RU2525322C1 - Способ изготовления термоэлектрического генератора - Google Patents

Способ изготовления термоэлектрического генератора Download PDF

Info

Publication number
RU2525322C1
RU2525322C1 RU2013110165/28A RU2013110165A RU2525322C1 RU 2525322 C1 RU2525322 C1 RU 2525322C1 RU 2013110165/28 A RU2013110165/28 A RU 2013110165/28A RU 2013110165 A RU2013110165 A RU 2013110165A RU 2525322 C1 RU2525322 C1 RU 2525322C1
Authority
RU
Russia
Prior art keywords
conductivity
polymer
mol
solution
concentration
Prior art date
Application number
RU2013110165/28A
Other languages
English (en)
Inventor
Анатолий Константинович Терехов
Сергей Алексеевич Радин
Original Assignee
Открытое акционерное общество "Инфотэк Груп"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Инфотэк Груп" filed Critical Открытое акционерное общество "Инфотэк Груп"
Priority to RU2013110165/28A priority Critical patent/RU2525322C1/ru
Application granted granted Critical
Publication of RU2525322C1 publication Critical patent/RU2525322C1/ru

Links

Landscapes

  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

Изобретение относится к полупроводниковой технике, в частности к области создания термоэлектрических генераторов. Технический результат: повышение эффективности преобразования тепловой энергии в электрическую. Сущность: в качестве термоэлектрических материалов используют полианилин, допированный различными химическими добавками. Изготовление полимерного материала с p- и n-проводимостью осуществляют путем процесса электрополимеризации из водного раствора анилина и соляной кислоты с химическими добавками. 1 ил., 1 табл.

Description

Изобретение относится к полупроводниковой технике, в частности к области создания термоэлектрических генераторов. Изобретение может быть использовано для получения электрической энергии для бытового, промышленного и специального применения.
Основной целью технических решений является создание термоэлектрического генератора с преобразованием тепловой энергии в электрическую с эффективностью не менее чем в 10 раз выше по сравнению с существующими аналогами.
Известен полупроводниковый способ получения электрической энергии в термоэлектрических генераторах. Термоэлектрические генераторы являются устройствами непосредственного превращения тепловой энергии в электрическую. Принцип действия термоэлектрического генератора основан на применении эффекта Зеебека, открытого в 1821 г. Он заключается в появлении эдс в замкнутой цепи из двух разнородных материалов, при условии, что места их контактов поддерживаются при разных температурах. Эффект возникает вследствие зависимости энергии свободных электронов или «дырок» от температуры. В местах контактов различных материалов заряды переходят от проводника, где они имели более высокую энергию, в проводник с меньшей энергией зарядов. Если один контакт нагрет больше, чем другой, то разность энергий зарядов между двумя веществами больше на горячем контакте, чем на холодном, в результате чего в замкнутой цепи возникает ток [1].
Известны термоэлектрические модули серии TGM компании КРИОТЕРМ [2]. Их недостатками является низкий КПД, который не превышает 3% при разности температур в 100°C, и то, что работа этих модулей рассчитана на температуры выше 100°C.
Техническая задача заключается в создании термоэлектрического генератора с преобразованием тепловой энергии в электрическую с эффективностью не менее чем в 10 раз выше по сравнению с существующими аналогами.
Сущность изобретения заключается в том, что вместо полупроводниковых материалов используется полианилин, допированный различными химическими добавками.
Полианилин относится к классу проводящих полимеров, который обладает полупроводниковыми свойствами. В традиционных полупроводниках инжектированные носители фиксируются в виде зонных электронов и дырок без заметного искажения жесткой трехмерной кристаллической решетки. Как известно, в органических молекулах равновесная геометрия существенно изменяется при ионизации. В органическом полимере нежесткость квазиодномерной решетки приводит к локализации инжектированного при окислении или восстановлении заряда в области вызванного им искажения геометрии. Связанный с таким локальным искажением решетки ион-радикал называют поляроном, а получающийся при его ионизации бесспиновый двухзарядный ион -биполяроном. В транс-полиацетилене, основное состояние которого вырождено, возможно существование солитонов - бесспиновых однозарядных ионов и незаряженных радикалов, образование которых можно представить как результат распада поляронов и биполяронов. Такая схема допирования и запасания заряда в проводящих полимерах является практически общепринятой. Кроме того, предполагается, что при высокой концентрации дефектов их волновые функции могут перекрываться с образованием солитонных, поляронных и биполяронных зон, подобно тому как перекрывание волновых функций (орбиталей) электронов в периодической структуре (кристалле, полимерной цепочке) приводит к формированию хорошо известных электронных зон.
Структура полианилина димеризована, т.е. элементарная ячейка включает два мономерных звена за счет искажения Пайерлса:
N B N B N = Q = N B ,
Figure 00000001
металл диэлектрик
что приводит к расщеплению всех энергетических зон на две. Из валентной зоны получаются заполненная и пустая зоны, разделенные энергетической щелью Пайерлса. Отклонение от плоской геометрии молекулы за счет отталкивания атомов водорода в орто-положениях соседних колец увеличивает эту щель [3].
Исходя из вышеизложенного, допированный полианилин может обладать как свойствами p-проводника, так и свойствами n-проводника в зависимости от добавки и pH среды.
Изготовление полимерного материала с p-проводимостью выполняют следующим образом. На отмытую подложку из ситалла, сапфира, поликора или иного диэлектрического материала с одной стороны проводят напыление слоя металла, в качестве которого можно использовать золото, платину или хром. Далее приготавливают водный раствор, который содержит соляную кислоту с концентрацией 2,2 моль/л, анилин с концентрацией 0,5 моль/л и химическую добавку, состоящую из бромида натрия с концентрацией 0,04 моль/л, хлорида аммония с концентрацией 0,1 моль/л и хлористого кальция с концентрацией 0,01 моль/л.
Далее приготовленный раствор наливают в гальваническую ванну. Температура раствора должна быть в интервале от +5°C до +14°C. После чего в раствор на четверть опускают приготовленную подложку с напыленным металлическим слоем. Методом электрополимеризации наносят слой сорбента, представляющий собой пленку допированного полианилина.
Процесс осуществляют в режиме потенциостатического циклирования при потенциалах от плюс 4,2 В до минус 7,0 B на рабочем электроде, которым является подложка с напыленным металлическим слоем, относительно противоэлектрода, который в свою очередь может представлять собой графитовый стержень, проволоку из платины, золота, никеля, нержавеющей стали, хрома или пластин из этих же материалов. В ходе процесса наблюдается рост полимера на том участке поверхности напыленного металлического слоя, который контактирует с раствором. Время процесса электрополимеризации определяется индивидуально в каждом случае, в зависимости от толщины требуемого слоя для конкретной задачи. Далее подложку с допированным проводящим полимером промывают дистиллированной водой и высушивают.
Изготовление полимерного материала с n-проводимостью выполняют следующим образом. Ту же самую пластину, которая с одного конца уже покрыта слоем проводящего полимера с p-проводимостью, после просушки на четверть опять опускают в гальваническую ванну с новым раствором другой стороной металлической поверхности таким образом, чтобы нанесенное в предыдущей операции покрытие не касалось поверхности раствора и между поверхностью раствора и границей нанесенного полимерного слоя с p-проводимостью оставался зазор в виде напыленного материала без полимерного покрытия. Водный раствор для изготовления полимерного материала с n-проводимостью содержит соляную кислоту с концентрацией 2,4 моль/л, анилин с концентрацией 0,3 моль/л и химическую добавку, представляющую собой гетерополикислоту с химической формулой H5PW10V2O40, с концентрацией 0,05 моль/л.
Далее, как и при изготовлении полимерного материала с p-проводимостью, процесс проводят в гальванической ванне в режиме потенциостатического циклирования при потенциалах от плюс 2,4 В до минус 4,7 В на рабочем электроде, которым является та же подложка с напыленным металлическим слоем и нанесенным полимерным слоем с p-проводимостью относительно противоэлектрода, который может представлять собой графитовый стержень, проволоку из платины, золота, хрома, или пластины из этих же материалов. Температура раствора должна находиться в интервале от +20°C до +30°C. Время нанесения также выбирается индивидуально, как и в предыдущей операции. После завершения процесса электрополимеризации проводящий полимер n-типа покрывает четверть диэлектрической подложки на металлической поверхности с противоположной стороны и между слоями полимера находится зазор, где напылен слой металла (см. рисунок). Далее подложку с допированным проводящим полимером промывают дистиллированной водой и высушивают.
Изготовленная таким образом подложка с двумя слоями проводящих полимеров n- и p-типа, разделенных между собой зазором с напыленным металлическим покрытием, служит основой для изготовления термоэлектрического генератора.
Термоэлектрический генератор изготавливают следующим образом. На изготовленную в предыдущих технологических операциях пластину 1 (см. рисунок) с напыленным металлическим покрытием 2 и покрытием с двух сторон слоями проводящих полимеров с p- и n-проводимостью накладывают два разделенных контактных электрода 5 и 6 на слои проводящих полимеров с p-проводимостью 3 и n-проводимостью 4. Контактные электроды 5 и 6 могут быть выполнены в виде металлических пластин из хрома, никеля, нержавеющей стали, титана, серебра, меди.
Работа такого термоэлектрического генератора аналогична работе элементов Зеебека.
При создании разности температур между пластиной 1 с напыленным металлическим покрытием 2 и контактными электродами 5 и 6 возникает разность потенциалов. Если между электродами 5 и 6, как показано на рисунке, установить электрическую нагрузку R 7, то в цепи потечет электрический ток.
Пример. Способ изготовления термоэлектрического генератора
Изготовление осуществляли следующим образом. Взяли ситалловую подложку с габаритными размерами 40×40×3 мм. После тщательной промывки в эфире произвели напыление тонкого слоя хрома на одну сторону поверхности ситалловой подложки. Затем приготовили водный раствор, который содержал соляную кислоту с концентрацией 2,2 моль/л, анилин с концентрацией 0,7 моль/л и химическую добавку, состоящую из бромида натрия с концентрацией 0,04 моль/л, хлорида аммония с концентрацией 0,1 моль/л и хлористого кальция с концентрацией 0,01 моль/л. После чего приготовленный раствор налили в гальваническую ванну. Температура раствора составила 10°C. Далее в раствор на четверть опустили приготовленную подложку с напыленным металлическим слоем. Методом полимеризации нанесли слой сорбента, представляющий собой пленку допированного полианилина. Процесс осуществляли в режиме потенциостатического циклирования при потенциалах от плюс 4,2 В до минус 7,0 В на рабочем электроде, которым являлась подложка с напыленным металлическим слоем хрома относительно противоэлектрода, который в свою очередь был выполнен из графитового стержня. В ходе процесса наблюдался рост пленки полимера на участке поверхности напыленного металлического слоя хрома, который контактировал с раствором.
Время электрополимеризации составило 15 мин, после чего подложку с допированным проводящим полимером промыли дистиллированной водой и высушили. Далее приступили ко второй операции - изготовлению полимерного материала с n-проводимостью. Ту же самую пластину, которая с одного конца уже покрыта слоем проводящего полимера с p-проводимостью, после просушки опустили в гальваническую ванну с новым раствором другой стороной металлической поверхности таким образом, чтобы нанесенное в предыдущей операции покрытие не касалось поверхности раствора и между поверхностью раствора и границей нанесенного полимерного слоя в предыдущей операции оставался зазор, представляющий собой слой напыленного хрома без покрытия.
Далее приступили к изготовлению полимерного материала с n-проводимостью. Для этого приготовили новый водный раствор, который имеет следующий состав: соляная кислота 2,4 моль/л, анилин 0,3 моль/л и химическая добавка, представляющая собой гетерополикислоту H5PW10V2O40 с концентрацией 0,05 моль/л.
Далее, как и при изготовления полимерного материала с p-проводимостью, осуществили процесс электрополимеризации в гальванической ванне в режиме потенциостатического циклирования при потенциалах от плюс 2,4 В до минус 4,7 В на рабочем электроде, которым являлась та же подложка с напыленным металлическим слоем и нанесенным в предыдущей операции полимерным покрытием с p-проводимостью. Потенциалы задавались относительно противоэлектрода, который был выполнен из графитового стержня. Время нанесения составило 20 мин. Температуру раствора поддерживали в интервале 25-28°C. После завершения процесса электрополимеризации проводящий полимер n-типа покрыл другую четверть ситалловой подложки на металлической хромовой поверхности и между слоями полимера образовался зазор, не покрытый полимером (см. рисунок). Далее подложку промыли дистиллированной водой и высушили. После чего на изготовленную в предыдущих технологических операциях подложку (см. рисунок) с напыленным металлическим хромовым покрытием и покрытием с двух сторон слоями проводящих полимеров с p- и n-проводимостью наложили два контактных раздельных электрода, выполненных из хромовых пластин, и закрепили. После чего, как показано на рисунке, собранное изделие подключили к нагрузке в виде электрического сопротивления R 7 номиналом 1,0 Ом и подключили параллельно резистору вольтметр для измерения напряжения. После чего произвели нагрев ситалловой подложки 1 таким образом, чтобы между ней и электродами 5 и 6 установилась разность температур в 100°C. Температура подложки составила 160°C, а температура электродов 60°C. После установления температуры произвели измерение напряжения на нагрузочном резисторе 7. Показание вольтметра V составило 5,2 В. Таким образом, электрическая мощность (W) будет составлять:
W = V 2 R = ( 5,2 ) 2 1 = 27 В т
Figure 00000002
Полученные данные сравнили с термоэлектрическим генераторным модулем TGM-127-1,4-1,5. Его характеристики приведены в таблице.
Характеристики tc=50°C tc=100°C
th=150°C th=200°C
Напряжение, В 2,25 2,13
Ток, А 0,91 0,83
Мощность, Вт 2,06 1,79
КПД, % 2,8 2,40
где tc - температура холодной стороны;
th - температура горячей стороны.
Параметры указаны для сопротивления нагрузки, равного электрическому сопротивлению модуля.
Конструктивные характеристики:
электрическое сопротивление, Ом - 1,21±10%;
тепловое сопротивление, К/Вт - 1,43±10%;
размеры, мм - 40,0×40,0×40,0×40,0+0,5/-0,2.
Вывод. Эффективность патентуемого термоэлектрического генератора более чем в 18 раз лучше, чем серийно выпускаемого.
Источники информации
1. Сайт «new Энергетика», Новая техника, Термоэлектрические генераторы. http://newenergetika.narod.m/term y html
2. Компания «КРИОТЕРМ», термоэлектрические модули, http://www.kryotherm.ru/ru/index.phtml?tid=44.
3. Электрохимия полимеров/ М.Р.Тарасевич, С.Б.Орлов, Н.И.Школьников и др. - М.: Наука, 1990, с. 121-145.

Claims (1)

  1. Изготовление термоэлектрического генератора, включающее использование полупроводниковых материалов с p- и n-проводимостью с использованием диэлектрических подложек с напыленным металлическим покрытием, отличающееся тем, что диэлектрическая подложка может быть выполнена из ситалла, сапфира, поликора или иного диэлектрического материала, на которую с одной стороны тонким слоем должен быть напылен металл, в качестве которого можно использовать золото, платину или хром, и данное изделие используется в качестве рабочего электрода, на который на четверть с одной стороны и на четверть с другой наносят проводящие слои допированного полимера с p- и n-проводимостью, для изготовления полимерного материала с p-проводимостью используют водный раствор, который содержит соляную кислоту с концентрацией 2,2 моль/л, анилин с концентрацией 0,5 моль/л и химическую добавку, состоящую из бромида натрия с концентрацией 0,04 моль/л, хлорида аммония с концентрацией 0,1 моль/л и хлористого кальция с концентрацией 0,01 моль/л; далее приготовленный раствор наливают в гальваническую ванну, температура раствора должна быть в интервале от +5°C до +14°C, после чего в раствор на четверть опускают приготовленную подложку с напыленным металлическим слоем, а затем методом электрополимеризации наносят слой сорбента, представляющий собой пленку допированного полианилина, процесс осуществляют в режиме потенциостатического циклирования при потенциалах от плюс 4,2 В до минус 7,0 В на рабочем электроде, которым является подложка с напыленным металлическим слоем, относительно противоэлектрода, который в свою очередь может представлять собой графитовый стержень, проволоку из платины, золота, никеля, нержавеющей стали, хрома или пластин из этих же материалов, где в ходе процесса наблюдается рост полимера на том участке поверхности напыленного металлического слоя, который контактирует с раствором, а время электрополимеризации процесса определяется индивидуально в каждом случае, в зависимости от толщины требуемого слоя для конкретной задачи, после чего подложку с допированным проводящим полимером промывают дистиллированной водой и высушивают, после чего приступают к изготовлению полимерного материала с n-проводимостью, для этого ту же самую пластину, которая с одного конца уже покрыта слоем проводящего полимера с p-проводимостью, после просушки на четверть опять опускают в гальваническую ванну с новым раствором другой стороной металлической поверхности таким образом, чтобы нанесенное в предыдущей операции покрытие не касалось поверхности раствора и между поверхностью раствора и границей нанесенного полимерного слоя с p-проводимостью оставался зазор в виде напыленного материала без полимерного покрытия, водный раствор для изготовления полимерного материала с n-проводимостью содержит соляную кислоту с концентрацией 2,4 моль/л, анилин с концентрацией 0,3 моль/л и химическую добавку, представляющую собой гетерополикислоту с химической формулой H5PW10V2O40, с концентрацией 0,5 моль/л, далее процесс осуществляют в гальванической ванне в режиме потенциостатического циклирования при потенциалах от плюс 2,4 В до минус 4,7 В на рабочем электроде, которым является та же подложка с напыленным металлическим слоем и нанесенным полимерным слоем с p-проводимостью относительно противоэлектрода, который может представлять собой графитовый стержень, проволоку из платины, золота, хрома, или пластины из этих же материалов, а температура раствора должна находится в интервале от +20°C до +30°C, время нанесения выбирается индивидуально, после завершения процесса электрополимеризации проводящий полимер n-типа покрывает четверть диэлектрической подложки на металлической поверхности с противоположной стороны и между слоями полимера находится зазор, где напылен слой металла, затем подложку с допированным проводящим полимером промывают дистиллированной водой и высушивают, после чего производят сборку непосредственно термоэлектрического генератора, которая заключается в том, что на изготовленную пластину с напыленным металлическим покрытием и покрытием с двух сторон слоями проводящих полимеров с p- и n-проводимостью накладывают два разделенных контактных электрода на слои проводящих полимеров с p-проводимостью и n-проводимостью, контактные электроды могут быть выполнены в виде металлических пластин из хрома, никеля, нержавеющей стали, титана, серебра, меди.
RU2013110165/28A 2013-03-07 2013-03-07 Способ изготовления термоэлектрического генератора RU2525322C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013110165/28A RU2525322C1 (ru) 2013-03-07 2013-03-07 Способ изготовления термоэлектрического генератора

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013110165/28A RU2525322C1 (ru) 2013-03-07 2013-03-07 Способ изготовления термоэлектрического генератора

Publications (1)

Publication Number Publication Date
RU2525322C1 true RU2525322C1 (ru) 2014-08-10

Family

ID=51355307

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013110165/28A RU2525322C1 (ru) 2013-03-07 2013-03-07 Способ изготовления термоэлектрического генератора

Country Status (1)

Country Link
RU (1) RU2525322C1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006128444A (ja) * 2004-10-29 2006-05-18 Toyota Central Res & Dev Lab Inc 熱電材料
RU75020U1 (ru) * 2008-01-09 2008-07-20 Государственное образовательное учреждение высшего профессионального образования "Южно-Уральский государственный университет" Устройство для охлаждения тепловыделяющей аппаратуры
EP2521191A1 (en) * 2011-05-04 2012-11-07 BAE Systems Plc Thermoelectric devices
US20130042899A1 (en) * 2011-07-14 2013-02-21 Sony Corporation Thermoelectric device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006128444A (ja) * 2004-10-29 2006-05-18 Toyota Central Res & Dev Lab Inc 熱電材料
RU75020U1 (ru) * 2008-01-09 2008-07-20 Государственное образовательное учреждение высшего профессионального образования "Южно-Уральский государственный университет" Устройство для охлаждения тепловыделяющей аппаратуры
EP2521191A1 (en) * 2011-05-04 2012-11-07 BAE Systems Plc Thermoelectric devices
US20130042899A1 (en) * 2011-07-14 2013-02-21 Sony Corporation Thermoelectric device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
A1 . *

Similar Documents

Publication Publication Date Title
Suh et al. Doping of donor-acceptor polymers with long side chains via solution mixing for advancing thermoelectric properties
Ehsani Influence of counter ions in electrochemical properties and kinetic parameters of poly tyramine electroactive film
Ehsani et al. Electrochemical study of anomalous diffusion and fractal dimension in poly ortho aminophenol electroactive film: Comparative study
US4585581A (en) Polymer blends for use in photoelectrochemical cells for conversion of solar energy to electricity
US4488943A (en) Polymer blends for use in photoelectrochemical cells for conversion of solar energy to electricity and methods for manufacturing such blends
Seki et al. Effects of different electrolytes and film thicknesses on structural and thermoelectric properties of electropolymerized poly (3, 4-ethylenedioxythiophene) films
Pahal et al. Electrochromism and redox switching of cobalt hexacyanoferrate–polyaniline hybrid films in a hydrophobic ionic liquid
Yue et al. Synthesis, characterization, and thermoelectric properties of a conducting copolymer of 1, 12-bis (carbazolyl) dodecane and thieno [3, 2-b] thiophene
Gregg et al. On the superlinear increase in conductivity with dopant concentration in excitonic semiconductors
Wu et al. Electrochemical copolymerization of diphenylamine and anthranilic acid with various feed ratios
Ju et al. Engineering counter-ion-induced disorder of a highly doped conjugated polymer for high thermoelectric performance
Wijeratne Conducting Polymer Electrodes for Thermogalvanic Cells
Ehsani et al. Electrosynthesis and physioelectrochemical properties of poly tyramine electroactive film in the presence of the surfactant: comparable study
Shirale et al. The influence of electrochemical process parameters on the conductivity of poly (N-methylpyrrole) films by galvanostatic method
Komura et al. Dependence of redox-kinetic parameters at poly (o-phenylenediamine)-modified electrodes upon the oxidation and protonation levels of the polymer
Komura et al. Impedance study of the charge transport at poly-o-phenylenediamine film electrodes
Ming et al. Thermoelectric Performance of Donor–Acceptor–Donor Conjugated Polymers Based on Benzothiadiazole Derivatives
RU2525322C1 (ru) Способ изготовления термоэлектрического генератора
Cheng et al. Electrosynthesis and characterization of a multielectrochromic copolymer of tris [4-(2-thienyl) phenyl] amine with 3, 4-ethylenedioxythiophene
Berkes et al. Electrochemical nanogravimetric studies on the electropolymerization of indole and on polyindole
Zhuang et al. Solvent-induced lengthened conjugated chains in electrochromic PEDOT for enhanced optical modulation
Lu et al. Electropolymerization of 3, 4-ethylenedithiathiophene in the green binary solvent system of water and ethanol
Deguchi et al. Preparation and characterization of electropolymerized poly (3, 4-ethylenedioxythiophene) thin films with different dopant anions
WO2015178795A1 (ru) Способ изготовления термоэлектрического генератора
Holderna-Natkaniec et al. Electric properties and internal dynamics of the [C6H18N2] SbCl5 [C6H18N2] Cl2 in intermediate temperature phase (part II)