RU2524498C1 - Step drive with mechanical initiation and zero reverse force - Google Patents

Step drive with mechanical initiation and zero reverse force Download PDF

Info

Publication number
RU2524498C1
RU2524498C1 RU2013114378/11A RU2013114378A RU2524498C1 RU 2524498 C1 RU2524498 C1 RU 2524498C1 RU 2013114378/11 A RU2013114378/11 A RU 2013114378/11A RU 2013114378 A RU2013114378 A RU 2013114378A RU 2524498 C1 RU2524498 C1 RU 2524498C1
Authority
RU
Russia
Prior art keywords
drive
ring
gear
teeth
step drive
Prior art date
Application number
RU2013114378/11A
Other languages
Russian (ru)
Inventor
Юрий Витальевич Швед
Original Assignee
Юрий Витальевич Швед
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Юрий Витальевич Швед filed Critical Юрий Витальевич Швед
Priority to RU2013114378/11A priority Critical patent/RU2524498C1/en
Application granted granted Critical
Publication of RU2524498C1 publication Critical patent/RU2524498C1/en

Links

Images

Landscapes

  • Transmission Devices (AREA)

Abstract

FIELD: electricity.
SUBSTANCE: step motions of an actuating mechanism of a drive are provided by a pin-ring kinematic link; with that, the ring can be turned about pins (teeth) with force provided by the drive motor through the half turn per step. Cut-off of force rotating the ring after it completes the half turn is performed by means of an intermediate gear with an incomplete gear rim.
EFFECT: as a result, there is no need for feedback, brake and clutch, which allows simplifying the design of the step drive.
2 cl, 3 dwg

Description

Область техники, к которой относится изобретениеFIELD OF THE INVENTION

Приводы авиационных и робототехнических системDrives for aviation and robotic systems

Уровень техникиState of the art

Управление планирующими системами на основе мягких оболочек имеет следующие особенности:Management of planning systems based on soft shells has the following features:

1. Управление ведется подмоткой строп управления, причем в зависимости от режима на стропе всегда в той или иной степени присутствует натяжение. Соответственно, сервоприводы управления вынуждены иметь в своем составе помимо датчика обратной связи также тормоз и муфту сцепления, в противном случае на поддержание момента придется постоянно затрачивать энергию.1. Management is carried out by winding the control lines, and depending on the mode, the line always has some degree of tension. Accordingly, in addition to the feedback sensor, the control servos are forced to include a brake and a clutch, otherwise, it will be necessary to constantly expend energy to maintain the moment.

2. Управление характеризуется большими и быстрыми рабочими ходами, а также неравномерной нагрузкой, что вынуждает перетяжелять двигатели лебедки или использовать накопители энергии вращения, разгружающие двигатель на пиковых нагрузках. С другой стороны, эта особенность позволяет обойтись приводами без прецизионных механизмов и с крупным шагом перемещений.2. The control is characterized by large and fast working strokes, as well as uneven loading, which forces the winch engines to be overloaded or rotational energy storage devices are used that unload the engine at peak loads. On the other hand, this feature allows the drives to be dispensed with without precision mechanisms and with large pitch movements.

Известны следящие приводы систем управления планирующими парашютами с механическим побуждением (например, патент РФ №2314427 или диссертация А.В. Макаренко «разработка методики расчета энергоэффективного автономного следящего привода системы управления планирующим парашютом), содержащие двигатель, редуктор, электромагнитный тормоз, электромагнитную муфту сцепления, датчик обратной связи, систему управления. Недостатками таких приводов являются сложная кинематика и логика управления, что вызывает рост стоимости и веса, а также уменьшение их надежности.Known follow-up drives of control systems for gliding parachutes with mechanical motivation (for example, RF patent No. 2314427 or dissertation by A.V. Makarenko “development of a methodology for calculating an energy-efficient stand-alone follow-up drive of a gliding parachute control system), containing a motor, gearbox, electromagnetic brake, electromagnetic clutch, feedback sensor, control system. The disadvantages of such drives are complex kinematics and control logic, which causes an increase in cost and weight, as well as a decrease in their reliability.

Если использовать дозированное (шаговое) перемещение исполнительного механизма, в данном случае поворот лебедки на определенный угол, то надобность в контуре обратной связи отпадет. Но шаговые двигатели (см., например, книгу Т. Кенио «Шаговые двигатели и их микропроцессорные системы управления») имеют предел усилия, после которого происходит срыв синхронизации. Это вынуждает использовать шаговые двигатели с завышенным на расчетную перегрузку усилием удержания. Кроме того, для поддержания момента шагового электродвигателя требуются постоянные затраты энергии, что вынуждает использовать тормоз и муфту сцепления и в этом случае.If you use the dosed (step) movement of the actuator, in this case, the winch is rotated by a certain angle, then the need for a feedback loop will disappear. But stepper motors (see, for example, T. Kenio’s book “Stepper motors and their microprocessor control systems”) have a force limit, after which synchronization fails. This forces the use of stepper motors with a retention force inflated by the calculated overload. In addition, to maintain the torque of the stepper motor, constant energy is required, which forces the use of a brake and clutch in this case as well.

Раскрытие изобретенияDisclosure of invention

Целью изобретения является создание привода с отсутствием необходимости в обратной связи, тормозе и сцеплении, что позволит упростить, удешевить и облегчить его.The aim of the invention is to create a drive with no need for feedback, brake and clutch, which will simplify, reduce the cost and facilitate it.

Цель изобретения достигается тем, что обеспечивается дозированное перемещение исполнительного механизма, а также его фиксация, посредством кинематического звена палец-кольцо, изображенного на фиг.1. Приводному кольцу 2 обеспечивается возможность проворота вокруг пальцев (зубцов) 1 с необходимым усилием, обеспечиваемым двигателем привода. Ось вращения кольца закреплена на приводе, а пальцы - на исполнительном механизме. Для облегчения вращения кольцо может снабжаться роликами. Для обеспечения устойчивой фиксации кольца на пальце, препятствующей смещению исполнительного механизма под действием нагрузки, кольцо может выполняться с упругим звеном 7 (см. виды Б, В, Г на фиг.2) и заглубляться на прямой участок пальца.The purpose of the invention is achieved in that it provides a metered movement of the actuator, as well as its fixation, through the kinematic link of the finger-ring shown in figure 1. The drive ring 2 is provided with the ability to rotate around the fingers (teeth) 1 with the necessary force provided by the drive motor. The axis of rotation of the ring is fixed to the drive, and the fingers to the actuator. To facilitate rotation, the ring can be equipped with rollers. To ensure stable fixation of the ring on the finger, which prevents the displacement of the actuator under the action of the load, the ring can be performed with an elastic link 7 (see types B, C, D in figure 2) and deepened into a straight portion of the finger.

Обеспечить отсечку вращающего кольцо усилия по завершению им полуоборота без использования отдельного шагового привода может механизм на базе промежуточной шестерни с неполным зубчатым венцом 3 (вид А на фиг.3). Шестерня 3 установлена на валу микродвигателя 5, зафиксированного в корпусе привода и обеспечивающего проворот этой шестерни до зацепления с зубьями ведущей 6 и ведомой шестерен привода, а также фиксацию промежуточной шестерни в незацепленном положении до подачи команды на проворот.A mechanism based on an intermediate gear with an incomplete gear rim 3 can provide a cut-off of the ring-rotating effort to complete its half-revolution without using a separate step drive (type A in figure 3). The gear 3 is mounted on the shaft of the micromotor 5, fixed in the drive housing and allowing this gear to rotate until it engages with the teeth of the drive gear 6 and the driven gears of the drive, as well as fixing the intermediate gear in the unlocked position before giving the command to rotate.

Для синхронизации положения зубьев ведущей, ведомой и промежуточной шестерен в момент вхождения их зубьев в зацепление на промежуточной шестерне 3 может использоваться упругая пластина 4, первой входящая в зацепление. При попадании между зубьями ведущей/ведомой шестерен пластина 4, скользя по зубцу ведущей/ведомой шестерни, выравнивает положение набегающего зуба промежуточной шестерни относительно ведущей/ведомой. При попадании пластины на острие зуба ведущей/ведомой шестерни эта пластина изгибается так, что приводит острие зуба ведущей/ведомой шестерни в углубление перед набегающим зубом промежуточной шестерни.To synchronize the position of the teeth of the driving, driven and intermediate gears at the moment their teeth enter the meshing on the intermediate gear 3, an elastic plate 4 can be used, the first being engaged. When falling between the teeth of the driving / driven gears, the plate 4, sliding along the tooth of the driving / driven gear, aligns the position of the oncoming tooth of the intermediate gear relative to the driving / driven. When the plate hits the tooth tip of the driving / driven gear, this plate bends so that the tooth of the driving / driven gear goes into the recess in front of the oncoming tooth of the intermediate gear.

Механическое побуждение привода обеспечивается через вал ведущей шестерни 6.Mechanical drive motivation is provided through the shaft of the pinion gear 6.

Краткое описание чертежейBrief Description of the Drawings

На фиг.1 показана схема перемещений кинематической пары «палец-кольцо». Поз.1 обозначаются пальцы (зубцы). Поз.2 - кольцо.Figure 1 shows the movement pattern of the kinematic pair of finger-ring. Pos. 1 fingers (teeth) are indicated. Pos. 2 - ring.

На фиг.2 показан привод, имеющий катушку лебедки с зубчатым венцом 1, установленную на подшипники на корпусе механизма. Форма пальцев (зубцов) зубчатого венца исполнительного элемента позволяет входить им в зацепление с приводным кольцом 2.Figure 2 shows a drive having a winch coil with a gear rim 1 mounted on bearings on the mechanism body. The shape of the fingers (teeth) of the ring gear of the actuator allows them to engage with the drive ring 2.

Также на фиг.2 показаны кольцо с упругим звеном 7, шестерни с неполным зубчатым венцом 3 (вид А на фиг.3), имеющие упругие пластины 4 и установленные на валу микродвигателей 5, зафиксированных в корпусе привода, ведущая 6 и ведомая шестерни привода, а также ведущий вал с ведущей шестерней 6, ведущие шестерни передачи противоположного вращения.Figure 2 also shows a ring with an elastic link 7, gears with an incomplete gear rim 3 (type A in figure 3), having elastic plates 4 and mounted on the shaft of micromotors 5, fixed in the drive housing, drive 6 and driven gears of the drive, as well as the drive shaft with the drive gear 6, the drive gears of the transmission of the opposite rotation.

Осуществление изобретенияThe implementation of the invention

Вариант исполнения привода на базе предлагаемого изобретения представлен на Фиг.2. В качестве исполнительного элемента в данном приводе выступает катушка лебедки с зубчатым венцом 1, установленная на подшипники на корпусе механизма. Для сглаживания импульсных нагрузок на привод во время шаговых перемещений катушка лебедки может соединяться с зубчатым венцом через демпфер. Форма пальцев (зубцов) зубчатого венца исполнительного элемента позволяет входить им в зацепление с приводным кольцом 2. В показанный привод можно встроить и несколько приводных колец 2 без изменения его кинематической цепи.An embodiment of a drive based on the invention is shown in FIG. 2. As an actuating element in this drive, a winch coil with a gear rim 1 mounted on bearings on the case of the mechanism acts. To smooth the impulse loads on the drive during step movements, the winch coil can be connected to the ring gear via a damper. The shape of the fingers (teeth) of the gear ring of the actuator allows them to engage with the drive ring 2. Several drive rings 2 can be integrated into the drive shown without changing its kinematic chain.

Описываемое изобретение может использоваться как с вращающимся исполнительным звеном, так и с исполнительным звеном линейного перемещения. В последнем случае зубчатый венец 1 развернут на плоскость, относительно которой и может линейно смещаться.The described invention can be used both with a rotating Executive link, and with the Executive link linear movement. In the latter case, the ring gear 1 is deployed on a plane with respect to which it can linearly shift.

Механическое побуждение показанного привода удобно обеспечить либо от коробки отбора мощности основного двигателя, если таковой имеется, либо от двигателя управления приводом, например внутреннего сгорания. В последнем случае двигатель оснащается датчиком оборотов и следящим устройством, обеспечивающим номинальные обороты двигателя как на холостом, так и на рабочем ходу.The mechanical motivation of the drive shown is conveniently provided either from the power take-off of the main engine, if any, or from the drive control engine, for example internal combustion. In the latter case, the engine is equipped with a speed sensor and a tracking device that provides nominal engine speeds both at idle and on the move.

В приводах с относительно малым временем работы, например в системах посадки и десантирования, удобно использовать механическое побуждение на базе маховичных накопителей. В этом случае два встречно вращающихся маховика могут использоваться как в качестве источника механической энергии, так и в качестве опорного звена системы стабилизации вертикального положения купола (благодаря своему стремлению сохранять постоянное положение осей вращения относительно горизонта). Раскрутка маховичных накопителей производится от бортовой энергетической системы носителя непосредственно перед сбросом/посадкой.In drives with relatively short runtimes, such as landing and landing systems, it is convenient to use mechanical motivation based on flywheel drives. In this case, two counter-rotating flywheels can be used both as a source of mechanical energy and as a support link for stabilizing the vertical position of the dome (due to its desire to maintain a constant position of the rotation axes relative to the horizon). The flywheel drives are unwound from the on-board energy system of the carrier immediately before the discharge / landing.

В схемах механического побуждения с непостоянной частотой вращения приводного вала (например, с отбором мощности от основного двигателя или от маховиков) для обеспечения требуемой скорости перемещения исполнительного звена необходимо увеличивать частоту подачи импульсов перемещения с уменьшением частоты вращения приводного вала, для чего системе управления приводом необходим канал обратной связи с датчиком частоты оборотов приводного вала.In mechanical motivation schemes with a variable speed of the drive shaft (for example, with power take-off from the main engine or from the flywheels), to ensure the required speed of the actuator, it is necessary to increase the frequency of the feed pulses with a decrease in the speed of the drive shaft, for which the drive control system needs a channel feedback from the drive shaft speed sensor.

Claims (2)

1. Шаговый привод, содержащий двигатель, редуктор, систему управления, отличающийся тем, что шаговые перемещения его исполнительного механизма обеспечиваются кинематическим звеном палец-кольцо, причем кольцо может проворачиваться вокруг пальцев (зубцов) с усилием, обеспечиваемым двигателем привода, на пол-оборота за шаг.1. A step drive comprising a motor, a gearbox, a control system, characterized in that the stepwise movements of its actuator are provided by a kinematic finger-ring link, and the ring can be rotated around the fingers (teeth) with the force provided by the drive motor by half a revolution per step. 2. Шаговый привод по п.1, отличающийся тем, что передача вращения от двигателя к кольцу обеспечивается через промежуточную шестерню с неполным зубчатым венцом. 2. The step drive according to claim 1, characterized in that the transmission of rotation from the engine to the ring is provided through an intermediate gear with an incomplete ring gear.
RU2013114378/11A 2013-04-01 2013-04-01 Step drive with mechanical initiation and zero reverse force RU2524498C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013114378/11A RU2524498C1 (en) 2013-04-01 2013-04-01 Step drive with mechanical initiation and zero reverse force

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013114378/11A RU2524498C1 (en) 2013-04-01 2013-04-01 Step drive with mechanical initiation and zero reverse force

Publications (1)

Publication Number Publication Date
RU2524498C1 true RU2524498C1 (en) 2014-07-27

Family

ID=51265373

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013114378/11A RU2524498C1 (en) 2013-04-01 2013-04-01 Step drive with mechanical initiation and zero reverse force

Country Status (1)

Country Link
RU (1) RU2524498C1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2641563C2 (en) * 2016-04-13 2018-01-18 Юрий Витальевич Швед Gear-cog step drive with mechanical excitation and zero reverse effort

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU796575A1 (en) * 1978-06-12 1981-01-15 Предприятие П/Я М-5953 Step drive
SU1146501A1 (en) * 1983-05-13 1985-03-23 Омское Ордена Ленина Производственное Объединение "Омскшина" Stepped drive
US4875382A (en) * 1987-03-20 1989-10-24 Elpatronic Ag Stepping drive
RU2466004C2 (en) * 2010-12-23 2012-11-10 Государственное образовательное учреждение высшего профессионального образования "Тамбовский государственный технический университет" ГОУ ВПО ТГТУ Micromotion and microfeed drive

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU796575A1 (en) * 1978-06-12 1981-01-15 Предприятие П/Я М-5953 Step drive
SU1146501A1 (en) * 1983-05-13 1985-03-23 Омское Ордена Ленина Производственное Объединение "Омскшина" Stepped drive
US4875382A (en) * 1987-03-20 1989-10-24 Elpatronic Ag Stepping drive
RU2466004C2 (en) * 2010-12-23 2012-11-10 Государственное образовательное учреждение высшего профессионального образования "Тамбовский государственный технический университет" ГОУ ВПО ТГТУ Micromotion and microfeed drive

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2641563C2 (en) * 2016-04-13 2018-01-18 Юрий Витальевич Швед Gear-cog step drive with mechanical excitation and zero reverse effort

Similar Documents

Publication Publication Date Title
US8733207B2 (en) Method of driving joint device
JP2013528273A (en) Motion mechanism with orbital motion by fixed orientation
US10247264B2 (en) Selectable one-way clutch
EP2631506A1 (en) Tuned mass damper
RU2524498C1 (en) Step drive with mechanical initiation and zero reverse force
JP2015138137A (en) head-up display device
RU2528493C2 (en) Toothed converter of rotation motion to rotation and reciprocating motion
CN204200904U (en) Engagement overdrive clutch
JP2017124034A (en) Swinging joint device
RU2641563C2 (en) Gear-cog step drive with mechanical excitation and zero reverse effort
CN204663426U (en) Oil field operation composite material for vehicle coiled rod draw off gear
CN105090418A (en) Gear and rack type intermittent driving mechanism
RU123084U1 (en) DRIVE UNIT
EP3076050A1 (en) Continuously variable transmission
RU2516883C1 (en) Flywheel of alternate moment of inertia
RU164025U1 (en) VARIABLE GEOMETRY FLYWHEEL, EQUIPPED WITH A GEAR MECHANISM
RU2328640C2 (en) Pulse drive
US2625841A (en) Power transmission system
RU162054U1 (en) Flywheel with a variable moment of inertia
RU160201U1 (en) MECHANICAL ENERGY STORAGE WITH ELASTIC ELEMENTS
RU2770622C1 (en) Method for converting rotational motion into translational and device for its implementation
RU2552765C2 (en) Rotation power drive
JP7348679B2 (en) Drive device and its manufacturing method
RU2475665C1 (en) Converter of rotational movement to translational movement
CN110397506A (en) A kind of executive device for diesel engine digital electronic governor

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20170402

NF4A Reinstatement of patent

Effective date: 20171222

MM4A The patent is invalid due to non-payment of fees

Effective date: 20190402