определения течения текучих сред в разнообразных частях подземного пласта. Для обработки температурных данных и/или создания визуализаций на основе этих данных могут быть применены разнообразные пакеты компьютерных программ. Определенные способы распределенного измерения температуры, которые могут быть пригодными для применения в способах согласно настоящему изобретению, могут включать имеющиеся в продаже на рынке устройства, такие, как известные под торговыми наименованиями STIMWATCH® (доступные от фирмы Halliburton Energy Services, Дункан, Оклахома) или SENSATM (доступные от фирмы Schlumberger Technology Corporation, Шуга-Ленд, Техас). Определенные примеры способов распределенного измерения температуры, которые могут быть пригодными для применения в способах согласно настоящему изобретению, также могут включать такие, которые описаны в патентах США №№ 7055604; 6751556; 7086484; 6557630 и 5028146, содержание которых полностью включено в данное описание ссылкой. Квалифицированному специалисту в этой области технологии, ознакомленному с данным описанием, понятно, желательно ли отслеживать поток одной или более текучих сред в по меньшей мере части подземного пласта, а также будут ясными способы осуществления этого надлежащим образом для конкретного варианта применения настоящего изобретения на основе, помимо всего прочего, характеристик (например, величин гидравлического сопротивления потоку текучей среды) различных участков подземного пласта, типов присутствующих текучих сред, доступности оборудования и других имеющих отношение к делу факторов.
[0029] В определенных вариантах исполнения способы согласно настоящему изобретению необязательно могут включать в себя мониторинг присутствия закупоривающего материала во время исполнения всего способа согласно настоящему изобретению или его части. Это может быть выполнено любым способом или комбинацией способов, известных в технологии. В определенных вариантах исполнения это может быть сделано мониторингом температуры в части подземного пласта и/или ствола буровой скважины, например, для определения, разложился или растворился ли закупоривающий материал перед тем, как обработана часть подземного пласта с меньшим гидравлическим сопротивлением потоку текучей среды. Например, разложение и/или растворение определенных закупоривающих материалов может включать экзотермическую реакцию, при которой выделяется теплота, и тем самым повышение температуры может показывать, что закупоривающий материал удаляется или был удален. Если выполняют эту стадию мониторинга, она может быть осуществлена с использованием любого известного в технологии средства, включающего, но не ограничивающегося таковыми, методы распределенного измерения температуры, описанные выше в абзаце [0028]. В определенных вариантах исполнения присутствие закупоривающего материала можно отслеживать расчетом оценочной продолжительности его удаления, например, на основе скорости реакции закупоривающего материала с текучей средой, которую вводят в забой скважины для разложения или растворения материала, или для инициирования его самораспада. Квалифицированному специалисту в этой области технологии, имеющему благоприятную возможность располагать этим описанием, будет понятно, желательно ли отслеживать присутствие закупоривающего материала, а также будут ясными способы сделать это надлежащим образом для конкретного варианта применения настоящего изобретения на основе, помимо всего прочего, характеристик (например, величин гидравлического сопротивления потоку текучей среды) различных участков подземного пласта, типа используемого закупоривающего материала, доступности оборудования и других имеющих отношение к делу факторов.
[0030] В связи с вышеизложенным понятно, что настоящее изобретение хорошо приспособлено для достижения упомянутых целей и преимуществ, а также тех, которые изначально присущи ему. Раскрытые выше конкретные варианты исполнения являются только иллюстративными, так как настоящее изобретение может быть модифицировано и реализовано на практике отличными, но эквивалентными путями, очевидными квалифицированным специалистам в этой области технологии, имеющим благоприятную возможность располагать изложенными в нем указаниями. Кроме того, не предполагаются никакие ограничения в отношении показанных здесь деталей конструкции или компоновки, иные, нежели описанные ниже в пунктах патентной формулы. Поэтому очевидно, что представленные выше конкретные иллюстративные варианты исполнения могут быть изменены или модифицированы, и все такие вариации рассматриваются как находящиеся в пределах области настоящего изобретения. В то время как составы и способы описаны в терминах «включающие», «содержащие» или «заключающие в себе» разнообразные компоненты или стадии, составы и способы также могут «состоять по существу из» или «состоять из» разнообразных компонентов и стадий. Все раскрытые выше численные значения и диапазоны могут варьировать в некоторой степени. Всякий раз, когда представлен численный диапазон с нижним пределом и верхним пределом, являются конкретно раскрытыми любое число и любой включенный диапазон, попадающие внутрь диапазона. В частности, каждый раскрытый здесь диапазон значений (в форме «от около а до около б», или, эквивалентно, «приблизительно от а до б», или, эквивалентно, «от приблизительно а-б») следует понимать как излагающий каждое численное значение и диапазон, заключенный внутри более широкого диапазона величин. Кроме того, термины в пунктах патентной формулы имеют свое очевидное, обыкновенное значение, если нечто иное четко не оговорено и ясно не определено патентообладателем. Более того, используемое в пунктах формулы изобретения единственное число элементов означает один или более элементов. Если имеет место противоречие в применениях термина в данном описании и в одном или более патентах или прочих документах, которые включены в описание ссылкой, следует принимать определения, которые согласуются с настоящим описанием.

Claims (12)

1. Способ размещения и отклонения текучих сред в подземных пластах, содержащий следующие стадии:
введение первого закупоривающего материала в подземный пласт, через который проходит ствол скважины, для уменьшения или предотвращения потока текучей среды в первую часть подземного пласта;
введение части первой текучей среды во вторую часть подземного пласта, имеющую большее гидравлическое сопротивление потоку текучей среды, чем первая часть подземного пласта;
обеспечение удаления первого закупоривающего материала из подземного пласта после введения по меньшей мере части первой текучей среды во вторую часть подземного пласта; и
введение части второй текучей среды в первую часть подземного пласта;
введение второго закупоривающего материала в подземный пласт для уменьшения или предотвращения потока текучей среды во вторую часть подземного пласта после введения по меньшей мере части первой текучей среды во вторую часть подземного пласта;
введение части второй текучей среды в первую часть подземного пласта со скоростью, достаточной для создания или расширения одной или более трещин в первой части подземного пласта.
2. Способ по п.1, в котором второй закупоривающий материал не является, по существу, разлагаемым, растворимым или иным образом удаляемым второй текучей средой.
3. Способ по п.1, дополнительно содержащий стадию мониторинга потока первой текучей среды во вторую часть подземного пласта.
4. Способ по п.3, в котором мониторинг потока первой текучей среды во вторую часть подземного пласта содержит применение устройства для распределенного измерения температуры.
5. Способ по п.3, в котором мониторинг потока первой текучей среды во вторую часть подземного пласта содержит мониторинг давления текучей среды на поверхности ствола скважины, проходящей через подземный пласт.
6. Способ по п.1, дополнительно содержащий стадию мониторинга присутствия закупоривающего материала в подземном пласте.
7. Способ по п.5, в котором одна или более обсадных колонн размещена в стволе скважины.
8. Способ по п.7, в котором одна или более обсадных колонн имеет множество перфораций в части обсадной колонны, смежной с первой и второй частями подземного пласта.
9. Способ по п.8, в котором плотность перфораций в части обсадной колонны, смежной со второй частью подземного пласта, является большей, чем плотность перфораций в части обсадной колонны, смежной с первой частью подземного пласта.
10. Способ размещения и отклонения текучих сред в подземных пластах, содержащий следующие стадии:
(а) введение первого закупоривающего материала в подземный пласт, через который проходит ствол скважины, для уменьшения или предотвращения потока текучей среды в первую часть подземного пласта;
(б) определение уменьшения или предотвращения первым закупоривающим материалом потока текучей среды в первую часть подземного пласта;
(в) введение части первой текучей среды во вторую часть подземного пласта, имеющую большее гидравлическое сопротивление потоку текучей среды, чем первая часть подземного пласта;
(г) введение второго закупоривающего материала в подземный пласт, через который проходит ствол скважины, для уменьшения или предотвращения потока текучей среды во вторую часть подземного пласта;
(д) введение части второй текучей среды в первую часть подземного пласта с первой скоростью потока;
(е) обеспечение удаления первого закупоривающего материала из подземного пласта;
(ж) определение, когда первый закупоривающий материал, по меньшей мере частично, был удален из подземного пласта, посредством мониторинга температуры в этой части подземного пласта; и
(з) введение второй текучей среды в первую часть подземного пласта.
11. Способ по п.10, в котором стадия (б) или (ж) содержит применение устройства для распределенного измерения температуры.
12. Способ по п.11, в котором первый закупоривающий материал содержит по меньшей мере один разлагаемый материал.
RU2012112472/03A 2009-09-01 2010-08-27 Улучшенные способы размещения и отклонения текучих сред в подземных пластах RU2527988C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/551,713 US8016034B2 (en) 2009-09-01 2009-09-01 Methods of fluid placement and diversion in subterranean formations
US12/551,713 2009-09-01
PCT/GB2010/001628 WO2011027100A2 (en) 2009-09-01 2010-08-27 Improved methods of fluid placement and diversion in subterranean formations

Publications (2)

Publication Number Publication Date
RU2012112472A RU2012112472A (ru) 2013-10-10
RU2527988C2 true RU2527988C2 (ru) 2014-09-10

Family

ID=43623121

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012112472/03A RU2527988C2 (ru) 2009-09-01 2010-08-27 Улучшенные способы размещения и отклонения текучих сред в подземных пластах

Country Status (8)

Country Link
US (1) US8016034B2 (ru)
AR (1) AR078110A1 (ru)
AU (1) AU2010291050B2 (ru)
BR (1) BR112012004707B1 (ru)
MX (1) MX2012002513A (ru)
NO (1) NO338442B1 (ru)
RU (1) RU2527988C2 (ru)
WO (1) WO2011027100A2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2673089C1 (ru) * 2014-10-20 2018-11-22 Шлюмбергер Текнолоджи Б.В. Система и способ обработки подземного пласта

Families Citing this family (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8109335B2 (en) * 2009-07-13 2012-02-07 Halliburton Energy Services, Inc. Degradable diverting agents and associated methods
US8016034B2 (en) 2009-09-01 2011-09-13 Halliburton Energy Services, Inc. Methods of fluid placement and diversion in subterranean formations
US8905133B2 (en) 2011-05-11 2014-12-09 Schlumberger Technology Corporation Methods of zonal isolation and treatment diversion
US10808497B2 (en) 2011-05-11 2020-10-20 Schlumberger Technology Corporation Methods of zonal isolation and treatment diversion
US9206386B2 (en) 2011-08-05 2015-12-08 Halliburton Energy Services, Inc. Systems and methods for analyzing microbiological substances
US20130032333A1 (en) 2011-08-05 2013-02-07 Halliburton Energy Services, Inc. Methods for monitoring bacteria using opticoanalytical devices
US9222892B2 (en) 2011-08-05 2015-12-29 Halliburton Energy Services, Inc. Systems and methods for monitoring the quality of a fluid
US9261461B2 (en) 2011-08-05 2016-02-16 Halliburton Energy Services, Inc. Systems and methods for monitoring oil/gas separation processes
US9441149B2 (en) 2011-08-05 2016-09-13 Halliburton Energy Services, Inc. Methods for monitoring the formation and transport of a treatment fluid using opticoanalytical devices
US9297254B2 (en) 2011-08-05 2016-03-29 Halliburton Energy Services, Inc. Methods for monitoring fluids within or produced from a subterranean formation using opticoanalytical devices
US20130031972A1 (en) 2011-08-05 2013-02-07 Halliburton Energy Services, Inc. Methods for monitoring a water source using opticoanalytical devices
US20130032545A1 (en) 2011-08-05 2013-02-07 Freese Robert P Methods for monitoring and modifying a fluid stream using opticoanalytical devices
US8960294B2 (en) 2011-08-05 2015-02-24 Halliburton Energy Services, Inc. Methods for monitoring fluids within or produced from a subterranean formation during fracturing operations using opticoanalytical devices
US9222348B2 (en) 2011-08-05 2015-12-29 Halliburton Energy Services, Inc. Methods for monitoring the formation and transport of an acidizing fluid using opticoanalytical devices
US9182355B2 (en) 2011-08-05 2015-11-10 Halliburton Energy Services, Inc. Systems and methods for monitoring a flow path
US8908165B2 (en) 2011-08-05 2014-12-09 Halliburton Energy Services, Inc. Systems and methods for monitoring oil/gas separation processes
US8997860B2 (en) 2011-08-05 2015-04-07 Halliburton Energy Services, Inc. Methods for monitoring the formation and transport of a fracturing fluid using opticoanalytical devices
US9395306B2 (en) 2011-08-05 2016-07-19 Halliburton Energy Services, Inc. Methods for monitoring fluids within or produced from a subterranean formation during acidizing operations using opticoanalytical devices
US8823939B2 (en) 2012-04-26 2014-09-02 Halliburton Energy Services, Inc. Methods and devices for optically determining a characteristic of a substance
US9019501B2 (en) 2012-04-26 2015-04-28 Halliburton Energy Services, Inc. Methods and devices for optically determining a characteristic of a substance
US8780352B2 (en) 2012-04-26 2014-07-15 Halliburton Energy Services, Inc. Methods and devices for optically determining a characteristic of a substance
US9080943B2 (en) 2012-04-26 2015-07-14 Halliburton Energy Services, Inc. Methods and devices for optically determining a characteristic of a substance
US8912477B2 (en) 2012-04-26 2014-12-16 Halliburton Energy Services, Inc. Methods and devices for optically determining a characteristic of a substance
US9013702B2 (en) 2012-04-26 2015-04-21 Halliburton Energy Services, Inc. Imaging systems for optical computing devices
US9702811B2 (en) 2012-04-26 2017-07-11 Halliburton Energy Services, Inc. Methods and devices for optically determining a characteristic of a substance using integrated computational elements
US9658149B2 (en) 2012-04-26 2017-05-23 Halliburton Energy Services, Inc. Devices having one or more integrated computational elements and methods for determining a characteristic of a sample by computationally combining signals produced therewith
US8879053B2 (en) 2012-04-26 2014-11-04 Halliburton Energy Services, Inc. Devices having an integrated computational element and a proximal interferent monitor and methods for determining a characteristic of a sample therewith
US9383307B2 (en) 2012-04-26 2016-07-05 Halliburton Energy Services, Inc. Methods and devices for optically determining a characteristic of a substance
US8941046B2 (en) 2012-04-26 2015-01-27 Halliburton Energy Services, Inc. Methods and devices for optically determining a characteristic of a substance
US9013698B2 (en) 2012-04-26 2015-04-21 Halliburton Energy Services, Inc. Imaging systems for optical computing devices
US9170208B2 (en) 2012-08-31 2015-10-27 Halliburton Energy Services, Inc. Handheld characteristic analyzer and methods of using the same
US9103716B2 (en) 2012-08-31 2015-08-11 Halliburton Energy Services, Inc. Handheld characteristic analyzer and methods of using the same
US9222896B2 (en) 2012-09-14 2015-12-29 Halliburton Energy Services, Inc. Systems and methods for inspecting and monitoring a pipeline
US8765061B2 (en) 2012-09-14 2014-07-01 Halliburton Energy Services, Inc. Systems and methods for inspecting and monitoring a pipeline
US9086383B2 (en) 2012-09-14 2015-07-21 Halliburton Energy Services, Inc. Systems and methods for monitoring chemical processes
US9176052B2 (en) 2012-09-14 2015-11-03 Halliburton Energy Services, Inc. Systems and methods for inspecting and monitoring a pipeline
US9410076B2 (en) 2012-10-25 2016-08-09 Halliburton Energy Services, Inc. Wellbore servicing methods and compositions comprising degradable polymers
US9702238B2 (en) 2012-10-25 2017-07-11 Halliburton Energy Services, Inc. Wellbore servicing methods and compositions comprising degradable polymers
US8714249B1 (en) 2012-10-26 2014-05-06 Halliburton Energy Services, Inc. Wellbore servicing materials and methods of making and using same
US9951266B2 (en) 2012-10-26 2018-04-24 Halliburton Energy Services, Inc. Expanded wellbore servicing materials and methods of making and using same
BR112015026408A2 (pt) * 2013-04-19 2017-07-25 Lubrizol Oilfield Solutions Inc sistemas de desvio hidráulico para melhorar tratamentos de matriz e métodos para uso dos mesmos
AU2013393870B2 (en) 2013-07-09 2017-06-29 Halliburton Energy Services, Inc. Integrated computational elements with laterally-distributed spectral filters
AU2013393869B2 (en) 2013-07-09 2017-05-11 Halliburton Energy Services, Inc. Integrated computational elements with frequency selective surface
US9376888B2 (en) * 2013-08-08 2016-06-28 Halliburton Energy Services, Inc. Diverting resin for stabilizing particulate in a well
US20160290115A1 (en) * 2014-01-09 2016-10-06 Halliburton Energy Services, Inc. Re-fracturing a fracture stimulated subterranean formation
WO2015191084A1 (en) 2014-06-13 2015-12-17 Halliburton Energy Services, Inc. Integrated computational element with multiple frequency selective surfaces
US10001613B2 (en) 2014-07-22 2018-06-19 Schlumberger Technology Corporation Methods and cables for use in fracturing zones in a well
US10738577B2 (en) 2014-07-22 2020-08-11 Schlumberger Technology Corporation Methods and cables for use in fracturing zones in a well
WO2016099496A1 (en) * 2014-12-18 2016-06-23 Halliburton Energy Services, Inc. Casing segment methods and systems with time control of degradable plugs
WO2016105382A1 (en) 2014-12-23 2016-06-30 Halliburton Energy Services, Inc. Water swellable polymer as a diverter for acid stimulation treatments in high temperature environments
US10344204B2 (en) 2015-04-09 2019-07-09 Diversion Technologies, LLC Gas diverter for well and reservoir stimulation
US9938800B2 (en) 2015-04-09 2018-04-10 Halliburton Energy Services, Inc. Methods and systems for determining acidizing fluid injection rates
US9828843B2 (en) 2015-04-09 2017-11-28 Highlands Natural Resources, Plc Gas diverter for well and reservoir stimulation
US9759053B2 (en) 2015-04-09 2017-09-12 Highlands Natural Resources, Plc Gas diverter for well and reservoir stimulation
US10012064B2 (en) 2015-04-09 2018-07-03 Highlands Natural Resources, Plc Gas diverter for well and reservoir stimulation
US10774638B2 (en) 2015-05-29 2020-09-15 Halliburton Energy Services, Inc. Methods and systems for characterizing and/or monitoring wormhole regimes in matrix acidizing
US11421149B2 (en) * 2015-11-16 2022-08-23 Halliburton Energy Services, Inc. Alkyl polyglycoside surfactants for use in subterranean formations
WO2017086906A1 (en) 2015-11-16 2017-05-26 Halliburton Energy Services, Inc. Scheduling treatment fluid placement and fluid diversion in a subterranean formation
CN105443071A (zh) * 2015-12-07 2016-03-30 中国石油天然气股份有限公司 封堵顶水下窜工艺方法
US20190010383A1 (en) * 2016-03-18 2019-01-10 Halliburton Energy Services, Inc. Self-degradable diverters for propped fracture acidizing
US10982520B2 (en) 2016-04-27 2021-04-20 Highland Natural Resources, PLC Gas diverter for well and reservoir stimulation
US10301903B2 (en) 2016-05-16 2019-05-28 Schlumberger Technology Corporation Well treatment
US10677016B2 (en) 2016-07-13 2020-06-09 Halliburton Energy Services, Inc. Methods for reducing fluid communication between wells
US10787901B2 (en) 2016-09-16 2020-09-29 Halliburton Energy Services, Inc. Dynamically optimizing a pumping schedule for stimulating a well
CA3053330C (en) 2017-06-15 2022-04-26 Halliburton Energy Services, Inc. Plasticized polyvinyl alcohol diverter materials
US11732179B2 (en) 2018-04-03 2023-08-22 Schlumberger Technology Corporation Proppant-fiber schedule for far field diversion
US11584878B1 (en) 2021-12-16 2023-02-21 Halliburton Energy Services, Inc. Acid precursors for enhanced inhibitor placement in scale squeeze treatments
WO2024083796A1 (en) 2022-10-18 2024-04-25 Poweltec Process for treating subterranean formations

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU595488A1 (ru) * 1974-10-18 1978-02-28 Татарский Государственный Научно-Исследовательский И Проектный Институт Нефтяной Промышленности Способ изол ции закачиваемых вод в скважине
US4157116A (en) * 1978-06-05 1979-06-05 Halliburton Company Process for reducing fluid flow to and from a zone adjacent a hydrocarbon producing formation
RU1480411C (ru) * 1987-04-20 1994-10-30 ТатНИПИнефть Способ разработки нефтяного пласта
RU2026968C1 (ru) * 1991-11-25 1995-01-20 Приклонский Анатолий Юрьевич Способ воздействия на залежь с разнопроницаемыми пластами
RU2057916C1 (ru) * 1993-10-08 1996-04-10 Валентин Иванович Кудинов Способ разработки нефтяной залежи
RU94022775A (ru) * 1994-06-14 1996-06-10 Центр совершенствования методов разработки нефтяных месторождений "ЦСМРнефть-Резонанс" Способ разработки неоднородных по проницаемости нефтяных пластов
US6367548B1 (en) * 1999-03-05 2002-04-09 Bj Services Company Diversion treatment method
RU2255215C1 (ru) * 2004-02-09 2005-06-27 Румянцева Елена Александровна Способ обработки призабойной зоны пласта

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3724549A (en) * 1971-02-01 1973-04-03 Halliburton Co Oil soluble diverting material and method of use for well treatment
US3998272A (en) * 1975-04-21 1976-12-21 Union Oil Company Of California Method of acidizing wells
US4261421A (en) 1980-03-24 1981-04-14 Union Oil Company Of California Method for selectively acidizing the less permeable zones of a high temperature subterranean formation
US4527628A (en) * 1983-08-15 1985-07-09 Halliburton Company Method of temporarily plugging portions of a subterranean formation using a diverting agent
US5028146A (en) 1990-05-21 1991-07-02 Kabushiki Kaisha Toshiba Apparatus and method for measuring temperatures by using optical fiber
US6557630B2 (en) 2001-08-29 2003-05-06 Sensor Highway Limited Method and apparatus for determining the temperature of subterranean wells using fiber optic cable
US20030234921A1 (en) 2002-06-21 2003-12-25 Tsutomu Yamate Method for measuring and calibrating measurements using optical fiber distributed sensor
MXPA05001618A (es) 2002-08-15 2005-04-25 Schlumberger Technology Bv Uso de sensores de temperatura distribuidos durante los tratamientos de pozos de sondeo.
US6896058B2 (en) 2002-10-22 2005-05-24 Halliburton Energy Services, Inc. Methods of introducing treating fluids into subterranean producing zones
US6983798B2 (en) 2003-03-05 2006-01-10 Halliburton Energy Services, Inc. Methods and fluid compositions for depositing and removing filter cake in a well bore
US7086484B2 (en) 2003-06-09 2006-08-08 Halliburton Energy Services, Inc. Determination of thermal properties of a formation
US7036587B2 (en) 2003-06-27 2006-05-02 Halliburton Energy Services, Inc. Methods of diverting treating fluids in subterranean zones and degradable diverting materials
MX2007008850A (es) * 2005-01-21 2008-01-16 Fairmount Minerals Ltd Agentes solubles de derivacion.
US20060276345A1 (en) 2005-06-07 2006-12-07 Halliburton Energy Servicers, Inc. Methods controlling the degradation rate of hydrolytically degradable materials
US7647964B2 (en) 2005-12-19 2010-01-19 Fairmount Minerals, Ltd. Degradable ball sealers and methods for use in well treatment
US20100212906A1 (en) * 2009-02-20 2010-08-26 Halliburton Energy Services, Inc. Method for diversion of hydraulic fracture treatments
US8109335B2 (en) 2009-07-13 2012-02-07 Halliburton Energy Services, Inc. Degradable diverting agents and associated methods
US8016034B2 (en) 2009-09-01 2011-09-13 Halliburton Energy Services, Inc. Methods of fluid placement and diversion in subterranean formations

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU595488A1 (ru) * 1974-10-18 1978-02-28 Татарский Государственный Научно-Исследовательский И Проектный Институт Нефтяной Промышленности Способ изол ции закачиваемых вод в скважине
US4157116A (en) * 1978-06-05 1979-06-05 Halliburton Company Process for reducing fluid flow to and from a zone adjacent a hydrocarbon producing formation
RU1480411C (ru) * 1987-04-20 1994-10-30 ТатНИПИнефть Способ разработки нефтяного пласта
RU2026968C1 (ru) * 1991-11-25 1995-01-20 Приклонский Анатолий Юрьевич Способ воздействия на залежь с разнопроницаемыми пластами
RU2057916C1 (ru) * 1993-10-08 1996-04-10 Валентин Иванович Кудинов Способ разработки нефтяной залежи
RU94022775A (ru) * 1994-06-14 1996-06-10 Центр совершенствования методов разработки нефтяных месторождений "ЦСМРнефть-Резонанс" Способ разработки неоднородных по проницаемости нефтяных пластов
US6367548B1 (en) * 1999-03-05 2002-04-09 Bj Services Company Diversion treatment method
RU2255215C1 (ru) * 2004-02-09 2005-06-27 Румянцева Елена Александровна Способ обработки призабойной зоны пласта

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2673089C1 (ru) * 2014-10-20 2018-11-22 Шлюмбергер Текнолоджи Б.В. Система и способ обработки подземного пласта

Also Published As

Publication number Publication date
US8016034B2 (en) 2011-09-13
RU2012112472A (ru) 2013-10-10
BR112012004707B1 (pt) 2019-12-31
NO338442B1 (no) 2016-08-15
US20110048708A1 (en) 2011-03-03
MX2012002513A (es) 2012-04-11
NO20120247A1 (no) 2012-06-01
AU2010291050A1 (en) 2012-03-15
WO2011027100A2 (en) 2011-03-10
BR112012004707A2 (pt) 2016-04-12
WO2011027100A3 (en) 2011-06-30
AU2010291050B2 (en) 2014-11-06
AR078110A1 (es) 2011-10-12

Similar Documents

Publication Publication Date Title
RU2527988C2 (ru) Улучшенные способы размещения и отклонения текучих сред в подземных пластах
US8726991B2 (en) Circulated degradable material assisted diversion
US8074715B2 (en) Methods of setting particulate plugs in horizontal well bores using low-rate slurries
Jordan et al. Life cycle management of scale control within subsea fields and its impact on flow assurance, Gulf of Mexico and the North Sea Basin
AU2013246411A1 (en) Multi-interval wellbore treatment method
CA2697210A1 (en) Method for completing tight oil and gas reservoirs
NO339170B1 (no) Fremgangsmåter for behandling av en undergrunnsformasjon
CA2725305A1 (en) Fracturing method for subterranean reservoirs
WO2010022283A1 (en) A well diversion agent formed from in situ decomposition of carbonyls at high temperature
Bennion Formation damage-the impairment of the invisible, by the inevitable and uncontrollable, resulting in an indeterminate reduction of the unquantifiable!
WO2017100222A1 (en) Method and composition for controlling fracture geometry
WO2018032086A1 (en) Fracture length increasing method
Taylor et al. Acidizing—Lessons from the Past and New Opportunities
WO2016011327A2 (en) Heel to toe fracturing and re-fracturing method
CA3017486C (en) Treatment isolation in restimulations with inner wellbore casing
WO2017079210A1 (en) Acid soluble diverting agents for refracturing applications
US11254860B2 (en) Diversion using solid particulates
Rahim et al. Evaluation and Application of Novel Technologies and Their Impact on Sustained Gas Production in Saudi Arabian Reservoirs: Field Examples
US20120273200A1 (en) Methods for treating a wellbore
Patil et al. Frac Pack: Reviving and Maximising Production Potential in Cambay Offshore Field
Pandey Well Stimulation Techniques
Shimizu et al. Surfactant-based self-diverting acid system maximises acid coverage and eliminates flowback in an openhole horizontal injection well offshore Qatar
Samir et al. Smart Chemical Systems for the Stimulation of High-Water-Cut Heavy Oil Wells
Willemse et al. Ensuring Effective Stimulation Treatments in Difficult Completions
Weiton et al. Glasbergen et a

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20170828