RU2527065C2 - Способ подкормки растений, выращиваемых в защищенном грунте - Google Patents

Способ подкормки растений, выращиваемых в защищенном грунте Download PDF

Info

Publication number
RU2527065C2
RU2527065C2 RU2012131350/13A RU2012131350A RU2527065C2 RU 2527065 C2 RU2527065 C2 RU 2527065C2 RU 2012131350/13 A RU2012131350/13 A RU 2012131350/13A RU 2012131350 A RU2012131350 A RU 2012131350A RU 2527065 C2 RU2527065 C2 RU 2527065C2
Authority
RU
Russia
Prior art keywords
water
carbon dioxide
plants
greenhouses
plant
Prior art date
Application number
RU2012131350/13A
Other languages
English (en)
Other versions
RU2012131350A (ru
Inventor
Дарья Викторовна Коваленко
Алексей Павлович Смирнов
Original Assignee
Дарья Викторовна Коваленко
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Дарья Викторовна Коваленко filed Critical Дарья Викторовна Коваленко
Priority to RU2012131350/13A priority Critical patent/RU2527065C2/ru
Publication of RU2012131350A publication Critical patent/RU2012131350A/ru
Application granted granted Critical
Publication of RU2527065C2 publication Critical patent/RU2527065C2/ru

Links

Landscapes

  • Cultivation Of Plants (AREA)
  • Fertilizers (AREA)

Abstract

Изобретение относится к области растениеводства, в частности к выращиванию растений в защищенном грунте. В способе осуществляют подкормку растений с ускоренным формированием растительных тканей, выращиваемых в защищенном грунте, путем полива водой, насыщенной углекислым газом до концентрации 50 мл газообразного CO2 на 1 л воды, при температуре воды в пределах 12-20˚C. При этом полив растений осуществляют три раза в сутки. Способ позволяет сократить сроки выращивания, повысить урожайность и использовать экологически безопасную подкормку.

Description

Изобретение относится к растениеводству, способам подкормки растений в закрытом грунте и может быть использовано для выращивания овощей, рассады, цветочных, декоративных и других растений в защищенном грунте.
Известны способы подкормки растений углекислым газом и растворами минеральных удобрений (Н.А.Смирнов, Пособие для овощеводов. - М.: Россельхозиздат, 1977, - с.62, 99-102). В качестве источников углекислого газа (СО2) используется сжиженная углекислота (в баллонах), твердая углекислота (сухой лед), продукты сжигания (дымовые газы) непосредственно в теплицах жидкого (керосин) или газообразного (пропан, метан) топлива и газовоздушные выбросы животноводческих комплексов.
Известен способ, при котором отходящие дымовые газы котельных пропускают через катализатор и подают по системе трубопроводов в теплицу. При этом катализатор располагают в высокотемпературной зоне между конвективными пучками котла.
Применение этого способа требует наличие котельной. Он технически сложен в эксплуатации, а также не в состоянии устранять вредные составляющие дымовых газов (оксиды азота и т.д.), что отрицательно влияет на растения и получаемые из них продукты питания.
Известен способ, заключающийся в использовании для подкормки тепличных культур отходящих газов горелочных устройств (Анисимов О.А. и др. Промышленные установки для культивирования микроводорослей. Обзор. М., 1973, с.32).Способ включает пропускание отходящих газов через водяной абсорбер с последующим разбрызгиванием продукта абсорбции в теплице.
Недостатком этого технического решения являются большие потери двуокиси углерода и наличие в отходящих газах высокой концентрации вредных примесей, что отрицательно сказывается на росте растений и качестве получаемых из них продуктов питания.
Также известен способ, когда растения в теплицах подкармливают углекислым газом, выделяемым животными и поступающим с воздухом из животноводческих помещений (Хазанов Е.Е. Молочная ферма-теплица. /Механизация и электрификация сельского хозяйства, 1, 1999, с.15-17).
Недостатками такого способа является низкая концентрация СO2 и то, что вместе с углекислым газом из животноводческих помещений в теплицы поступает сероводород и аммиак. В связи с этим непосредственная подача вентиляционных выбросов животноводческих помещений в объем теплиц требует установки дополнительного оборудования по очистке от вышеуказанных загрязнителей, что экономически затратно и усложняет техническое обслуживание таких установок.
Также известен способ подкормки растений углекислым газом посредством подачи воздуха со смесью газов из животноводческих помещений в теплицу (патент №2192120 A01G 7/01, А01G 9/18,опубл.10.11.2002). При этом воздух со смесью газов подают в теплицу с помощью трубопроводов и системы аэрационного дренажа, которая представляет собой почвенный слой теплиц.
Недостатками такого способа являются дорогостоящий монтаж и сложная эксплуатация системы трубного дренажа, а также он не решает проблему вредных составляющих газовоздушной смеси - аммиака и сероводорода. В результате высокой растворимости аммиака и сероводорода в воде трубы дренажа подвергаются сильной коррозии и быстро выходят из строя, а в почвенном слое теплицы происходит образование вредных химических соединений, которые отрицательно влияют на рост растений и получаемых из них пищевых продуктов.
Наиболее близким по технической сущности к заявляемому способу является способ подкормки тепличных культур углекислым газом, описанный в авторском свидетельстве №967397 А01G 9/18, опубл. 23.10.1982, в котором осуществляют физическую абсорбцию СО2 из отходящих газов горелочных устройств, путем пропускания через водяной абсорбер с рабочим давлением 20-25 бар. В этих условиях водой поглощается большая часть углекислого газа. Далее, воду с растворенным в ней СО2 разбрызгивают под желобами при атмосферном давлении. В процессе первичной десорбции из воды в атмосферу теплицы выделяется до 80% поглощенной углекислоты, которая и служит подкормкой для растений. Окончательную десорбцию СO2 и вредных примесей из воды проводят в градирне с помощью атмосферного воздуха, куда вода поступает по желобам. После этого воду возвращают в абсорбер.
Недостатками данного способа является его дороговизна и техническая сложность, загрязнение атмосферы теплиц вредными для здоровья людей и растений оксидами азота и бензпиренами, а также образование при первичной десорбции углекислого газа опасных для жизни рабочих теплиц концентраций СO2, что делает применение такого способа нецелесообразным.
Новая техническая задача - повышение урожайности и сокращение сроков выращивания, повышение эффективности за счет использования экологически безопасного продукта для подкормки растений.
Для решения поставленной задачи в способе подкормки растений в закрытом грунте путем полива растений водой насыщенной углекислым газом насыщение проводят до концентрации углекислого газа 3-5 кг/см2 при температуре воды в пределах 12-20°С. Полив производят три раза в день.
Способ осуществляют следующим образом.
Растения поливают водой, насыщенной углекислым газом до концентрации углекислого газа 3-5 кг/см2, при температуре воды в пределах 12-20°С. Полив производят три раза в день.
Для получения насыщенного раствора углекислого газа используют, например, устройство, состоящее из напорного насоса с выходным напором не менее 50 м водяного столба, через трубопровод, соединенный с герметичной емкостью, засыпанной щебнем пиролюзита (МnО2), проходя через который водный раствор Н2СО3 стабилизируется, после чего и поступает в систему полива теплиц. На вход напорного насоса по трубопроводу подается обычная водопроводная вода с температурой 12-20°С. Перед входом в напорный насос в трубопровод подачи воды врезан эжектор, через который из батареи баллонов с СО2 в поступающую исходную воду подается углекислый газ. Расход углекислого газа регулируется газовым редуктором, который монтируется на выходе батареи с СО2. В напорном насосе давление исходной воды, насыщенной углекислым газом, повышается до заданного значения, в результате чего образуется водный раствор жидких углеводородов под обобщенным названием - угольная кислота Н2СО3, который перекачивается напорным насосом в блок стабилизации синтеза, где происходит стабилизация раствора. Из герметичной емкости стабилизатора синтеза раствор по трубопроводу направляется в систему полива теплиц. На трубопроводе за герметичной емкостью стабилизатора синтеза смонтирован манометр, который контролирует давление в системе насос-стабилизатор, и вентиль для регуляции рабочего давления в системе насос-стабилизатор синтеза в заданных технологией пределах.
Получаемый в таких условиях (концентрации углекислого газа 3-5 кг/см2 и температуре воды в пределах 12-20°С) водный раствор углекислого газа активно поглощается корневой системой растений и в структуре растительных тканей разлагается на СO2, Н2O и O2, что позволяет растению не испытывать дефицит углекислого газа, необходимого для ускоренного формирования растительных тканей. Также важно то, что водный раствор, полученный при прохождении углекислого газа и воды через напорный насос и блок стабилизатора синтеза, является устойчивым при обычном давлении и углекислый газ не диффундирует из раствора в атмосферу теплицы в диапазоне температур 10-30°С, что, соответственно, не создает угрозы для жизни обслуживающего персонала при работе с предлагаемым углекислотным удобрением. Следует также отметить, что использование технического углекислого газа позволит выращивать продукты растениеводства, не загрязненные вредными составляющими, содержащимися в отходных газах, например в топочных газах.
Основой создания способа явились знания уровня техники и проведенные экспериментальные исследования.
Известно, что в ходе природных фотосинтетических реакций энергия фотонов света возбуждает в молекулах хлорофилла растений атомы магния (Mg) и в клетках растений происходит взаимодействие углекислого газа с водой, в результате чего синтезируются простейшие моносахариды СН2О, которые используются для энергетического обмена в растениях, а также для формирования растительной клетчатки растений (Журавлева Н.А. Механизм устьичных движений, продукционный процесс и эволюция. ВО «Наука». Новосибирск. 1992). Этот процесс в общем виде описывается реакцией:
фотон света
6СO2+12Н2O→С6Н12O6+6Н2O+6O2 (дельта G=+686 ккал/моль),
из которой видно, что при резонансном взаимодействии, а резонанс в молекуле хлорофилла задает выведенный из равновесного состояния фотоном света атом магния (Mg), 6 молекул углекислого газа начинают взаимодействовать с 12 молекулами воды и в результате образуется молекула гексозы С6Н12О6, которая структурно представлена шестью простейшими сахарами СН2O. Побочными продуктами этой реакции оказываются 6 молекул воды Н2O и 6 молекул кислорода O2. В дальнейшем молекулы гексозы C6H12O6 частично принимают участие в энергетическом обмене и используются растениями в качестве строительного материала для формирования растительной клетчатки, тогда как молекулы воды и кислорода как побочные продукты реакции фотосинтеза выбрасываются в атмосферу теплицы. Откуда следует, что энергия светового фотона нужна растительной клетке только для возбуждения молекулы хлорофилла. После чего в возбужденной молекуле хлорофилла проходит реакция окисления воды углекислым газом (В.В.Климов. Пущинский университет. Углекислота как субстрат и кофактор фотосинтеза), которая заканчивается образованием молекулы гексозы C6H12O6, которая состоит из шести первичных сахаров СН2О.
В данном изобретении предлагается окислять воду углекислым газом и получать раствор первичных сахаров СН2O вне растения, используя для этого энергию кратковременного повышения давления и возникающих при прохождении раствора углекислого газа в воде через напорный насос кавитационных эффектов как эквивалента энергетического воздействия светового фотона на реакции фотосинтеза, происходящие в молекулах хлорофилла в растениях.
Новое понимание реакций фотосинтеза показывает, что окисление воды в ферментативном центре растения происходит не в виде Н2О или ОН-, а в виде молекул, полученных в результате диссоциации Н2СО3, которая окисляется энзиматическим центром водоокисляющего комплекса растений (В.М.Степанов. Молекулярная биология. Москва. ВШ 1996). Это приводит к выделению молекулы О2 (продукта окисления воды) и освобождению молекулы СО2, которая вовлекает новые молекулы воды в процесс окисления. Таким образом, происходит процесс формирования растительной ткани, интенсивность которого напрямую зависит от концентрации в физиологическом цикле растений продуктов взаимодействия воды и углекислого газа под названием - угольная кислота Н2СО3 (ООЖ). В настоящее время твердо установлена множественность производных угольной кислоты Н2СО3 в водном растворе СО2, одним из которых являются первичные сахара, обозначаемые формулой СН2О и описывающиеся реакцией:
СO2+4е+4Н=СН2O+Н2O.
В реальности процесс фотосинтеза растительных тканей обеспечивается сложным циклом энзиматических реакций, который имеет научное название - пентознофосфатный цикл или цикл Кальвина (по имени его открывателя - лауреата Нобелевской премии за 1961 год Мелвила Кальвина). Фиксацию СО2 и его восстановление в цикле Кальвина представляет процесс, включающий четыре основные стадии:
1. Стадия карбоксилирования, - в результате которой образуются трехуглеродные молекулы фосфоглицериновой кислоты (ФГК). Эта реакция катализируется водорастворимым ферментом под названием рибулозобисфосфат-карбоксилаза-оксигеназа (RUBISCO). Чрезвычайная важность этого этапа фотосинтеза для биосферы подтверждается тем, что RUBISCO - самый распространенный фермент на планете. С участием этого фермента за счет энергии солнечного света фотосинтезирующие организмы Земли ежегодно ассимилируют около 200 млн тонн СО2, превращая его в органические соединения, используемые всеми живыми организмами планеты.
2. Стадия восстановления - на этом этапе полученная в ходе первой стадии фосфоглицериновая кислота (ФПС) ассимилирует в трехуглеродный сахар - триозофосфат (фосфоглицеральдегид). Восстановление ФГК до триозофосфатных сахаров - главная стадия цикла Кальвина, во время которой и происходит преобразование энергии света, воды и углекислого газа в исходные молекулы первичных сахаров, из которых синтезируются растительные ткани.
Третья и четвертая стадии цикла Кальвина необходимы для того, чтобы регенерировать, привести в исходное состояние акцептор СО2 - рибулозобисфосфат, который мог бы вновь участвовать в фиксации СО2, а получаемые при этом трехуглеродные сахара могли бы превращаться в более сложные сахара (стадия синтеза продуктов).
Исходя из вышеизложенного, предлагаемый в изобретении способ получения водного раствора жидких углеводородов, основным составляющим которых является основанный на барической реакции взаимодействия углекислого газа с водой (Глинка Н.Л. Общая химия. - М. 1965):
давление
Н2O+СO2→Н2СO3,
находится в полном соответствии с процессами, происходящими в клетках растений во время второй стадии цикла Кальвина. В результате кратковременного барического воздействия на насыщенный в воде углекислый газ образуется комплекс жидких углеводородных соединений с обобщенным названием - угольная кислота Н2СO3 (ООЖ), значительная часть которого представлена первичными сахарами СН2О. Откуда следует однозначный вывод, что энергия фотона света в сложном процессе фотосинтеза растительных тканей эквивалентна энергии, получаемой при барическом воздействии на раствор углекислого газа в воде. И в том, и в другом случаях на выходе процессов образуются необходимые для развития и жизнедеятельности растений первичные сахара СН2O.
В ходе экспериментов при получении водного раствора, основным компонентом которого является угольная кислота Н2СO3, были определены оптимальные значения для рабочего давления, температуры исходной воды и концентрации углекислого газа в исходной воде перед входом в насос. Оптимальными значениями рабочего давления, при котором происходит растворение введенного в реакцию углекислого газа в воде, является 3-5 кг/см2. Температура исходной воды соответствует температуре водопроводной воды и находится в пределах 12-20°С.
Требуемая концентрация углекислого газа, который при заданном давлении должен полностью растворяться в воде, - 50 мл газообразного СО2 на 1 литр воды, что, также, позволяет использовать стандартный 40-литровый баллон СО2 с емкостью углекислого газа 6000 литров при нормальном давлении для обогащения 120 м исходной воды.
Экспериментальные исследования с семенами и растениями проводились в лаборатории дендрологии СО РАН (Томск, пр. Академический, 5). Были получены следующие результаты:
В серую лесную почву теплицы были высажены по десять опытных и десять контрольных семян злаковых культур - пшеницы, овса и подсолнечника. Во время эксперимента были заданы следующие параметры - температура 23°С и освещенность 60 Вт на квадратный метр (Технические условия для выращивания тепличных растений. Москва. Сельхозиздат. 1957). Срок проведения эксперимента - 20 дней. Опытные семена поливались 3 раза в день получаемым в соответствии с предлагаемым способом водным раствором, насыщенным углекислым газом до концентрации углекислого газа 3-5 кг/см2 при температуре воды в пределах 12-20°С. Контрольные семена в том же режиме поливались обычной водопроводной водой. В результате эксперимента скорость набора растительной массы опытных растений превышала тот же показатель для контрольных растений в 2-5 раз. Корневая система опытных растений была значительно развитее, чем у контрольных. Эта методика была применена и для тепличных культур (огурцы, помидоры, цветы петуньи). Результаты были сопоставимы с опытом по злаковым культурам. Растительная масса опытных растений в два раза превышала массу контрольных образцов. В эксперименте с ветками ивы, которые погружались: контрольные в обычную воду, а опытные - в получаемый в соответствии с заявляемым способом раствор, было установлено, что опытные ветки ивы за время эксперимента успели выпустить листочки, тогда как контрольные еще находились в состоянии сна. Также был проведен эксперимент по выращиванию вышеперечисленных растений при отсутствии света. При поливе опытных растений получаемым раствором они, по сравнению с контрольными, в два раза быстрее росли и набирали массу при полном отсутствии света.
Проведенные эксперименты однозначно говорят об эквивалентности водного раствора, получаемого в результате барического воздействия на раствор углекислого газа в воде, процессам фотосинтеза, происходящим в растениях во время второй стадии пентознофосфатного цикла Кальвина.
Таким образом, предлагаемый способ позволяет повысить урожайность растений, выращиваемых в защищенном грунте, а также выращивать экологически чистые растения.

Claims (1)

  1. Способ подкормки растений с ускоренным формированием растительных тканей, выращиваемых в защищенном грунте путем полива водой, насыщенной углекислым газом до концентрации 50 мл газообразного CO2 на 1 л воды, при температуре воды в пределах 12-20°C, при этом полив растений осуществляют три раза в сутки.
RU2012131350/13A 2012-07-20 2012-07-20 Способ подкормки растений, выращиваемых в защищенном грунте RU2527065C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012131350/13A RU2527065C2 (ru) 2012-07-20 2012-07-20 Способ подкормки растений, выращиваемых в защищенном грунте

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012131350/13A RU2527065C2 (ru) 2012-07-20 2012-07-20 Способ подкормки растений, выращиваемых в защищенном грунте

Publications (2)

Publication Number Publication Date
RU2012131350A RU2012131350A (ru) 2014-01-27
RU2527065C2 true RU2527065C2 (ru) 2014-08-27

Family

ID=49957000

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012131350/13A RU2527065C2 (ru) 2012-07-20 2012-07-20 Способ подкормки растений, выращиваемых в защищенном грунте

Country Status (1)

Country Link
RU (1) RU2527065C2 (ru)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2402898C1 (ru) * 2009-03-16 2010-11-10 Государственное научное учреждение "Северо-Западный научно-исследовательский институт механизации и электрификации сельского хозяйства Российской академии сельскохозяйственных наук" (ГНУ СЗНИИМЭСХ Россельхозакадемии) Способ подкормки зеленных культур чистым углекислым газом
RU2405805C1 (ru) * 2009-06-29 2010-12-10 Юрий Константинович Низиенко Способ получения питательного раствора для полива и/или подкормки культурных растений
JP2012016297A (ja) * 2010-07-06 2012-01-26 Kochi Univ 植物の栽培方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2402898C1 (ru) * 2009-03-16 2010-11-10 Государственное научное учреждение "Северо-Западный научно-исследовательский институт механизации и электрификации сельского хозяйства Российской академии сельскохозяйственных наук" (ГНУ СЗНИИМЭСХ Россельхозакадемии) Способ подкормки зеленных культур чистым углекислым газом
RU2405805C1 (ru) * 2009-06-29 2010-12-10 Юрий Константинович Низиенко Способ получения питательного раствора для полива и/или подкормки культурных растений
JP2012016297A (ja) * 2010-07-06 2012-01-26 Kochi Univ 植物の栽培方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HAND D.W. The "greenhouse effect": is in best studies in greenhouses // Professional Hortic, Т. 3, N 2, 1989, р. 76-82. ЧЕСНОКОВ В.А. Выращивание растений без почвы, Изд-во Ленинградского ун-та, 1960, с.106, 3-й абз. *

Also Published As

Publication number Publication date
RU2012131350A (ru) 2014-01-27

Similar Documents

Publication Publication Date Title
EP2761993B1 (en) Method for cultivating plant
Zhu et al. Aerated drip irrigation improves water and nitrogen uptake efficiencies of tomato roots with associated changes in the antioxidant system
CN103641636B (zh) 一种纳米光碳合剂及其制备方法
Salman et al. Effect of ozone enrichment and spraying with coconut water and moringa extract on vegetative growth and yield of broccoli plant under hydroponic system with modified NFT technology
He et al. Elevated root-zone CO2 protects lettuce plants from midday depression of photosynthesis
US9445549B2 (en) Method for cultivating plant
RU2527065C2 (ru) Способ подкормки растений, выращиваемых в защищенном грунте
Volpi et al. Tomato productivity and soil greenhouse gas emissions under reduced water and N fertilizers in a Mediterranean environment
Matysiak et al. The growth, photosynthetic parameters and nitrogen status of basil, coriander and oregano grown under different led light spectra
CN107266141A (zh) 一种无机‑有机‑二氧化碳复合气肥及其应用
JP4456410B2 (ja) 植物の育成方法
CN105347969A (zh) 提高光合作用能力和延长光合作用时间的试剂
ZHANG et al. Effect of nitrogen nutrition on photosynthetic function of wheat leaf under elevated atmospheric CO2 concentration
SciiMuTz et al. Nitrogen dioxide—A gaseous fertilizer of Poplar trees
Ampim et al. Indoor Vegetable Production: An Alternative Approach to Increasing Cultivation. Plants 2022, 11, 2843
Hsu et al. Strategies to lower greenhouse gas level by rice agriculture
RU2192120C2 (ru) Способ подкормки растений в теплицах углекислым газом и азотными удобрениями
Luo Evaluation of romaine lettuce (lactuca sativa l. Cv. Parris island) production under an elevated carbon dioxide (CO2) gas environment generated from compost materials
BR102013017665A2 (pt) Sistema de multiplicação de mudas de cana-de-açúcar
CN103070060A (zh) 沼气在草莓无土栽培大棚里的应用方法
Khozuei et al. Effects of Azolla Compost Versus Peat and Cocopeat on the Growth and Nutrition of Chrysanthemum (Chrysanthemum morifolium) in Pot Culture
Kiselchuk Carbon Dioxide Production from Organic Waste Recycled in Controlled Environment Agriculture Systems
TW202420980A (zh) 藉由微藻固碳降低農產品碳足跡的方法
Litskas et al. Life cycle assessment for the determination of key environmental impact indicators in soilless tomato culture and mitigation potential
Xia et al. Effects of root-zone warming, nitrogen supply and their interactions on root-shoot growth, nitrogen uptake and photosynthetic physiological characteristics of maize

Legal Events

Date Code Title Description
FA92 Acknowledgement of application withdrawn (lack of supplementary materials submitted)

Effective date: 20140109

FZ9A Application not withdrawn (correction of the notice of withdrawal)

Effective date: 20140415

MM4A The patent is invalid due to non-payment of fees

Effective date: 20141004