RU2526896C1 - Способ определения местоположения объектов в пассивной системе мониторинга - Google Patents
Способ определения местоположения объектов в пассивной системе мониторинга Download PDFInfo
- Publication number
- RU2526896C1 RU2526896C1 RU2013116786/28A RU2013116786A RU2526896C1 RU 2526896 C1 RU2526896 C1 RU 2526896C1 RU 2013116786/28 A RU2013116786/28 A RU 2013116786/28A RU 2013116786 A RU2013116786 A RU 2013116786A RU 2526896 C1 RU2526896 C1 RU 2526896C1
- Authority
- RU
- Russia
- Prior art keywords
- positions
- points
- lines
- results
- intersection
- Prior art date
Links
Images
Landscapes
- Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
Использование: относится к области пассивной локации, в частности гидролокации. Сущность: в способе определения местоположения объектов в пассивной системе мониторинга осуществляют приём сигналов аппаратурой разнесенных позиций, пространственную селекцию по принятым сигналам в каждой из приемных позиций, некогерентное накопление по времени каждого из результатов пространственной селекции, принятие решения об обнаружении отметок целей по результатам накопления по времени и формирование по результатам обнаружения пеленгационных линий положения в не менее чем двух позициях, определение расстояний между каждой из не менее чем двух приемных позиций системы и точками пересечения пеленгационных линий положения, сформированных в этих позициях, измерение уровней принимаемых этими позициями сигналов по тем результатам некогерентного накопления по времени, по которым обнаружены отметки, пересчет каждого из этих уровней к точкам пересечения пеленгационных линий положения, соответствующих указанным отметкам, формирование функций разности результатов пересчета уровней сигналов от каждой из указанных приемных позиций к одной и той же точке пересечения этих линий положения для этих точек и определение координат целей как координат тех точек пересечения пеленгационных линий положения, для которых функции разности результатов пересчета уровней сигналов будут больше порога. Технический результат: обеспечение возможности определения местоположения при нахождении в зоне действия системы более одного шумящего объекта. 2 ил.
Description
Заявляемый объект относится к области пассивной локации (в частности, гидролокации) и может быть использован, например, при создании системы мониторинга обстановки в охраняемой морской экономический зоне. В дальнейшем описание заявляемого объекта приводится применительно к пассивной гидроакустической системе, рассчитанной на мониторинг (обнаружение и измерение координат) морских шумящих объектов (целей), однако при замене термина «шумоизлучение» (ШИ) на термин «электромагнитное излучение» все сказанное ниже относится и к пассивной радиолокационной системе.
Задачами обработки данных в пассивной системе мониторинга, как отмечено выше, является обнаружение шумящих объектов (целей) и измерение (оценивание) их координат. Как правило, данный комплекс задач решается только в части обнаружения и измерения пеленга с использованием одиночных шумопеленгаторных станций. Основу описанных в известных источниках способов обнаружения сигналов ШИ морских объектов (см., например, И.К.Колесникова, И.А.Румынская. Основы гидроакустики и гидроакустические станции. Л.: Судостроение, 1970, с.250…255; А.Л.Простаков. Электронный ключ к океану. Л.: Судостроение, 1978, с.21…23; В.Г.Гусев. Системы пространственно-временной обработки гидроакустической информации. Л.: Судостроение. 1988. с.47…51; А.П.Евтютов, В.Б.Митько, Примеры инженерных расчетов в гидроакустике. Л.: Судостроение, 1981, с.69…78, а также способы обнаружения сигналов ШИ морских объектов по патентам РФ №2145426, 2316791 и 2373553) составляет совокупность операций, обеспечивающих прием сигналов на фоне помех, измерение мощности предполагаемого (т.е. обнаруживаемого) сигнала в каждом направлении наблюдения и принятие решения об обнаружении отметок цели (объекта) при превышении порога соответствующими результатами измерения мощности. При обнаружении каждой отметки реализуется измерение направления прихода соответствующего ей сигнала, т.е. ее пеленгование. Последняя операция описана, например, в цитированной выше книге И.К.Колесниковой и И.А.Румынской (см. с.227…236). Одним из недостатком данных способов является отсутствие возможности измерения дистанций до обнаруженных целей, т.е. их координат.
Для решения задачи сравнительно точного измерения координат шумящих целей в пассивном режиме необходим прием сигналов в нескольких разнесенных по горизонтали приемных позициях, т.е. реализация многопозиционной (или мультистатической) системы мониторинга. Способам решения задачи измерения координат в подобных системах посвящен ряд побликаций. Так, в опубликованной в интернете статье А.Н.Михнюка «Алгоритм идентификации и комплексирования параметров целей, обнаруживаемых мультистатической системой гидролокационных станций» (Журнал научных публикаций аспирантов и докторантов; для нахождения этой статьи в интернете достаточно набрать в поисковике Yandex ее название) идентификация отметок объектов в многопозиционной системе осуществляется по моментам прихода эхосигналов, что в пассивной системе неприменимо. Известен объект по патенту РФ №2332684 на «Способ многопозиционной радиолокации и устройство для его осуществления». Его недостатками являются отсутствие возможности применения в пассивной гидролокационной системе и необходимость наличия в районе развертывания системы линий электропередачи.
Известно решение задачи измерения координат целей по сигналам их ШИ с использованием приема этих сигналов на две разнесенные по горизонтали позиции на основе пеленгационного (или триангуляционного) метода (см, например, А.Г.Сайбель. Основы теории точности местоопределения. М.: Оборонное издательство, 1958, с.8 фиг.7). Это решение выбрано в качестве прототипа. Оно предусматривает указанный выше прием и обнаружение сигналов ШИ объекта (наличие этих операций описанием прототипа предполагается), пеленгование соответствующего обнаруженным сигналам ШИ источника (цели или объекта), т.е. построение пеленгационных линий положение из двух точек пространства и определение координат объекта как координат точки пересечения этих линий положения. Недостатком прототипа является неоднозначность измерения координат в случае нахождения в зоне обзора многопозиционной системы более чем одного шумящего объекта.
Данная ситуация, например, в случае наличия в зоне обзора трех шумящих объектов иллюстрируется фиг.1. Как видно их фиг.1, при формировании из двух приемных позиций Пр.1 и Пр.2 пеленгационных линий положения на каждый из трех источников ШИ имеем 9 точек пересечения указанных линий положения, координаты же источников ШИ в действительности совпадают с координатами только трех точек пересечения этих линий (в данном примере - точек с номерами 2, 6 и 7; эти точки на фиг.1 обведены кружками). В остальных точках пересечения линий положения шумящих объектов в действительности нет. В связи с этим (как отмечено в книге В.С.Черняка. Многопозиционная локация. М.: Радио и связь, 1993, с.5) в многопозиционной системе должна решаться последовательность задач «обнаружение - отождествление - измерение». В случае решения задачи отождествления (далее используем термин-синоним «идентификация) сигналов ШИ, принимаемых в приемных позициях от одноименных объектов, появляется возможность определения, в частности, в рассмотренном на рис.1 примере координат точек пересечения только трех пеленгационных линий положения, причем (в случае правильной идентификации) именно тех точек, в которых действительно расположены обнаруженные объекты.
Следует отметить, что операция идентификации сигналов не только отсутствует в цитированной книге А.Г.Сайбеля, но применительно к ситуации приема сигналов ШИ (т.е. применительно к пассивному режиму работы многопозиционной системы мониторинга) она вообще в литературе не описана. В заявляемом объекте недостаток прототипа (неоднозначность измерения координат в случае нахождения в зоне обзора системы двух и более шумящих объектов) преодолевается за счет реализации предлагаемой оригинальной процедуры идентификации сигналов ШИ от разных объектов. Принцип действия последней состоит в пересчете уровней всех принятых сигналов ко всем точкам пересечения соответствующих им пеленгационных линий положения и определении координат точек пересечения указанных линий, в которых действительно находятся шумящие объекты, на основе анализа степени совпадения пересчитанных уровней.
Заявляемый способ определения местоположения объектов в пассивной системе мониторинга предусматривает прием сигналов аппаратурой разнесенных позиций, пространственную селекцию по принятым сигналам в каждой из приемных позиций, некогерентное накопление по времени каждого из результатов пространственной селекции, принятие решения об обнаружении отметок целей по результатам накопления по времени и формирование по результатам обнаружения пеленгационных линий положения в не менее чем двух позициях, определение расстояний между каждой из не менее чем двух приемных позиций системы и точками пересечения пеленгационных линий положения, сформированных в этих позициях, измерение уровней принимаемых этими позициями сигналов по тем результатам некогерентного накопления по времени, по которым обнаружены отметки, пересчет каждого из этих уровней к точкам пересечения пеленгационных линий положения, соответствующих указанным отметкам, формирование функций разности результатов пересчета уровней сигналов от каждой из указанных приемных позиций к одной и той же точке пересечения этих линий положения для этих точек и определение координат объектов как координат тех точек пересечения пеленгационных линий положения, для которых функции разности результатов пересчета уровней сигналов будут больше порога.
Блок-схема заявляемого объекта представлена на фиг.2 (вариант при двух приемных позициях), где обозначены:
1 - прием сигналов (не менее чем) двумя приемными позициями;
2 - пространственная селекция;
3 - некогерентное накопление сигналов по времени;
4 - принятие решения об обнаружении отметок целей;
5 - формирование пеленгационных линий положения;
6 - определение расстояний между каждой из двух приемных позиций системы и точками пересечения пеленгационных линий положения;
7 - измерение уровней принимаемых сигналов, соответствующих обнаруженным отметкам;
8 - пересчет измеренных уровней к точкам пересечения пеленгационных линий положения;
9 - формирование функций разности результатов пересчета уровней сигналов;
10 - определение координат целей.
Операция 1 (прием сигналов двумя приемными позициями) предусматривает преобразование акустических сигналов в электрические. В каждой из приемных позиций она реализуется, например, так же, как в объекте по патенту РФ №2316791, а именно гидроакустической антенной решеткой, содержащей, в частности, совокупность гидрофонов. См. также, например, А.П.Евтютов, В.Б.Митько. Примеры инженерных расчетов в гидроакустике. Л.: Судостроение, 1981, с.116, рис.1.8).
Операция 2 (пространственная селекция) реализуется посредством формирования веера приемных характеристик направленности (пространственных каналов обработки). Операция пространственной селекции показана на рис.1.8. с.15 (позиции 1 и 2) в «Справочнике по гидроакустике» А.В.Евтютова и др. Л.: Судостроение. 1982. В этом источнике она включает и операцию приема сигналов антенной (позиция 1 на указанном рис.1.8). Однако в настоящем описании операция приема сигналов выделена как отдельная, чем обеспечивается возможность указания на то, что она выполняется в нескольких приемных позициях. Блок-схема устройства формирования веера приемных характеристик направленности приведена в цитированном «Справочнике…» на рис.1.10, с.16. В итоге выполнения операции 2 сформированы, например, временные реализации сигналов, соответствующих каждому пространственному каналу обработки. Совокупность выходов устройства, реализующего данную операцию, показана на рис.1.10 цитированного «Справочника…» подключена ко входам показанных на этом рисунке блоков фильтров 4; строго говоря, сигналы с отводов линий задержки (позиция 3 на рис.1.10) передаются на входы фильтров 4 не непосредственно, а через сумматоры (на рис.1.10. сумматоры не показаны; они заменены на этом рисунке сплошными и пунктирными прямыми, пересекающими совокупность регистров сдвига). На выходе каждого из упомянутых сумматоров формируется сигнал, соответствующий одному из пространственных каналов обработки.
Операция 3 (некогерентное накопление сигналов по времени) показана в цитированном «Справочнике…» на рис.1.8 (позиции 3, 4 и 5) как совокупность операций полосовой фильтрации, детектирования и осреднения по времени, реализуемых в каждом.
Операция 4 (принятие решения об обнаружении отметок целей) реализуется, например, аналогично объектам, описанным в цитированных выше книге И.К.Колесниковой и И.А.Румынской «Основы гидроакустики и гидроакустические станции». Л.: Судостроение, 1970, с.250…255, упомянутым выше объектам по патентам РФ №2145426, 2316791 и 2373553, а также книге А.М.Тюрина и др. «Основы гидроакустики». Л.: Судостроение. 1966, с.191…209 и предусматривает принятие решения об обнаружении отметок цели при превышении порога соответствующими результатами выполнения операции некогерентного накопления сигналов по времени.
Операция 5 (формирование пеленгационных линий положения, т.е. определение углов между, например, остью OY и направлением на отметку) реализуется согласно цитированной выше книге И.К.Колесниковой и И.А.Румынской (см. с.227…236), или книге Э.Ф.Свиридова «Сравнительная эффективность моноимпульсных радиолокационных систем пеленгации». Л.: Судостроение, 1964. Например, в варианте фазового пеленгования эта операция реализуется посредством измерения разности фаз сигналов, сформированных по двум половинам приемной антенны; возможен и вариант реализации операции пеленгования, приведенный в описании объекта по патенту РФ №2316791 (в описании изобретения это операция 3). В результате выполнения данной операции формируются пеленгационные линии положения, каждая из которых характеризуется параметром φij(i). Здесь i - номер приемной позиции, j(i) - номер отметки, по которой сформирована пеленгационная линия положения в i-й приемной позиции; нумерация отметок в разных приемных позициях независимая, т.е. эти отметки нумеруются в порядке из обнаружения, моменты которого в разных позициях могут не совпадать; далее в тех случаях, когда это не приводит к путанице, аргумент i при индексе j опускаем. Указанный угол φij, как отмечено выше, есть угол между осью OY (см. фиг.1) и направлением из i-й приемной позиции на j-ю отметку; каждый из указанных углов отсчитывается от оси OY по часовой стрелке.
Операция 5 может выполняться над данными в тех пространственных каналах обработки (характеристиках направленности), в которых обнаружены отметки, и с учетом углов ориентации соответствующих этим каналам характеристик направленности. Этому соответствует показанная на фиг.2 связь между операциями 4 и 5.
Данная операция в вариантах классического, например амплитудного, моноимпульсного пеленгования выполняется над результатами выполнения операции 2 (этот вариант связи между операциями 2 и 5 на фиг.2 не показан), а в случае ее выполнения на основе соотношения уровней результатов некогерентного накопления сигналов по времени (как это описано, например, в книге «Применение цифровой обработки сигналов» под ред. Э.Оппенгейма. М.: Мир, 1980, с.325 или в описании объекта по патенту РФ №2316791 на «Способ обнаружения сигналов шумоизлучения морских объектов) - над результатами выполнения операции 3. Указанные варианты реализации операции формирование пеленгационных линий положения между собой эквивалентны.
Операция 6 (определение расстояний между каждой из двух приемных позиций системы и точками пересечения пеленгационных линий положения) реализуется, например, путем расчетов, основанных на теореме синусов, а именно следующим образом. При заданных в системе YOX (см. фиг.1) координатах приемных позиций Пр.1 (далее точка A) и Пр.2 (далее точка B) соответственно xa, ya и xb, yb угол ξ, между прямой, проходящей через точки A и B, и осью X определяется как ξ=arctg(ya-yb)/(xa-xb).
Введем сквозную индексацию номеров l точек пересечения пеленгационных линий положения; в ситуации, отраженной на фиг.1, эти индексы l меняются в диапазоне 1…9; обозначаем их далее как точки Cl; так, например, величинам индекса l=1, 2, 6 и 9 соответствуют пары (точки пересечения) пеленгационных линий положения, характеризуемых углами φ11 и φ21, φ11 и φ22, φ12 и φ23, φ13 и φ23. Далее пользуемся двумя схемами (вариантами) нумерации. Их однозначное соответствие следует из фиг.1. Составление таблицы соответствия пар индексов линий положения (т.е. в рассматриваемом на фиг.1 примере пар индексов 1, j и 2, j) индексам номеров точек их пересечения может являться составной частью операции 6. Эта таблица составляется итерационно следующим образом. Пусть в некоторый момент времени приемными позициями обнаружены по No отметок. При этом имеется
точек пересечения, соответствующих обнаруженным отметкам пеленгационных линий положения; эти точки пронумерованы в диапазоне
. При обнаружении No+1-й отметки (это обнаружение имеет место, например, только в одной из двух приемных позиций) и формировании по ней пеленгационной линии положения получены дополнительно No точек пересечения линий положения, которым присваиваются номера l в диапазоне
и т.д.
Применительно к варианту расположения объектов и приемных позиций, показанному на рис.1, угол a l между пеленгационной линий положения, сформированной из точки A в направлении на l-ю точу пересечения линий положения (эта линия положения характеризуется угловым параметром φ1l, совпадающим с одним из параметров φli), и прямой, проходящей через точки A и B, составляет a l=270°-ξ-φ1l. При этом угол b1l между пеленгационной линий положения, сформированной в направлении на l-ю отметку из точки B, и прямой, проходящей через точки A и B, составляет bl=270°-ξ-φ2l (где угловой параметр φ2l характеризует линию положения, сформированную в направлении на l-ю точку пересечения линий положения из точки B; этот параметр совпадает с одним из параметров φ2l).
Согласно теореме синусов, имеем AB/sin (180-al-bl)=ACl/sinbl=BCl/sina l, где Cl - точка пересечения пеленгационных линий положения, сформированных из точек A и B в направлении на l-ю отметку; AB, ACl и BCl - длины отрезков между точками A и B, A и Cl, B и Cl соответственно. При этом искомые расстояния составляют ACl=[АВ/sin(180-a l-bl)]sinbl и BCl=[АВ/sin(180-a l-bl)]sina l. Длина отрезка AB определяется как
.
Операция 7 (измерение уровней принимаемых сигналов, соответствующих обнаруженным отметкам) реализуется следующим образом. Результаты выполнения операции 3 (они формируются на выходах, не показанных на рис.1.10 цитированного выше «Справочника…» сумматоров) в тех пространственных каналах, в которых в результате выполнения операции 4 обнаружены отметки целей, - Sij (здесь восстановлена индексация, соответствующая независимой нумерации отметок в разных приемных позициях). По каждому из них вычисляется искомый измеренный уровень принятого сигнала Sijвх=Sij/Кт, где Кт - коэффициент передачи тракта обработки (в него входит совокупность устройств, реализующих совокупность операций 1…3). Данный коэффициент предварительно определяется по результатам калибровки указанного тракта обработки, либо расчетным путем. Для простоты изложения считаем, что этот коэффициент во всех пространственных каналах совпадает.
Операция 8 (пересчет измеренных уровней к точкам пересечения пеленгационных линий положения) предусматривает пересчет уровней принимаемых сигналов (последние измерены в процессе выполнения операции 7) к точкам их возможного излучения Sijизл, точнее к одному метру от этих точек. Пересчет осуществляется по формуле Sijизл=Sijвх/H(Rij), где H(Rij) - потери распространения на расстоянии Rij. В процессе выполнения данной операции в приведенной выше формуле для расчета каждого значения Sijизл в качестве параметра Rij используется расстояние от i-й приемной позиции до обнаруженной в ней j-й отметке, т.е. если j-й отметке в i-й позиции при сквозной индексации соответствует 1-я отметка, то при вычислении величин Sijизл используются подстановки (в обозначениях при пояснении операции 6) R1j=ACl и R2j=BCl. В связи с этим Sijизл=Slизлi - уровень сигнала, пересчитанного в точку Cl по результату обработки сигнала в i-й приемной позиции.
Для выполнения рассматриваемой операции 8 необходимо задать закон ослабления звука (или потери распространения). Известно (см. например, Л.Гийес, П.Сабате. Основы акустики моря. Л.: Гидромет. издат. 1967, с.94, 95), что потери при так называемом стандартном распространении определяются как
(здесь rп=1м - так называемое единичное расстояние, a 0 - пространственное затухание звука; наиболее распространено соотношение для расчета величина пространственного затухания звука вида а 0=0.036f1/5 (дБ/км), что применительно к случаю приема широкополосного сигнала f - среднегеометрическая частота рабочего диапазона; при масштабном коэффициенте 10-3 при втором слагаемом все входящие в формулу расстояния - в метрах).
Формула для расчета потерь распространения в общем случае приведена в книге Р.Дж.Урика «Основы гидроакустики». Л.: Судостроение. 1978, с.170). Она имеет вид
где r0- переходное расстояние (м). Там же (с.170) приведено описание методики приближенного расчета переходного расстояния r0. Существует множество программ, позволяющих рассчитать потери распространения или величину переходного расстояния r0 применительно к конкретным гидролого-акустическим условиям. В частном случае сферического закона ослабления уровня сигнала с расстоянием имеем r0=Rij и тогда (2) совпадает с (1). Для простоты ограничимся рассмотрением ситуации сферического закона.
Операция 9 (формирование функций разности результатов пересчета уровней сигналов) предусматривает расчет функций разности Wl, например, (в варианте двух приемных позиций) вида
где σп - прогнозируемая стандартная ошибка пересчета результатов измерения уровней сигналов в приемных позициях к точкам пересечения пеленгационных линий положения; на сегодня в качестве экспертной оценки данной величины может быть принята величина σп=3 дБ. Следует заметить, что качество решения задачи, решаемой заявляемым объектом, от неточности задания величины σп зависит несущественно.
Операция 10 (определение координат целей) содержит следующие две фазы: в первой фазе реализуется путем сравнения всех вычисленных величин Wl с порогом, равным, например, П=0.1, а превысивших этот порог - еще и между собой (одна из этих двух операций может быть опущена). При этом выявляются точки фактического расположения шумящих объектов. Далее во второй фазе определяются координаты этих точек.
Операция сравнения величин Wl между собой выполняется (если она не опущена) следующим образом. Индексу l каждой из превысивших порог величин Wl соответствуют две пеленгационные линии положения, пересекающиеся в точке Cl. Сочетание индексов этих линий положения определяется упомянутой выше таблицей соответствия пар индексов пеленгационных линий положения индексам номеров точек их пересечения. Так, в ситуации, отраженной на фиг.1, точке пересечения Cl, например, при l=8 соответствуют линии положения, характеризующиеся углами φ13 и φ22. Но каждая из этих линий положения в отдельности «участвует» еще в точках пересечения с номерами l=7 и 9 (это относится к линии положения, соответствующей углу φ13) и с номерами l=2 и 5 (это относится к линии положения, соответствующей углу φ22). Решение о наличии в точке C8 шумящего объекта (заметим, что в данном примере это решение ошибочно) принимается при условии, что все величины (в рассматриваемой в качестве примера ситуации) Wl при 1=2, 5, 7 и 9 меньше величины W8. Это и есть упомянутая операция сравнения.
В случае принятия решения о наличии объекта в точке Cl ее координаты и являются итоговым результатом решения задачи заявляемым объектом. Эти координаты определяются следующим образом. Как отмечено выше, сформированы пеленгационные линии положения, точка пересечения которых - есть точка Cl. Они характеризуются парой углов φ1j (1) и φ2j (2). При этом углы ψij(i), образуемые этими линиями положения с положительным направлением оси OX, определяются как ψij(i)=180-φij(i). Уравнение прямой, проходящей через точку с координатами (xпрi, yпрi) (это координаты приемных позиций) под углом ψij(i) к оси OX имеет вид y-yпрi=tgψij(i)(x- хпрi) или в виде общего уравнения Aijx+Bijy+Cij=0, где Aij=-tgψij(i), Bij=1 и Cij=(tgψij(i))хпрi-yпрi.
Координаты (xl, yl) точки пересечения прямых, заданных в виде общих уравнений, определяются как (см. А.Е.Цикунов. Сборник математических формул. Изд.4-е. Минск. Высшая школа, 1071, с.58)
Напомним, что между номерами (индексами) l точек пересечения пеленгационных линий положения и индексами параметров ψij(i) этих линий положения имеется однозначная связь (см. выше описание операции 6).
Вторая фаза (т.е. собственно вычисление координат, выбранных на первой фазе точек пересечения пеленгационных линий положения) совпадает с операцией вычисления координат, предусмотренной в прототипе.
В завершение описания признаков заявляемого объекта сделаем следующие замечания. Во-первых, к моменту времени очередного принятия решения по местоопределению совокупности объектов по некоторым из этих объектов задача определения индексов тех пеленгационных линий положения, на пересечении которых находится объект, может быть уже решена (например, при длительном сопровождении некоторого объекта совокупность пеленгационных линий положения, на пересечении которых он находится, заранее известна, поскольку примерно известно его местоположение). В связи с этим описанные выше операции реализуются по точкам пересечения не всех сформированных линий положения. Во-вторых, содержание перечисленных выше операций заявляемого объекта может быть (в сравнении с указанным выше) уточнено. Так, возможно выполнение операции 6 (определение расстояний от приемных позиций до точек пересечения линий положения) путем определения координат этих точек (см. соотношения (3)) и далее определение искомых расстояний аналогично длине отрезка AB (см. описание операции 6), т.е. как расстояний между двумя точками, координаты которых определены. В этом случае соответствующим образом уточняется содержание второй фазы операции 10, а именно на этой фазе осуществляется отбор координат (определенных в процессе выполнения уточненной операции 6) только тех точек пересечения пеленгационных линий положения, в которых (согласно результатам первой фазы операции 10) фактически расположены шумящие объекты. При указанной коррекции содержания операций 6 и 10 существо объекта не меняется, т.е. такую коррекцию (замену) следует считать эквивалентной.
Принцип действия заявляемого объекта состоит в следующем. Уровень шумоизлучения морских объектов по горизонтали практически изотропен (т.е. в разных направлениях морские объекты излучают сигналы практически одного и того же уровня). При этом результаты измерения приведенных к точкам фактического расположения шумящих объектов шумностей в разных позициях (с точностью до погрешностей прогнозирования потерь на распространение) совпадают; тогда для точек Cl (в которых действительно расположены объекты) значения величин Wl сравнительно велики. Результаты же измерения шумностей, приведенных к тем точкам пересечения пеленгационных линий положения, в которых шумящие объекты в действительности отсутствуют, существенно различны; при этом для точек Cl (в которых объекты в действительности отсутствуют) значения величин Wl сравнительно малы. В итоге в заявляемом объекте, в отличие от прототипа, реализуется определение местоположения шумящих объектов при наличии в зоне обзора системы более чем одного такого объекта.
Claims (1)
- Способ определения местоположения объектов в пассивной системе мониторинга, заключающийся в приеме сигналов аппаратурой разнесенных позиций, пространственную селекцию по принятым сигналам в каждой из приемных позиций, некогерентное накопление по времени каждого из результатов пространственной селекции, принятие решения об обнаружении отметок целей по результатам накопления по времени и формирование по результатам обнаружения пеленгационных линий положения в не менее чем двух позициях и определение координат точек пересечения пеленгационных линий положения, отличающийся тем, что осуществляется определения расстояний между каждой из не менее чем двух приемных позиций системы и точками пересечения линий положения, сформированных в этих позициях, измерение уровней принимаемых этими позициями сигналов, по которым обнаружены отметки, пересчет каждого из этих уровней к точкам пересечения пеленгационных линий положения, соответствующим указанным отметкам, формирование функций разности результатов пересчета уровней сигналов от каждой из указанных приемных позиций к одной и той же точке пересечения этих линий положения для ряда этих точек, а определение координат целей осуществляется как определение координат только тех точек пересечения пеленгационных линий положения, для которых функции разности результатов пересчета уровней сигналов будут больше порога.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2013116786/28A RU2526896C1 (ru) | 2013-04-08 | 2013-04-08 | Способ определения местоположения объектов в пассивной системе мониторинга |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2013116786/28A RU2526896C1 (ru) | 2013-04-08 | 2013-04-08 | Способ определения местоположения объектов в пассивной системе мониторинга |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2526896C1 true RU2526896C1 (ru) | 2014-08-27 |
Family
ID=51456294
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2013116786/28A RU2526896C1 (ru) | 2013-04-08 | 2013-04-08 | Способ определения местоположения объектов в пассивной системе мониторинга |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2526896C1 (ru) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2593523C2 (ru) * | 2014-12-29 | 2016-08-10 | Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации | Способ определения координат падения боеприпасов |
RU2667330C1 (ru) * | 2017-06-05 | 2018-09-18 | Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-Морского Флота "Военно-морская академия им. Адмирала Флота Советского Союза Н.Г. Кузнецова" | Способ определения местоположения объектов гидроакустической пассивной системой в условиях многомодового распространения звука |
CN111948607A (zh) * | 2020-06-17 | 2020-11-17 | 中国船舶重工集团公司第七一五研究所 | 一种深海目标被动定位及粒子滤波跟踪方法 |
CN112415471A (zh) * | 2020-12-11 | 2021-02-26 | 成都大公博创信息技术有限公司 | 一种单站移动测向定位方法 |
RU2821149C1 (ru) * | 2024-02-26 | 2024-06-17 | Общество с ограниченной ответственностью "Лаборатория подводной связи и навигации" | Способ определения местоположения подводных объектов, излучающих звуки |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63261180A (ja) * | 1987-04-17 | 1988-10-27 | Nec Corp | 広帯域周波数雑音源パワ−スペクトル検出方式 |
US5646907A (en) * | 1995-08-09 | 1997-07-08 | The United States Of America As Represented By The Secretary Of The Navy | Method and system for detecting objects at or below the water's surface |
RU2145426C1 (ru) * | 1998-10-19 | 2000-02-10 | Камчатский гидрофизический институт | Способ обнаружения сигналов шумоизлучения морских объектов |
RU2156984C1 (ru) * | 1999-07-12 | 2000-09-27 | Государственное унитарное предприятие "Центральный научно-исследовательский институт "Морфизприбор" | Способ получения информации о шумящем в море объекте и способ получения цветовых шкал для него |
RU2316791C2 (ru) * | 2006-02-10 | 2008-02-10 | Федеральное Государственное унитарное предприятие "Камчатский гидрофизический институт" | Способ обнаружения сигналов шумоизлучения морских объектов |
-
2013
- 2013-04-08 RU RU2013116786/28A patent/RU2526896C1/ru active IP Right Revival
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63261180A (ja) * | 1987-04-17 | 1988-10-27 | Nec Corp | 広帯域周波数雑音源パワ−スペクトル検出方式 |
US5646907A (en) * | 1995-08-09 | 1997-07-08 | The United States Of America As Represented By The Secretary Of The Navy | Method and system for detecting objects at or below the water's surface |
RU2145426C1 (ru) * | 1998-10-19 | 2000-02-10 | Камчатский гидрофизический институт | Способ обнаружения сигналов шумоизлучения морских объектов |
RU2156984C1 (ru) * | 1999-07-12 | 2000-09-27 | Государственное унитарное предприятие "Центральный научно-исследовательский институт "Морфизприбор" | Способ получения информации о шумящем в море объекте и способ получения цветовых шкал для него |
RU2316791C2 (ru) * | 2006-02-10 | 2008-02-10 | Федеральное Государственное унитарное предприятие "Камчатский гидрофизический институт" | Способ обнаружения сигналов шумоизлучения морских объектов |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2593523C2 (ru) * | 2014-12-29 | 2016-08-10 | Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации | Способ определения координат падения боеприпасов |
RU2667330C1 (ru) * | 2017-06-05 | 2018-09-18 | Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-Морского Флота "Военно-морская академия им. Адмирала Флота Советского Союза Н.Г. Кузнецова" | Способ определения местоположения объектов гидроакустической пассивной системой в условиях многомодового распространения звука |
CN111948607A (zh) * | 2020-06-17 | 2020-11-17 | 中国船舶重工集团公司第七一五研究所 | 一种深海目标被动定位及粒子滤波跟踪方法 |
CN111948607B (zh) * | 2020-06-17 | 2023-08-15 | 中国船舶重工集团公司第七一五研究所 | 一种深海目标被动定位及粒子滤波跟踪方法 |
CN112415471A (zh) * | 2020-12-11 | 2021-02-26 | 成都大公博创信息技术有限公司 | 一种单站移动测向定位方法 |
CN112415471B (zh) * | 2020-12-11 | 2023-10-31 | 成都大公博创信息技术有限公司 | 一种单站移动测向定位方法 |
RU2821149C1 (ru) * | 2024-02-26 | 2024-06-17 | Общество с ограниченной ответственностью "Лаборатория подводной связи и навигации" | Способ определения местоположения подводных объектов, излучающих звуки |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2007333877B2 (en) | Radio frequency navigation using frequency response matching | |
RU2432580C1 (ru) | Способ определения координат источника радиоизлучений при амплитудно-фазовой пеленгации с борта летательного аппарата | |
RU2526896C1 (ru) | Способ определения местоположения объектов в пассивной системе мониторинга | |
CA2672691A1 (en) | Set mode passive location in toa/tdoa modes | |
Sohan et al. | Indoor positioning techniques using RSSI from wireless devices | |
RU2649073C1 (ru) | Способ определения координат подводного объекта гидроакустической системой подводной навигации с юстировочным маяком | |
RU2704029C1 (ru) | Временной способ определения дальности до сканирующего источника радиоизлучения без измерения пеленга | |
RU2506605C2 (ru) | Дальномерный способ и устройство определения координат источника радиоизлучения | |
Sandys-Wunsch et al. | Multistatic localization error due to receiver positioning errors | |
CN109375163B (zh) | 一种高精度的室内定位方法及终端 | |
RU2275649C2 (ru) | Способ местоопределения источников радиоизлучения и пассивная радиолокационная станция, используемая при реализации этого способа | |
RU2653956C1 (ru) | Способ определения текущих координат цели в бистатическом режиме гидролокации | |
RU2713193C1 (ru) | Способ межпозиционного отождествления результатов измерений и определения координат воздушных целей в многопозиционной радиолокационной системе | |
RU2431156C1 (ru) | Способ определения координат посредством гидроакустической навигационной системы | |
RU2545068C1 (ru) | Способ измерения изменения курсового угла движения источника зондирующих сигналов | |
RU117018U1 (ru) | Навигационная гидроакустическая станция освещения ближней обстановки | |
RU2405166C2 (ru) | Способ определения местоположения передатчика переносным пеленгатором | |
RU2572809C1 (ru) | Способ однопозиционной радиолокации подвижных источников радиосигнала на дорожной сети | |
RU2308735C1 (ru) | Способ определения местоположения источников радиоизлучения в ближней зоне | |
RU2714303C1 (ru) | Разностно-дальномерный способ определения местоположения источника радиоизлучения в условиях многолучевого распространения радиоволн | |
Kreczmer | Estimation of the azimuth angle of the arrival direction for an ultrasonic signal by using indirect determination of the phase shift | |
RU2515419C1 (ru) | Способ измерения изменения курсового угла движения источника зондирующих сигналов | |
RU2689770C1 (ru) | Способ отождествления позиционных измерений и определения местоположения воздушных целей в пространственно-распределенной радионавигационной системе в условиях многоцелевой обстановки | |
RU2524482C1 (ru) | Способ однопозиционной радиолокации подвижных объектов на дорожной сети | |
RU2584541C1 (ru) | Способ идентификации параметров навигационных спутников |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20160409 |
|
NF4A | Reinstatement of patent |
Effective date: 20191002 |