RU2524454C1 - Способ определения концентрации элемента в веществе сложного химического состава - Google Patents

Способ определения концентрации элемента в веществе сложного химического состава Download PDF

Info

Publication number
RU2524454C1
RU2524454C1 RU2013116656/28A RU2013116656A RU2524454C1 RU 2524454 C1 RU2524454 C1 RU 2524454C1 RU 2013116656/28 A RU2013116656/28 A RU 2013116656/28A RU 2013116656 A RU2013116656 A RU 2013116656A RU 2524454 C1 RU2524454 C1 RU 2524454C1
Authority
RU
Russia
Prior art keywords
radiation
intensity
energy
background
concentration
Prior art date
Application number
RU2013116656/28A
Other languages
English (en)
Inventor
Ольга Владимировна Черемисина
Татьяна Евгеньевна Литвинова
Василий Валерьевич Сергеев
Елизавета Александровна Черемисина
Вадим Насырович Сагдиев
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный минерально-сырьевой университет "Горный"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный минерально-сырьевой университет "Горный" filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный минерально-сырьевой университет "Горный"
Priority to RU2013116656/28A priority Critical patent/RU2524454C1/ru
Application granted granted Critical
Publication of RU2524454C1 publication Critical patent/RU2524454C1/ru

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

Использование: для определения концентрации элемента в веществе сложного химического состава. Сущность изобретения заключается в том, что выполняют облучение пробы анализируемого вещества монохроматическим гамма- или рентгеновским излучением с одновременной регистрацией интенсивностей характеристического излучения и некогерентно рассеянного этой же пробой первичного излучения, при этом установление концентрации определяемого элемента проводят по аналитическому параметру, учитывающему влияние фона характеристического излучения. Технический результат: обеспечение возможности определения концентрации элементов в пробах различного химического и вещественного состава, имеющих различную структуру и плотность, без идентификации фазового состава, но с предварительной коррекцией фона. 9 ил.

Description

Изобретение относится к способу определения концентрации элемента (элементов), основанному на измерении характеристического рентгеновского излучения в веществах сложного химического и фазового состава, имеющих различную структуру и плотность.
Изобретение относится к методам неразрушающего контроля элементного состава вещества и реализуется в методах волнового и энергодисперсионного рентгенофлуоресцентного анализа.
Флуоресцентная эмиссия рентгеновских лучей является одним из наиболее мощных средств обнаружения и количественного определения элементов практически в любом фазовом состоянии сложного вещественного состава [Юинг Г. Инструментальные методы химического анализа. М.: Мир, 1989, 608 с.]. Учитывая, что структура и плотность матрицы влияет на интенсивность характеристической линии элемента, для определения концентрации элемента в образце сложного химического и фазового состава необходим набор стандартных образцов, имеющих фазовую структуру, идентичную структуре анализируемого образца, что не всегда технически и аналитически выполнимо.
Известен способ определения тяжелых металлов в породах и рудах по их характеристическому рентгеновскому излучению, возбуждаемому гамма-квантами рентгеновской трубки или другого источника излучения. Для уточнения влияния плотности матрицы, сокращения количества измерений и упрощения методики их проведения в условиях естественного залегания пород и руд производят одновременное измерение интенсивностей вторичного излучения в двух участках спектра, расположенных по разные стороны от К (L)-края поглощения искомого элемента (SU 171482, опубл. 26.05.1965).
Содержание искомого элемента находят по величине отношения интенсивностей в двух указанных участках спектра вторичного излучения. С целью определения нескольких элементов производят одновременное измерение интенсивностей вторичного излучения в участках спектра, расположенных по разные стороны от К (L)-краев поглощения каждого элемента. Недостатком указанного способа является нелинейная зависимость интенсивности вторичного рентгеновского излучения от концентрации элемента, что снижает точность анализа, а следовательно, недостаточно достоверная информация об анализируемом веществе.
Известен способ определения концентрации элемента и кристаллической фазы, куда входит определяемый элемент, в веществе сложного химического состава, включающий облучение пробы анализируемого вещества монохроматическим рентгеновским излучением, регистрацию интенсивности когерентно рассеянного определяемой кристаллической фазой первичного излучения. В способе предусматривается одновременная или последовательная регистрация интенсивности когерентно рассеянного излучения с интенсивностью некогерентного рассеянного первичного излучения этой же пробой, а затем по отношению указанных интенсивностей устанавливается концентрация определяемой фазы (RU 2255328, опубл. 27.06.2005).
Данный способ объединяет два направления: рентгеноспектральный и рентгенофазовый анализ. В рентгеноспектральном анализе определяется концентрация того или иного элемента, в рентгенофазовом анализе определяется концентрация той или иной фазы. Для реализации метода использовалось совершенно разное оборудование, основанное на разных физических принципах - рентгеновские спектрометры для рентгеноспектрального анализа и рентгеновские дифрактометры для рентгенофазового анализа. Способ позволяет снизить влияние химического и фазового состава пробы на ошибку измерения, однако не позволяет получить точную информацию о количестве анализируемого элемента, входящего в определяемую фазу.
Известен способ определения концентраций элемента и фазы, включающей данный элемент, в веществе сложного химического состава (патент RU 2362149, опубл. 20.07.2009 г.), выбран в качестве прототипа, описывающий способ определения концентрации элемента и фазы в веществах сложного химического состава. Отличительной особенностью способа является то, что одновременно регистрируют интенсивность характеристического излучения определяемого элемента, его определяемой фазы и интенсивность когерентно и некогерентно рассеянного (по Комптону) излучений, а затем по отношению указанных интенсивностей определяют концентрации элемента и фазы, включающей данный элемент, что позволяет учитывать влияние вещественного состава на результаты анализа (матричный эффект). Предлагаемый способ основывается на методе спектральных отношений при рентгенофлуоресцентном анализе и разработанном автором способе определения концентрации фазы при рентгенофазовом анализе.
Автор утверждает, что отношение интенсивности аналитической линии Ii к интенсивности некогерентно рассеянному излучению Inc не зависит от матрицы пробы и может использоваться как аналитический параметр Ki ( K i = I i I n c )
Figure 00000001
. Однако метод, принятый в качестве прототипа, не учитывает влияние фона характеристического излучения, возникающего вследствие облучения пробы первичным потоком гамма-квантов, что вносит существенную погрешность в нахождение концентраций определяемых элементов [Лосев Н.Ф., Смагунова А.Н. Основы рентгеноспектрального флуоресцентного анализа. М.: Химия, 1982, с.148, 208 с.].
Интенсивность фона, зависящая от структуры и состава пробы, пропорциональна интенсивности характеристического излучения, возбуждаемого первичным потоком рентгеновского излучения трубки или другого источника. В то же время интенсивность фона некогерентно рассеянного излучения пропорциональна интенсивности некогерентно рассеянных квантов первичного излучения с соответствующей энергией (длиной волны), зависящей от материала анода рентгеновской трубки [Лосев Н.Ф., Смагунова А.Н. Основы рентгеноспектрального флуоресцентного анализа. М.: Химия, 1982, с.140, с.147, с.149, 208 с.].
Влияние фона можно не учитывать только в том случае, когда химический и фазовый состав анализируемых материалов является постоянным. Если же состав проб изменяется, то при их анализе интенсивность фона для каждого образца следует измерять рядом с аналитической линией, что является трудоемкой операцией и не всегда возможно в силу конволюции спектров характеристического излучения.
Техническим результатом настоящего изобретения является возможность определения концентрации элементов в пробах различного химического и вещественного состава, имеющих различную структуру и плотность, без идентификации фазового состава, но с предварительной коррекцией фона.
Технический результат достигается тем, что способ определения концентраций элемента в веществе сложного химического и фазового состава путем облучения пробы анализируемого вещества монохроматическим гамма- или рентгеновским излучением с одновременной регистрацией интенсивностей характеристического излучения и некогерентно рассеянного этой же пробой первичного излучения проводят по аналитическому параметру вида Z i = ( I ( E i ) I ф о н а ( E i ) ) 2 ( I ( E n c ) I ф о н а ( E n c ) ) 2
Figure 00000002
, учитывающему влияние фона характеристического излучения, что позволяет привести к линейной зависимости измеряемых величин интенсивности характеристического излучения от концентрации каждого определяемого элемента в пробе сложного химического и фазового состава и тем самым значительно повысить точность анализа.
В формуле расчета аналитического параметра Zi для i-го элемента приняты следующие обозначения: Zi - аналитический параметр для элемента i; Ei - значение энергии возбуждаемого уровня характеристического излучения i-го элемента; I(Ei) - измеренная интенсивность характеристического излучения, соответствующая энергии Ei; Iфона(Ei) - рассчитанная интенсивность фона в каждой точке спектра, кратной значению энергии края поглощения аналитической линии i-го элемента Emin,i; I(Enc) - измеренная интенсивность, соответствующая энергии некогерентно рассеянного излучения, Iфона(Enc) - рассчитанная интенсивность фона некогерентно рассеянного излучения.
Нормирование скорректированной интенсивности аналитической линии к интенсивности некогерентно рассеянного излучения не зависит от матрицы пробы (вещественного состава, плотности и фазового состояния) и используется как аналитический параметр.
Для определения аналитических параметров в заявляемом способе проводят следующие операции:
1. Измеряют спектр характеристического излучения по всему диапазону энергий (длин волн), соответствующих аналитическим линиям содержащихся в пробе элементов одновременно с интенсивностью некогерентно рассеянного излучения.
2. По измеренному спектру рассчитывают интенсивность фона в каждой точке спектра, кратной значению энергии края поглощения аналитической линии i-го элемента Emin,i, по формуле:
Figure 00000003
,
где Iфона(Ei) - интенсивность фона в каждой точке спектра, кратной значению энергии края поглощения аналитической линии i-го элемента Emin,i, Ei - значение энергии возбуждаемого уровня характеристического излучения i-го элемента, Emin,i - значение энергии края поглощения аналитической линии i-го элемента, ΔE - разрешающая способность детектора спектрометра, IEmin,i+ΔE - интенсивность характеристического излучения в точке спектра с энергией Emin,i+ΔE.
3. По рассчитанной в п.2 интенсивности фона определяют скорректированную интенсивность для каждого i-го элемента по формуле:
Ji=(I(Ei)-Iфона(Ei))2,
где Ji - скорректированная интенсивность аналитической линии элемента i, I(Ei) - измеренная интенсивность характеристического излучения, соответствующая энергии Ei, Iфона(Ei) - рассчитанная интенсивность фона в каждой точке спектра, кратной энергии Emin,i для i-го элемента.
4. По отношению интенсивностей аналитических линий элемента и некогерентно рассеянного излучения с учетом интенсивности фона рассчитывают аналитический параметр Zi для элемента i
Figure 00000004
где I(Ei) - измеренная интенсивность характеристического излучения, соответствующая энергии Ei, Iфона(Ei) - рассчитанная интенсивность фона, кратная энергии Emin,i для i-го элемента, I(Enc) - измеренная интенсивность, соответствующая энергии некогерентно рассеянного излучения, Iфона(Enc) - рассчитанная интенсивность фона некогерентно рассеянного излучения.
Используя вместо измеряемых величин интенсивности характеристического излучения аналитический параметр Zi, получаем линейную зависимость аналитического параметра Zi от содержания i-го элемента в пробе:
Zi=aiCi+bi,
где ai и bi - коэффициенты пропорциональности, определяемые методом наименьших квадратов при построении калибровочных зависимостей для i-го элемента, Ci - концентрация элемента i в пробе.
Таким образом, вместо уравнения, связывающего интенсивность характеристического излучения i-го элемента с его концентрацией, используется зависимость аналитического параметра Zi от концентрации i-го элемента, что позволяет получить предельную линейную зависимость, устраняя влияние других элементов, входящих в пробу вещества сложного состава.
На фиг.1 приведена зависимость интенсивности I линии La элемента церия от его концентрации в растворе, на фиг.2 - линейная зависимость аналитического параметра Z для тех же образцов.
На фиг.2 видно, что введение параметра Z позволяет провести линеаризацию зависимости измеряемых величин от концентрации, что существенно повышает точность рентгенофлуоресцентного анализа.
На фиг.3 приведены зависимости интенсивности некогерентно рассеянного излучения от концентрации Ce в растворах и в твердой фазе (порошки). Изменение интенсивности некогерентно рассеянного излучения в растворах и порошках учитывается эквивалентным выражением, что показывает возможность учета влияния матрицы для проб различной структуры.
Техническая реализация предлагаемого способа осуществима на энергодисперсионных спектрометрах и спектрометрах с волновой дисперсией. При этом в качестве регистрирующего устройства могут использоваться полупроводниковые детекторы, кристаллы-сцинтилляторы, газоразрядные трубки и pin-диоды.
Сущность заявляемого изобретения и его преимущества могут быть пояснены следующими примерами конкретного выполнения.
Пример 1. Количественное определение фосфата церия в концентрате фосфатов редкоземельных элементов. Используемое оборудование: энергодисперсионный рентгеновский спектрометр РЕАН; условия измерения - Uycк - 40 кВ, Iанод - 100 мкА; материал анода - Мо; время экспозиции - 100 с; среда измерения - воздух; детектор некогерентно рассеянного излучения Si-pin-диод (16,57 кэВ).
Приготовлен массив градуировочных проб разбавлением химически чистого CePO4 продуктом моноаммонийфосфата (МАФ) дигидратного сернокислотного производства фосфорной кислоты с диапазоном концентраций по церию: 0,1-11,0%, 11-53,6%.
Объект анализа - гомогенизированный порошок разбавленного фосфата церия, спрессованный в таблетки диаметром 15 мм под давлением 20 т/см2, толщина образцов - более 2 мм, искомый элемент-аналит - церий. Полученные зависимости интенсивности Lα линии церия от концентрации элемента (%) и интенсивности некогерентно рассеянного излучения от концентрации Ce (%) представлены фиг.4 и 5.
Введение аналитического параметра Zi с учетом интенсивности фона для Lα линии церия позволяет получить линейные зависимости как для низких, так и для высоких концентраций данного элемента, представленные на фиг.6.
Пример 2. Количественное определение редкоземельных элементов (РЗЭ) в модельных смесях. Используемое оборудование: рентгеновский спектрометр «Спектроскан G»; условия измерения - Uуск - 40 кВ, Iанод - 100 мкА; материал анода - Ag; время экспозиции - 5 с; среда измерения - воздух; (16,57 кэВ); длина волны некогерентного рассеяния - 605 mÅ.
Приготовлен массив градуировочных проб разбавлением химически чистых нитратов РЗЭ продуктом МАФ. Объект анализа - гомогенизированный порошок разбавленных нитратов РЗЭ, спрессованный в таблетки диаметром 15 мм под давлением 20 т/см2, толщина образцов - более 2 мм. Элементы-аналиты - La, Er, Eu с диапазоном концентраций по лантану: 0,04-3%; по эрбию: 0,03-1%; по европию: 0,1-4%.
Использование аналитического параметра Zi с учетом интенсивности фона позволяет получить линейные зависимости для каждого элемента-аналита: лантана, эрбия и европия, от их концентрации в совместном присутствии. Полученные линейные зависимости аналитического параметра Zi от концентрации для характеристических линий Lα La, Lα Er и Lα Eu представлены на фиг.7, 8, 9.
Изобретение может быть использовано в различных отраслях промышленности для решения следующих задач:
- определение элементного состава руд, минералов, промышленных и товарных продуктов горнодобывающей промышленности;
- определение элементного состава природных и сточных вод, промышленных технологических растворов;
- исследование продуктов лабораторного и промышленного синтеза неорганических структур.

Claims (1)

  1. Способ определения концентраций элемента в веществе сложного химического и фазового состава путем облучения пробы анализируемого вещества монохроматическим гамма- или рентгеновским излучением с одновременной регистрацией интенсивностей характеристического излучения и некогерентно рассеянного этой же пробой первичного излучения, отличающийся тем, что установление концентрации определяемого элемента проводят по аналитическому параметру, учитывающему влияние фона характеристического излучения, вида:
    Figure 00000004

    (Zi - аналитический параметр для элемента i; Ei - значение энергии возбуждаемого уровня характеристического излучения i-го элемента; I(Ei) - измеренная интенсивность характеристического излучения, соответствующая энергии Ei; Iфона(Ei) - рассчитанная интенсивность фона в каждой точке спектра, кратной значению энергии края поглощения аналитической линии i-го элемента Emin,i; I(Enc) - измеренная интенсивность, соответствующая энергии некогерентно рассеянного излучения, Iфона(Enc) - рассчитанная интенсивность фона некогерентно рассеянного излучения),
    где интенсивность фона характеристического излучения по всему диапазону энергий в каждой точке спектра, кратной значению энергии края поглощения аналитической линии i-го элемента рассчитывают по формуле:
    Figure 00000003

    (Emin,i - значение энергии края поглощения аналитической линии i-го элемента, ΔE - разрешающая способность детектора спектрометра, IEmin,i+ΔE - интенсивность характеристического излучения в точке спектра с энергией Emin,i+ΔE).
RU2013116656/28A 2013-04-11 2013-04-11 Способ определения концентрации элемента в веществе сложного химического состава RU2524454C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013116656/28A RU2524454C1 (ru) 2013-04-11 2013-04-11 Способ определения концентрации элемента в веществе сложного химического состава

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013116656/28A RU2524454C1 (ru) 2013-04-11 2013-04-11 Способ определения концентрации элемента в веществе сложного химического состава

Publications (1)

Publication Number Publication Date
RU2524454C1 true RU2524454C1 (ru) 2014-07-27

Family

ID=51265358

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013116656/28A RU2524454C1 (ru) 2013-04-11 2013-04-11 Способ определения концентрации элемента в веществе сложного химического состава

Country Status (1)

Country Link
RU (1) RU2524454C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2753164C1 (ru) * 2020-10-27 2021-08-12 Общество с ограниченной ответственностью "Научно-производственное объединение "АМБ" Способ рентгенофлуоресцентного анализа концентрации элементного состава вещества
RU2781625C2 (ru) * 2020-12-02 2022-10-17 Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный университет" (СПбГУ)" Способ ренгенофлуоресцентного определения содержания примесей металлов в тонких металлических фольгах

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU702281A1 (ru) * 1978-06-27 1979-12-05 Коммунарский горно-металлургический институт Рентгенофлюоресцентный способ определени общего содержани железа
RU2088907C1 (ru) * 1994-05-13 1997-08-27 Центральный научно-исследовательский институт геологии нерудных полезных ископаемых Способ количественного рентгенофазового анализа поликомпонентных цеолитсодержащих пород
US6678347B1 (en) * 2002-07-26 2004-01-13 Hypernex, Inc. Method and apparatus for quantitative phase analysis of textured polycrystalline materials
JP2004184123A (ja) * 2002-11-29 2004-07-02 Shimadzu Corp 蛍光x線分析方法
RU2255328C1 (ru) * 2004-06-10 2005-06-27 Южно-Уральский государственный университет Способ определения концентрации фазы в веществе сложного химического состава
RU2362149C1 (ru) * 2008-01-09 2009-07-20 Государственное образовательное учреждение высшего профессионального образования "Южно-Уральский государственный университет" Способ определения концентраций элемента и фазы, включающей данный элемент, в веществе сложного химического состава

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU702281A1 (ru) * 1978-06-27 1979-12-05 Коммунарский горно-металлургический институт Рентгенофлюоресцентный способ определени общего содержани железа
RU2088907C1 (ru) * 1994-05-13 1997-08-27 Центральный научно-исследовательский институт геологии нерудных полезных ископаемых Способ количественного рентгенофазового анализа поликомпонентных цеолитсодержащих пород
US6678347B1 (en) * 2002-07-26 2004-01-13 Hypernex, Inc. Method and apparatus for quantitative phase analysis of textured polycrystalline materials
JP2004184123A (ja) * 2002-11-29 2004-07-02 Shimadzu Corp 蛍光x線分析方法
RU2255328C1 (ru) * 2004-06-10 2005-06-27 Южно-Уральский государственный университет Способ определения концентрации фазы в веществе сложного химического состава
RU2362149C1 (ru) * 2008-01-09 2009-07-20 Государственное образовательное учреждение высшего профессионального образования "Южно-Уральский государственный университет" Способ определения концентраций элемента и фазы, включающей данный элемент, в веществе сложного химического состава

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2753164C1 (ru) * 2020-10-27 2021-08-12 Общество с ограниченной ответственностью "Научно-производственное объединение "АМБ" Способ рентгенофлуоресцентного анализа концентрации элементного состава вещества
RU2781625C2 (ru) * 2020-12-02 2022-10-17 Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный университет" (СПбГУ)" Способ ренгенофлуоресцентного определения содержания примесей металлов в тонких металлических фольгах

Similar Documents

Publication Publication Date Title
EP3064931B1 (en) Quantitative x-ray analysis
Boyle Rapid elemental analysis of sediment samples by isotope source XRF
JPH023941B2 (ru)
Priyada et al. Intercomparison of gamma ray scattering and transmission techniques for fluid–fluid and fluid–air interface levels detection and density measurements
US8942344B2 (en) Method for determining the concentration of an element in a material
Garmay et al. Total reflection X-ray fluorescence analysis of highly mineralized water samples using relative intensities and scattered radiation
Taylor et al. The development of a XEOL and TR XEOL detection system for the I18 microfocus beamline Diamond light source
Phedorin et al. Prediction of absolute concentrations of elements from SR XRF scan measurements of natural wet sediments
RU2524454C1 (ru) Способ определения концентрации элемента в веществе сложного химического состава
Budak et al. X-ray fluorescence analysis of malachite ore concentrates in the Narman region
US9880115B2 (en) Method for characterizing a material
EP3064932A1 (en) Quantitative x-ray analysis
RU2367933C1 (ru) Способ определения концентрации серы в нефти и нефтепродуктах
RU2432571C1 (ru) Способ рентгеноспектрального определения эффективного атомного номера материала и устройство для определения эффективного атомного номера материала
JP4523958B2 (ja) 蛍光x線分析装置およびそれに用いるプログラム
RU2362149C1 (ru) Способ определения концентраций элемента и фазы, включающей данный элемент, в веществе сложного химического состава
Kunzendorf et al. Determination of rare-earth elements in rocks by isotope-excited X-ray fluorescence spectrometry
Gomez-Morilla et al. An evaluation of the accuracy and precision of X-ray microanalysis techniques using BCR-126A glass reference material
RU2753164C1 (ru) Способ рентгенофлуоресцентного анализа концентрации элементного состава вещества
Ertuǧrul Determination of L3 subshell fluorescence yield of Nd with a Si (Li) detector
JP4607565B2 (ja) 分析方法及び装置
Devi et al. Determination of Sr to Ca ratio in solid carbonate, fluoride, and nitrate samples using the fundamental parameters of EDXRF: experimental and empirical evaluation of non-destructive assays in light matrices
Akhmetzhanov et al. Total-reflection X-ray fluorescence determination of thorium and uranium in the presence of interfering elements in solid geological objects of natural and technogenic origin
RU2171980C2 (ru) Способ распознавания химического состава объектов по ослаблению ими рентгеновского излучения
Ma et al. On the Rapid Generation of Complete XRF Spectra for Material Analysis from Fundamental Parameters

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190412