RU2524580C1 - Способ разработки нефтяной залежи тепловым и водогазовым воздействием в системе вертикальных, горизонтальных и многозабойных скважин - Google Patents
Способ разработки нефтяной залежи тепловым и водогазовым воздействием в системе вертикальных, горизонтальных и многозабойных скважин Download PDFInfo
- Publication number
- RU2524580C1 RU2524580C1 RU2013148602/03A RU2013148602A RU2524580C1 RU 2524580 C1 RU2524580 C1 RU 2524580C1 RU 2013148602/03 A RU2013148602/03 A RU 2013148602/03A RU 2013148602 A RU2013148602 A RU 2013148602A RU 2524580 C1 RU2524580 C1 RU 2524580C1
- Authority
- RU
- Russia
- Prior art keywords
- wells
- water
- injection
- horizontal
- vertical
- Prior art date
Links
Images
Landscapes
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
Изобретение относится к нефтедобывающей промышленности и может найти применение при разработке залежей нефти вертикальными, горизонтальными и многозабойными скважинами с применением методов вытеснения нефти из пласта закачкой теплоносителя и водогазовой смеси. Обеспечивает повышение нефтеотдачи залежи, снижение вязкости нефти и увеличение коэффициента охвата. Сущность изобретения: способ включает бурение или выбор уже пробуренных добывающих и нагнетательных скважин на участке нефтяной залежи, бурение боковых горизонтальных стволов или горизонтальных нагнетательных скважин, закачку водогазовой смеси, состоящей из воды и попутного нефтяного газа, через вертикальные нагнетательные скважины, горячей воды через горизонтальные нагнетательные скважины или через боковые горизонтальные стволы и отбор продукции через добывающие скважины. Согласно изобретению по данным бурения вертикальных скважин предварительно проводят расчеты оптимальных параметров закачки на тепловой гидродинамической модели. Горизонтальные нагнетательные скважины либо боковые горизонтальные стволы бурят параллельно стволам многозабойных или горизонтальных добывающих скважин с расстоянием между стволами не менее 150 м. Горизонтальные нагнетательные скважины или боковые горизонтальные стволы оборудуют забойными нагревателями и ведут закачку горячей воды с температурой не менее 95°C на устье и под давлением закачки (0,45-0,85)·P, где P- вертикальное горное давление пород. В каждую вертикальную нагнетательную скважину ведут закачку водогазовой смеси с расходомQ=V/N+Q, м/сут, где V- объем добываемого попутного нефтяного газа с участка в
Description
Изобретение относится к нефтедобывающей промышленности и может найти применение при разработке залежей нефти вертикальными, горизонтальными и многозабойными скважинами с применением методов вытеснения нефти из пласта закачкой теплоносителя и водогазовой смеси.
Известен способ разработки нефтяной залежи, включающий закачку водогазовой смеси через нагнетательные скважины, отбор продукции через добывающие скважины. Согласно изобретению, в нагнетательных скважинах вскрывают подошвенную часть пласта, закачку водогазовой смеси производят циклически под давлением, превышающим давление раскрытия вертикальных трещин пласта, в качестве водогазовой смеси вначале нагнетают высокодисперсную водогазовую смесь при оптимальном соотношении объемов нагнетания воды и газа, определенном из условия пропорциональности отношения объемов мелких пор ниже среднего размера и крупных пор выше среднего размера в коллекторе, а на конечном этапе нагнетают мелкодисперсную водогазовую смесь, циклическую закачку выполняют изменением давления нагнетания на нагнетательных скважинах, при этом в добывающих скважинах вскрытие и отбор продукции производят по всему разрезу продуктивной части пласта. Дополнительно нагнетание водогазовой смеси чередуют с нагнетанием воды (патент РФ №2326235 E21B 43/20, опубл. 10.06.2008).
Недостатком известного способа является невысокая нефтеотдача, особенно при разработки залежей нефти с повышенной вязкостью.
Наиболее близким по технической сущности к предлагаемому способу является способ разработки нефтяной залежи, подстилаемой водой, заключающийся в разбуривании залежи горизонтальными нагнетательными и добывающими скважинами, закачке в область водонефтяного контакта через нагнетательные скважины мелкодисперсной водогазовой смеси, плотность которой меньше плотности воды в пластовых условиях, а температура выше начальной пластовой температуры и ниже температуры кипения воды при давлении на устье нагнетательной скважины, с одновременным отбором продукции из нефтяной оторочки и водонасыщенного коллектора. Закачку мелкодисперсной водогазовой смеси дополнительно производят в область нефтяной оторочки (патент РФ №2307239 E21B 43/20, E21B 43/24, опубл. 27.09.2007 - прототип).
Недостатком известного способа является невысокая нефтеотдача при разработке залежи нефти горизонтальными скважинами с закачкой нагретой водогазовой смеси. Смесь успевает остыть в процессе движения по стволу горизонтальной скважины, кроме того, происходит прорыв газа, что снижает охват пласта воздействием.
В предложенном изобретении решается задача повышения нефтеотдачи залежи, снижения вязкости нефти и увеличения коэффициента охвата.
Задача решается тем, что в способе теплового и водогазового воздействия в системе вертикальных, горизонтальных и многозабойных скважин, включающем бурение или выбор уже пробуренных добывающих и нагнетательных скважин на участке нефтяной залежи, бурение боковых горизонтальных стволов или горизонтальных нагнетательных скважин, закачку водогазовой смеси, состоящей из воды и попутного нефтяного газа, через вертикальные нагнетательные скважины, горячей воды через горизонтальные нагнетательные скважины или через боковые горизонтальные стволы и отбор продукции через добывающие скважины, согласно изобретению по данным бурения вертикальных скважин предварительно проводят расчеты оптимальных параметров закачки на тепловой гидродинамической модели, горизонтальные нагнетательные скважины либо боковые горизонтальные стволы бурят параллельно стволам многозабойных или горизонтальных добывающих скважин с расстоянием между стволами не менее 150 м, горизонтальные нагнетательные скважины или боковые горизонтальные стволы оборудуют забойными нагревателями и ведут закачку горячей воды с температурой не менее 95°C на устье и под давлением закачки (0,45-0,85)·Pг, где Pг - вертикальное горное давление пород, в каждую вертикальную нагнетательную скважину ведут закачку водогазовой смеси с расходом
Qг=Vг/N+Qв, м3/сут,
где Vг - объем добываемого попутного нефтяного газа с участка в сутки, м3,
N - число вертикальных нагнетательных скважин,
Qв - расход закачиваемой воды в вертикальные нагнетательные скважины, обеспечивающий 100%-ную текущую компенсацию отбора закачкой на участке, м3/сут.
Дополнительно водогазовую смесь закачивают в вертикальные или горизонтальные скважины циклически, чередуя с закачкой подтоварной воды, для чего устанавливают в месте смешивания газа с водой емкости для сбора газа, период полуцикла Т задают от 1 до 6 месяцев, закачку воды ведут с расходом Qв, закачку водогазовой смеси - с расходом
Qвг=(1+Tв)·Vг/(Tвг·N)+Qв, м3/сут,
где Tвг - продолжительность закачки водогазовой смеси в полуцикле, сут,
Tв - продолжительность закачки воды в полуцикле, сут.
Сущность изобретения
На нефтеотдачу нефтяной залежи, разрабатываемой вертикальными, горизонтальными и многозабойными скважинами, существенное влияние оказывает технология поддержания пластового давления закачиваемым агентом. Существующие технические решения не в полной мере позволяют выполнить данную задачу. В предложенном изобретении решается задача повышения нефтеотдачи нефтяной залежи посредствам снижения вязкости нефти и увеличения коэффициента охвата пласта. Задача решается следующим образом.
На фиг.1 приведена в плане схема участка нефтяной залежи с расположенными на ней вертикальными, горизонтальными и многозабойными скважинами с проведением теплового и водогазового воздействия. Принятые обозначения: 1-2 - вертикальные нагнетательные скважины с пробуренными боковыми горизонтальными стволами (БГС), переведенные из добывающих для закачки горячей воды, 3 - вертикальная нагнетательная скважина для закачки водогазовой смеси, 4-6 - вертикальные добывающие скважины, 7 - добывающая многозабойная скважина с горизонтальным окончанием (МЗГС), A - участок нефтяной залежи, разрабатываемый скважинами 1-7, a - расстояние между скважинами 1-7 или их горизонтальными стволами, c - забойные нагреватели, s - расстояние между забойными нагревателями c.
Способ реализуют следующим образом.
Участок нефтяной залежи A (фиг.1), продуктивные пласты которого представлены карбонатными отложениями, вскрыт вертикальными 1-4 добывающими скважинами по редкой сетке.
По данным вертикальных скважин 1-4 строят тепловую гидродинамическую модель, в которой рассчитывают оптимальные параметры закачки, длины горизонтальных стволов и т.д.
Через несколько лет разработки сетку скважин участка залежи A уплотняют, бурят добывающие вертикальные скважины 5-6, многозабойную скважину 7 с двумя горизонтальными стволами, из скважин 1 и 2 проводят боковые горизонтальные стволы, параллельные стволам многозабойной скважины 7. Расстояние между вертикальными скважинами, между вертикальными скважинами и стволами многозабойной скважины, а также между боковыми стволами вертикальных скважин и стволами многозабойной скважины составляет а. Причем расстояние между стволами МЗГС и БГС или горизонтальных скважин должно быть не менее 150 м, что было определено по гидродинамическому моделированию как наиболее оптимальное расстояние для достижения максимальной нефтеотдачи.
Если скважины 1 и 2 отсутствовали, то возможно бурение вместо БГС горизонтальных скважин.
Скважины 1-2 переводят под закачку горячей воды. Горизонтальные боковые стволы оборудуют забойными нагревателями через каждые s метров, в скважины спускают колонны термоизолированных насосно-компрессорных труб, обустраивают. Расстояние s определяют заранее по гидродинамическому моделированию. Ведут закачку горячей воды с температурой не менее 95°C на устье через скважины 1 и 2 в продуктивный пласт залежи A. Забойные нагреватели при давлении закачки (0,45-0,85)·Pг, где Pг - вертикальное горное давление пород, обеспечивают, согласно расчетам, подогрев воды на 40-70% в зависимости от пройденной длины водой в горизонтальном стволе скважины. Этого хватает, согласно моделированию, для эффективного прогрева пласта.
Скважину 3 переводят под закачку водогазовой смеси. Суммарная добыча в сутки попутного нефтяного газа с участка залежи A составляет Vг. Для обеспечения 100% компенсации отбора жидкости закачкой необходим расход воды в скважину 3 в объеме (с учетом закачки в скважины 1 и 2) Qв.
Далее после обустройства наземного оборудования для осуществления процесса водогазового воздействия в вертикальную нагнетательную скважину 3 ведут закачку водогазовой смеси с расходом
Qг=Vг/N+Qв, м3/сут,
где Vг - объем добываемого попутного нефтяного газа с участка в сутки, м3,
N - число вертикальных нагнетательных скважин (на фиг.1 представлена только одна скважина),
Qв - расход закачиваемой воды в вертикальные нагнетательные скважины, обеспечивающий 100%-ную текущую компенсацию отбора закачкой на участке A, м3/сут.
Воду смешивают с попутным нефтяным газом посредством диспергатора, установленного на кустовой насосной станции, и транспортируют по водоводам до нагнетательной скважины 3.
Закачка горячей воды в боковые горизонтальные стволы скважин 1 и 2 обеспечивает прогрев межскважинного пространства. Температурный фронт доходит до стволов многозабойной горизонтальной скважины 7 за 1 год, который фиксируют по увеличению температуры добываемой продукции. Разогрев пласта приводит к снижению вязкости нефти от 2 до 15 раз, дебит скважины 1 увеличивается соответственно пропорционально.
Закачка водогазовой смеси в скважину 3 повышает охват пласта вытеснением, частично снижает вязкость и соответственно увеличивает дебиты скважин 4-7.
Закачку водогазовой смеси, особенно при низком газовом факторе, возможно вести в вертикальные или горизонтальные скважины циклически, чередуя с закачкой подтоварной воды. Для этого устанавливают в месте смешивания газа с водой емкости для сбора газа. Период полуцикла Т задают, согласно моделированию с достижением максимальной нефтеотдачи, от 1 до 6 месяцев, закачку воды ведут с расходом Qв, закачку водогазовой смеси - с расходом
Qвг=(1+Tв)·Vг/(Tвг·N)+Qв, м3/сут,
где Твг - продолжительность закачки водогазовой смеси в полуцикле, сут,
Tв - продолжительность закачки воды в полуцикле, сут.
Разработку ведут до полной экономически рентабельной выработки участка.
Результатом внедрения данного способа является повышение степени нефтеизвлечения, снижение вязкости нефти и увеличение охвата пласта.
Примеры конкретного выполнения способа
Пример 1. Участок нефтяной залежи A (фиг.1), продуктивные пласты которого представлены карбонатными отложениями, вскрыт вертикальными 1-4 добывающими скважинами с расстоянием между скважинами 400-500 м.
Параметры пласта участка залежи A следующие: глубина 950 м, начальное пластовое давление - 7,8 МПа, начальная пластовая температура - 20°C, проницаемость - 193 мД, пористость - 0,13, вязкость нефти в пластовых условиях - 435 мПа·с, толщина пласта - 12 м, газовый фактор Г=10 м3/т.
По данным вертикальных скважин 1-4 строят тепловую гидродинамическую модель, в которой рассчитывают оптимальные параметры закачки, длины горизонтальных стволов и т.д.
Через 5 лет разработки сетку скважин участка залежи A уплотняют, бурят добывающие вертикальные скважины 5-6, многозабойную скважину 7 с двумя горизонтальными стволами, из скважин 1 и 2 проводят боковые горизонтальные стволы, параллельные стволам многозабойной скважины 7. Расстояние между вертикальными скважинами, между вертикальными скважинами и стволами многозабойной скважины, а также между боковыми стволами вертикальных скважин и стволами многозабойной скважины составляет a=200-250 м.
Скважины 1-2 переводят под закачку горячей воды. Горизонтальные боковые стволы оборудуют забойными нагревателями через каждые s=50 м и спускают колонны термоизолированных насосно-компрессорных труб, обустраивают. Забойные нагреватели в рабочем состоянии имеют температуру 200°C. Ведут закачку горячей воды с температурой 95°C на устье через скважины 1 и 2 в продуктивный пласт залежи A. К моменту прихода горячей воды с устья к забою скважины температура воды снижается до 50-60°C. Забойные нагреватели при заданном расходе воды Q3=100 м3/сут и давлении закачки 0,45·Pг=0,45·22,4=10,1 МПа обеспечивают, согласно расчетам, подогрев воды до 90-120°C (в зависимости от пройденной длины водой в горизонтальном стволе скважины).
Скважину 3 переводят под закачку водогазовой смеси. Суммарный дебит добывающих скважин 4-7 по нефти с участка залежи A составил 28 т/сут, что обеспечивает отбор попутно добываемого газа в объеме Vг=28·10=280 м3 в сутки. Также для обеспечения 100% компенсации отбора жидкости закачкой необходим расход воды в скважину 3 в объеме (с учетом закачки в скважины 1 и 2) Qв=20 м3/сут.
Далее, после обустройства наземного оборудования для осуществления процесса водогазового воздействия в вертикальную нагнетательную скважину 3 ведут закачку водогазовой смеси с расходом Qвг=Vг/N+Qв=280/1+20=300 м3/сут. Воду смешивают с попутным нефтяным газом посредством диспергатора, установленного на кустовой насосной станции, и транспортируют по водоводам до нагнетательной скважины 3.
Закачка горячей воды в боковые горизонтальные стволы скважин 1 и 2 обеспечивает прогрев межскважинного пространства. Температурный фронт доходит до стволов многозабойной горизонтальной скважины 7 за 1 год, который фиксируют по увеличению температуры добываемой продукции. Разогрев пласта приводит к снижению вязкости нефти от 2 до 15 раз, дебит скважины 1 увеличивается соответственно пропорционально.
Закачка водогазовой смеси в скважину 3 повышает охват пласта вытеснением, частично снижает вязкость и соответственно увеличивает дебиты скважин 4-7.
Разработку ведут до полной экономически рентабельной выработки участка.
Пример 2. Выполняют, как пример 1. Вместо одной многозабойной скважины 7 с горизонтальным окончанием пробурено две горизонтальных. Водогазовую смесь закачивают циклически, чередуя с закачкой подтоварной воды, для чего устанавливают в месте смешивания газа с водой емкости для сбора газа. Период полуцикла составляет для закачки воды Tв=60 суток, для закачки водогазовой смеси Tвг=45 суток.
Закачку воды ведут с расходом Qв=20 м3/сут под давлением закачки 0,85·Pг=0,85·22,4=19,0 МПа.
Закачку водогазовой смеси ведут с расходом Qг=(1+Tв)·Vг/(Tвг·N)+Qв=(1+60)·280/(45·1)+20=732 м3/сут.
В результате за время разработки, которое ограничили обводнением добывающих скважин до 98%, либо достижением минимально рентабельного дебита нефти по скважине 0,5 т/сут, было добыто с участка 663,6 тыс.т нефти, коэффициент извлечения нефти составил 0,316. По прототипу при прочих равных условиях было добыто 543,9 тыс.т нефти, коэффициент извлечения нефти составил 0,259. Прирост коэффициента извлечения нефти по предлагаемому способу составил 0,057.
Предлагаемый способ за счет снижения вязкости нефти и повышения охвата пласта позволяет увеличить нефтеотдачу продуктивного пласта.
Claims (2)
1. Способ разработки нефтяной залежи тепловым и водогазовым воздействием в системе вертикальных и горизонтальных скважин, включающий бурение или выбор уже пробуренных добывающих и нагнетательных скважин на участке нефтяной залежи, бурение боковых горизонтальных стволов или горизонтальных нагнетательных скважин, закачку водогазовой смеси, состоящей из воды и попутного нефтяного газа, через вертикальные нагнетательные скважины, горячей воды через горизонтальные нагнетательные скважины или через боковые горизонтальные стволы и отбор продукции через добывающие скважины, отличающийся тем, что по данным бурения вертикальных скважин предварительно проводят расчеты оптимальных параметров закачки на тепловой гидродинамической модели, горизонтальные нагнетательные скважины либо боковые горизонтальные стволы бурят параллельно стволам многозабойных или горизонтальных добывающих скважин с расстоянием между стволами не менее 150 м, горизонтальные нагнетательные скважины или боковые горизонтальные стволы оборудуют забойными нагревателями и ведут закачку горячей воды с температурой не менее 95°С на устье и под давлением закачки (0,45-0,85)·Pг, где Pг - вертикальное горное давление пород, в каждую вертикальную нагнетательную скважину ведут закачку водогазовой смеси с расходом
Qг=Vг/N+Qв, м3/сут,
где Vг - объем добываемого попутного нефтяного газа с участка в сутки, м3,
N - число вертикальных нагнетательных скважин,
Qв - расход закачиваемой воды в вертикальные нагнетательные скважины, обеспечивающий 100%-ную текущую компенсацию отбора закачкой на участке, м3/сут.
Qг=Vг/N+Qв, м3/сут,
где Vг - объем добываемого попутного нефтяного газа с участка в сутки, м3,
N - число вертикальных нагнетательных скважин,
Qв - расход закачиваемой воды в вертикальные нагнетательные скважины, обеспечивающий 100%-ную текущую компенсацию отбора закачкой на участке, м3/сут.
2. Способ по п.1, отличающийся тем, что водогазовую смесь закачивают в вертикальные или горизонтальные скважины циклически, чередуя с закачкой подтоварной воды, для чего устанавливают в месте смешивания газа с водой емкости для сбора газа, период полуцикла T задают от 1 до 6 месяцев, закачку воды ведут с расходом Qв, закачку водогазовой смеси - с расходом
Qвг=(1+Tв)·Vг/(Tвг·N)+Qв, м3/сут,
где Tвг - продолжительность закачки водогазовой смеси в полуцикле, сут,
Tв - продолжительность закачки воды в полуцикле, сут.
Qвг=(1+Tв)·Vг/(Tвг·N)+Qв, м3/сут,
где Tвг - продолжительность закачки водогазовой смеси в полуцикле, сут,
Tв - продолжительность закачки воды в полуцикле, сут.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2013148602/03A RU2524580C1 (ru) | 2013-10-31 | 2013-10-31 | Способ разработки нефтяной залежи тепловым и водогазовым воздействием в системе вертикальных, горизонтальных и многозабойных скважин |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2013148602/03A RU2524580C1 (ru) | 2013-10-31 | 2013-10-31 | Способ разработки нефтяной залежи тепловым и водогазовым воздействием в системе вертикальных, горизонтальных и многозабойных скважин |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2524580C1 true RU2524580C1 (ru) | 2014-07-27 |
Family
ID=51265406
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2013148602/03A RU2524580C1 (ru) | 2013-10-31 | 2013-10-31 | Способ разработки нефтяной залежи тепловым и водогазовым воздействием в системе вертикальных, горизонтальных и многозабойных скважин |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2524580C1 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2667181C1 (ru) * | 2017-10-27 | 2018-09-17 | Ильдар Зафирович Денисламов | Способ разработки участка нефтяного пласта |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4465135A (en) * | 1983-05-03 | 1984-08-14 | The United States Of America As Represented By The United States Department Of Energy | Fire flood method for recovering petroleum from oil reservoirs of low permeability and temperature |
RU2065034C1 (ru) * | 1994-04-01 | 1996-08-10 | Всесоюзный нефтегазовый научно-исследовательский институт | Способ разработки залежи вязкой нефти |
SU1822219A1 (ru) * | 1990-06-06 | 1998-06-27 | Всесоюзный нефтегазовый научно-исследовательский институт | Способ разработки нефтяной залежи |
RU2231631C1 (ru) * | 2002-12-15 | 2004-06-27 | Дыбленко Валерий Петрович | Способ разработки нефтяной залежи |
RU2293178C1 (ru) * | 2005-06-22 | 2007-02-10 | Александр Николаевич Дроздов | Система для водогазового воздействия на пласт |
CN1995697A (zh) * | 2006-12-18 | 2007-07-11 | 辽河石油勘探局 | 一种火驱采油油层热力点火方法 |
RU2307239C1 (ru) * | 2006-04-10 | 2007-09-27 | Федеральное агентство по образованию Российский Государственный Университет нефти и газа им. И.М. Губкина | Способ разработки нефтяной залежи с подошвенной водой |
RU2334085C1 (ru) * | 2006-12-22 | 2008-09-20 | Открытое акционерное общество "Российская инновационная топливно-энергетическая компания (ОАО "РИТЭК") | Способ закачки газожидкостной смеси в скважину |
RU2433258C1 (ru) * | 2010-07-28 | 2011-11-10 | Открытое акционерное общество "Всероссийский нефтегазовый научно-исследовательский институт имени академика А.П. Крылова" (ОАО "ВНИИнефть") | Способ термогазовой обработки пласта |
-
2013
- 2013-10-31 RU RU2013148602/03A patent/RU2524580C1/ru active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4465135A (en) * | 1983-05-03 | 1984-08-14 | The United States Of America As Represented By The United States Department Of Energy | Fire flood method for recovering petroleum from oil reservoirs of low permeability and temperature |
SU1822219A1 (ru) * | 1990-06-06 | 1998-06-27 | Всесоюзный нефтегазовый научно-исследовательский институт | Способ разработки нефтяной залежи |
RU2065034C1 (ru) * | 1994-04-01 | 1996-08-10 | Всесоюзный нефтегазовый научно-исследовательский институт | Способ разработки залежи вязкой нефти |
RU2231631C1 (ru) * | 2002-12-15 | 2004-06-27 | Дыбленко Валерий Петрович | Способ разработки нефтяной залежи |
RU2293178C1 (ru) * | 2005-06-22 | 2007-02-10 | Александр Николаевич Дроздов | Система для водогазового воздействия на пласт |
RU2307239C1 (ru) * | 2006-04-10 | 2007-09-27 | Федеральное агентство по образованию Российский Государственный Университет нефти и газа им. И.М. Губкина | Способ разработки нефтяной залежи с подошвенной водой |
CN1995697A (zh) * | 2006-12-18 | 2007-07-11 | 辽河石油勘探局 | 一种火驱采油油层热力点火方法 |
RU2334085C1 (ru) * | 2006-12-22 | 2008-09-20 | Открытое акционерное общество "Российская инновационная топливно-энергетическая компания (ОАО "РИТЭК") | Способ закачки газожидкостной смеси в скважину |
RU2433258C1 (ru) * | 2010-07-28 | 2011-11-10 | Открытое акционерное общество "Всероссийский нефтегазовый научно-исследовательский институт имени академика А.П. Крылова" (ОАО "ВНИИнефть") | Способ термогазовой обработки пласта |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2667181C1 (ru) * | 2017-10-27 | 2018-09-17 | Ильдар Зафирович Денисламов | Способ разработки участка нефтяного пласта |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Sheng | Critical review of field EOR projects in shale and tight reservoirs | |
AU2001250938B2 (en) | Method for production of hydrocarbons from organic-rich rock | |
CN102733789B (zh) | 深层稠油油藏厚砂岩储层层内水力分段压裂施工增产方法 | |
CN103174403B (zh) | 厚层含隔夹层普通稠油油藏的重力与蒸汽驱联合开采方法 | |
CA2819664C (en) | Pressure assisted oil recovery | |
Yu et al. | Application of cumulative-in-situ-injection-production technology to supplement hydrocarbon recovery among fractured tight oil reservoirs: A case study in Changqing Oilfield, China | |
CN110318674B (zh) | 一种巷道顶板致裂防突的方法 | |
CN106194122B (zh) | 一种油田报废井改造为地热井或卤水井的方法 | |
CA2820742A1 (en) | Improved hydrocarbon recovery process exploiting multiple induced fractures | |
CN105003237A (zh) | 地热开采天然气水合物与co2废气回注处理一体化的装置及方法 | |
CN104653148A (zh) | 废弃油井井群改造综合利用方法 | |
CN108678722B (zh) | 一种多井联合干热岩人工热储建造系统及建造方法 | |
CN109209306A (zh) | 超低渗致密油藏水平井注co2异步吞吐补充能量的方法 | |
CA2839518C (en) | Recycling co2 in heavy oil or bitumen production | |
Tewari et al. | Successful cyclic steam stimulation pilot in heavy oilfield of Sudan | |
US20150152719A1 (en) | Enhanced Secondary Recovery of Oil and Gas in Tight Hydrocarbon Reservoirs | |
CN107120098A (zh) | 一种利用co2和地热能开采天然气水合物藏的井结构设计与方法 | |
US20240117714A1 (en) | Method for increasing crude oil production by co2 storage in aquifer and dumpflooding | |
CN110259421A (zh) | 一种裂缝性的致密油藏注水补充能量方法 | |
CN111608624A (zh) | 一种利用地热开采稠油油藏的方法 | |
RU2524580C1 (ru) | Способ разработки нефтяной залежи тепловым и водогазовым воздействием в системе вертикальных, горизонтальных и многозабойных скважин | |
CN107558950A (zh) | 用于油页岩地下原位开采区域封闭的定向堵漏方法 | |
CN110984947A (zh) | 一种针对天然裂缝发育气藏水力压裂的支撑剂精准置放方法 | |
RU2528309C1 (ru) | Способ разработки нефтяной залежи горизонтальными скважинами с проведением многократного гидравлического разрыва пласта | |
Serdyuk et al. | Multistage Stimulation of Sidetrack Wellbores Utilizing Fiber-Enhanced Plugs Proves Efficient for Brown Oil Fields Development |