RU2524451C1 - Способ определения типа дефекта в металлических изделиях - Google Patents
Способ определения типа дефекта в металлических изделиях Download PDFInfo
- Publication number
- RU2524451C1 RU2524451C1 RU2013101082/28A RU2013101082A RU2524451C1 RU 2524451 C1 RU2524451 C1 RU 2524451C1 RU 2013101082/28 A RU2013101082/28 A RU 2013101082/28A RU 2013101082 A RU2013101082 A RU 2013101082A RU 2524451 C1 RU2524451 C1 RU 2524451C1
- Authority
- RU
- Russia
- Prior art keywords
- defect
- signal
- type
- envelope
- maximum
- Prior art date
Links
Images
Landscapes
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Abstract
Использование: для определения типа дефекта в металлических изделиях. Сущность изобретения заключается в том, что выполняют импульсное облучение исследуемой зоны ультразвуковым излучением, регистрацию исходного отраженного сигнала, его компьютерную обработку для определения информативных параметров, по которым судят о наличии и типе дефекта, при этом к исходному отраженному сигналу от каждого обнаруженного дефекта применяют преобразование Гильберта, получая аналитический сигнал, затем вычисляют модуль аналитического сигнала, получая огибающую исходного сигнала, на огибающей находят моменты времени t0, t1, и t2, соответствующие максимуму амплитуды огибающей и половине ее максимального значения слева и справа от максимума, применяя непрерывное вейвлетное преобразование к аналитическому сигналу, по определенной формуле находят зависимость мгновенной частоты от времени, на которой выбирают для дальнейшего анализа частоты ƒ0, ƒ1 и ƒ2, соответствующие моментам времени t0, t1, и t2, затем используя частоты ƒ0, ƒ1 и ƒ2 формируют новые безразмерные параметры - нормированные девиации частоты ƒr1 и ƒr2, отображают значения ƒr1 и ƒr2 в виде точки на двумерной диаграмме, по расположению которой в определенной области диаграммы судят о типе дефекта. Технический результат: обеспечение возможности расширения возможностей определения типа скрытых дефектов при неразрушающем ультразвуковом контроле. 2 ил.
Description
Заявляемый способ предназначен для использования в дефектоскопии для определения типа скрытого дефекта в упругих металлических средах.
Определение типа скрытого дефекта является в настоящий момент одной из основных проблем в неразрушающем контроле, в том числе ультразвуковом, поскольку потенциальная опасность этого дефекта зависит во многом от его типа. Так, дефекты с острыми краями, являющиеся концентраторами напряжений, как правило, недопустимы, дефекты с округлой поверхностью допускаются, но с учетом ограничений на их размеры.
Известен ряд способов ультразвукового (УЗ) контроля, которые позволяют судить о типе дефекта. Способы относятся к неразрушающим методам контроля, где о типе дефекта судят по косвенным характеристикам - информативным признакам. Обобщенная суть методов состоит в том, что, выбрав тип волн, углы ввода, число преобразователей, частоты колебаний, измеряют абсолютные или относительные значения временных, амплитудных или спектральных характеристик принимаемых сигналов, формируют из них информативные признаки, наиболее полно характеризующие дефекты, и по конкретным значениям этих информативных признаков относят реальные дефекты к тому или иному типу.
Известен способ УЗ контроля изделий, заключающийся в том, что наклонными преобразователями излучают поперечные УЗ колебания в изделие, принимают эхо- и зеркально отраженные сигналы, дополнительно принимают донные сигналы на основном металле и прошедшие через сварной шов. Одновременно измеряют амплитуды принятых эхо, отраженных от дефекта и донной поверхности, донных в основном металле и прошедших через сварной шов импульсов, сравнивают их с опорными значениями и между собой, и по совместному анализу полученных данных судят о типе дефекта и его размере по высоте [Заявка на изобретение РФ 99104668].
Основным недостатком этого способа является зависимость получаемых результатов от амплитуды. Амплитуда принятого эхо- сигнала сильно зависит от качества контролируемой поверхности и от стабильности акустического контакта. Необходимое качество поверхности объема контроля возможно обеспечить с учетом требуемых пределов шероховатости. Качество акустического контакта во многом зависит от специалиста, проводящего контроль (от силы нажатия), и контакт зачастую оказывается нестабильным, что отражается на величине амплитуды, а следовательно, и на конечных результатах оценки типа дефекта.
Известен также способ распознавания типа дефекта при ультразвуковом контроле, заключающийся в том, что принимают ультразвуковой сигнал, отраженный от дефекта, измеряют его параметры, сравнивают с параметрами эталонного отражателя и на основе этого сравнения судят о дефекте, при этом в принятом акустическом сигнале выделяют активную и реактивную составляющие, на комплексной плоскости. Определяют составляющую с максимальной амплитудой, измеряют угол, под которым находится эта составляющая на комплексной плоскости, сравнивают с соответствующим углом эталонного отражателя, и по разности этих углов судят о типе дефекта [Авторское свидетельство СССР 1061709].
В отличие от предыдущего аналога, в этом способе вводится новый информативный признак - разность углов, между максимальными составляющими эхо-сигнала, полученными на комплексной плоскости для эталонного сигнала и сигнала от дефекта. Т.е. здесь проводится не просто сравнительный анализ эхо-сигналов, а вычисляется значение некоего параметра - разности между углами и, следовательно, результат представлен в численном выражении.
Но этот способ также является амплитудно=зависимым. Амплитуда принятого эхо-сигнала сильно зависит от качества контролируемой поверхности и от стабильности акустического контакта. Кроме того, в этом способе приходится использовать сигнал от эталонного отражателя.
Наиболее близким к заявляемому является способ определения типа дефекта в металлических изделиях, включающий импульсное облучение исследуемой зоны УЗ колебаниями, регистрацию исходного отраженного сигнала, его компьютерную обработку для выявления информативных параметров, по которым судят о наличии и типе дефекта. В качестве анализируемого параметра используют спектр эхо-сигнала [1. Экспериментальное исследование ультразвукового спектрального метода определения характера дефектов, Дефектоскопия. 1977, №6, С.40-53. 2. Теоретическое исследование ультразвукового спектрального метода определения характера дефектов, Дефектоскопия. 1977, №6, С.75-84].
В этом способе ультразвуковое импульсное излучение возбуждают спектроскопом, который обладает широкополосным спектром УЗ излучения, т.е. дефекты озвучивают ультразвуковыми колебаниями в широкой полосе частот. Далее принимают колебания, рассеянные на дефекте в направлении искателя.
Затем селектируют во времени первый эхо-сигнал и анализируют спектр эхо-сигнала. Спектр эхо-сигналов, отраженных от дефектов, зависит от формы дефекта и от соотношения размера дефекта и длины волны ультразвука, поэтому, анализируя огибающую спектра, можно получить информацию о дефекте.
Способ позволяет делать выводы о типе дефекта, используя частотные характеристики эхо-сигнала (по огибающей спектра). Способ не использует эталонных образцов и не требуется проводить сравнительный анализ эхо-сигналов.
К недостаткам данного способа можно отнести следующее. Для выявления связи между формой огибающей спектра и характеристиками дефекта требуется проводить дополнительные исследования. Выявленные информативные признаки того или иного дефекта зависят от его размеров, частоты волны, глубины залегания дефекта. При формировании информативного признака - формы огибающей спектра, принимает участие амплитуда отраженного сигнала, следовательно, этот способ является амплитудно-зависимым. На результат измерений будут влиять качество контролируемой поверхности и качество акустического контакта. Для реализации способа необходимы два преобразователя, вследствие чего могут возникнуть разные условия контакта на поверхности, что приводит к искажению данных.
В основу изобретения положена задача расширения возможностей определения типа скрытых дефектов при неразрушающем УЗ контроле за счет введения нового информативного признака - мгновенной частоты недетектированного радиочастотного импульса, определяемой в различные моменты внутри импульса.
Поставленная задача решается тем, что в способе определения типа дефекта в металлических изделиях, включающем импульсное облучение исследуемой зоны УЗ колебаниями, регистрацию исходного отраженного сигнала, его компьютерную обработку для выявления информативных параметров, по которым судят о наличии и типе дефекта, согласно изобретению, к исходному отраженному сигналу от каждого обнаруженного дефекта применяют преобразование Гильберта, получая аналитический сигнал, затем вычисляют модуль аналитического сигнала, получая огибающую исходного сигнала, на огибающей находят моменты времени t0, t1 и t2, соответствующие максимуму амплитуды огибающей и половине ее максимального значения слева и справа от максимума, применяя непрерывное вейвлетное преобразование к аналитическому сигналу, по формуле:
где ξ*=ξ*(θ) - значение масштабного коэффициента соответствующее максимуму модуля вейвлетного спектра аналитического сигнала при
;
θ - параметр сдвига вейвлетного преобразования,
находят зависимость мгновенной частоты от времени, на которой выбирают для дальнейшего анализа частоты ƒ0, ƒ1 и ƒ2, соответствующие моментам времени t0, t1 и t2.
Затем, используя частоты ƒ0, ƒ1 и ƒ2, формируют новые безразмерные параметры - нормированные девиации частоты
, где
ƒн - несущая (номинальная) частота импульсного ультразвукового излучения,
ƒ0, ƒ1 и ƒ2, - значения мгновенной частоты в трех точках, соответствующих моментам времени t0, t1, и t2;
отображают значения ƒr1 и ƒr2 в виде точки на двумерной диаграмме, по расположению которой в определенной области диаграммы судят о типе дефекта.
В заявляемом способе определение типа скрытых дефектов осуществляют при неразрушающем УЗ контроле за счет введения нового информативного признака. Таким признаком является мгновенная частота недетектированного радиочастотного импульса, определяемая в различные моменты внутри импульса. Алгоритм ее оценки основан на использовании непрерывного вейвлетного преобразования, которое в свою очередь увеличивает помехоустойчивость метода. Мгновенная частота - это нестационарная характеристика сигнала. Эхо-сигналы, отраженные от дефектов разного типа, имеют различные нестационарные характеристики: их доминирующая частота изменяется во времени, то есть значение мгновенной частоты может быть различным на фронте, на срезе и в середине импульса, а огибающая может иметь сложную форму. Различие мгновенных частот возникает за счет влияния дифракции и частотной зависимости коэффициента затухания.
В отличие от наиболее близкого аналога в заявляемом способе анализируют не спектр, который является характеристикой всего эхо-сигнала, а мгновенную частоту недектированного радиочастотного сигналя, которая в свою очередь является его локальной характеристикой. Кроме того, результаты, полученные предлагаемым способом, не зависят от качества акустического контакта, то есть от амплитуды эхо-сигнала.
На фиг.1 представлены результаты эксперимента при оценке мгновенной частоты эхо-сигнала, отраженного от двугранного угла (ПЭП П121-5-400-⌀8), с использованием его вейвлетного спектра, где частоте ƒ1 соответствует значок квадрата на графиках, частоте ƒ2 соответствует значок треугольника и частоте ƒ0 соответствует значок круга. Фиг.1а - зависимость мгновенной частоты от времени, фиг.1б эхо-сигнал с огибающей.
На фиг.2 приведены результаты измерения мгновенных частот для следующих дефектов: зарубки с разной площадью плоской передней грани, двугранные тупые и острые углы с различными углами раскрытия, сквозные боковые цилиндрические отверстия, плоскодонные сверления, донная поверхность стандартного образца CO2 и стандартного образца CO3 и естественный дефект - непровар в корне шва.
Способ осуществляют следующим образом.
Первоначально производится сканирование преобразователем ПЭП П121-5,0-400-⌀8 по поверхности образца. Сканирование проводится по стандартной методике для данного прибора. При перемещении преобразователя по поверхности образца находят положение, в котором эхо-сигнал имеет наибольшую амплитуду. Импульсный эхо-сигнал, полученный в данной позиции, принимается за исходный сигнал и используется для анализа.
В качестве информативного признака определения типа дефекта используют значения мгновенной частоты ультразвукового импульсного эхо-сигнала, соответствующие определенным моментам времени внутри импульса. Достоинством предлагаемого способа определения типа дефекта является тот факт, что его можно реализовать при той же схеме акустического тракта, что обычно используется в ультразвуковой дефектоскопии, и с применением типового УЗ дефектоскопа (например: УЗ цифровой дефектоскоп PCUS - 10) со стандартным совмещенным пьезоэлектрическим преобразователем (ПЭП).
Эхо-сигналы, отраженные от реальных дефектов, имеют различные нестационарные характеристики: их доминирующая частота изменяется во времени, то есть значение мгновенной частоты может быть различным на фронте, на срезе и в середине импульса, а огибающая может иметь сложную форму. Различие мгновенных частот возникает за счет влияния дифракции и частотной зависимости коэффициента затухания.
Мгновенная частота дает более полную информацию о частотных параметрах эхо-сигнала, чем спектр. Поэтому используемый впервые в заявляемом способе определения типа формы дефекта алгоритм оценки мгновенной частоты, основанный на непрерывном вейвлетном преобразовании, обладает высокой достоверностью обнаружения и обладает повышенной помехоустойчивостью.
В описании применяется термин ″мгновенная частота″, которую только условно можно назвать “мгновенной”. В действительности для определения этой мгновенной частоты нужен конечный промежуток времени порядка периода радиочастотного сигнала.
Алгоритм оценки мгновенной частоты на основе представлений об аналитическом сигнале был предложен Денисом Габором в 1946 г. [Вайнштейн Л.А., Вакман Д.Е., Разделение частот в теории колебаний и волн. - М.: Наука, 1983. - 288 с].
При анализе сигнала s(t), который является функцией времени t, можно получить соответствующий ему комплексный аналитический сигнал
, используя преобразование Гильберта H[s(t)]:
где
Так как в формуле (1) присутствует оператор дифференцирования, то результат вычислений будет очень сильно зависеть от шума, присутствующего в анализируемом сигнале. Влияние шумов на результат вычислений можно снизить, используя методы численного дифференцирования, но есть и другой способ. Если провести модификацию формулы (1), используя непрерывное вейвлетное преобразование, можно получить более устойчивый результат.
Вейвлетный спектр аналитического сигнала
может быть найден с помощью любого из двух эквивалентных друг другу соотношений:
или
где
- вейвлет,
и
- спектры Фурье, соответствующие вейвлету
и аналитическому сигналу
, ξ - масштабный коэффициент, θ - параметр сдвига.
По известному вейвлетному спектру аналитического сигнала
можно получить выражение для мгновенной частоты
где ξ*=ξ*(θ) - значение масштабного коэффициента ξ, соответствующее максимуму модуля вейвлетного спектра аналитического сигнала, то есть условию:
, θ - параметр сдвига вейвлетного преобразования, который аналогичен по смыслу переменной t в формуле (1).
Для вычисления вейвлетного спектра по формуле (1) был использован МНАТ-вейвлет:
Процедура оценки мгновенной частоты следующая. При перемещении преобразователя по поверхности образца находят положение, в котором эхо-сигнал имеет наибольшую амплитуду. Этот эхо-сигнал представляет собой радиоимпульс, который в дальнейшем и используется для анализа. Каждый полученный эхо-сигнал анализировали следующим образом:
1. Из исходного сигнала, изображенного на фиг.1а, получают аналитический сигнал, используя преобразование Гильберта.
2. Вычисляя модуль аналитического сигнала, получают огибающую исходного сигнала, которая на фиг.1б показана вместе с исходным сигналом.
3. На огибающей находят моменты времени, соответствующие максимуму амплитуды огибающей и половине ее максимального значения слева и справа от максимума.
4. Применяя непрерывное вейвлетное преобразование к аналитическому сигналу, находят значения мгновенной частота исходного сигнала в моменты времени t1 , t2 и t0 (фиг.1б).
5. Анализируют значения ƒ1, ƒ2 и ƒ0 мгновенной частоты в трех точках, соответствующих моментам времени t1, t2 и t0.
Для практической реализации предложенного алгоритма целесообразно представлять полученные результаты в виде безразмерных параметров - нормированных девиаций частоты.
Результатом проведенных экспериментов являются диаграммы (фиг.2), построенные на плоскости, где по осям отложены значения параметров ƒr1 и ƒr2, где ƒr1, ƒr2 - нормированная девиация частоты между точками в центре, на фронте и срезе импульса, выражение для которых записывается в виде:
где ƒн - номинальная частота ПЭП, ƒ1, ƒ2 и ƒ0 - значения мгновенной частоты в трех точках, соответствующих моментам времени t1, t2 и t0.
Результаты оценки мгновенной частоты для каждого дефекта отображаются на диаграмме одной точкой. Для качественных результатов и классификации дефектов по форме важно, в какую область диаграммы попадает эта точка.
Исследования, проведенные на искусственных дефектах, показали, что для плоскостных отражателей, выходящих на поверхность, значения ƒr1 и ƒr2 положительны во всем диапазоне измерений. Для плоскостных отражателей, не выходящих на поверхность, ƒr1 принимает положительные, a ƒr2 отрицательные значения, как и для сквозных боковых цилиндрических отверстий. Можно только перечислить основные факторы, влияющие на отклонение частоты: степень соответствия формы волнового фронта форме поверхности отражателя, различие частотного спектра колебаний в разных частях пучка и частотная зависимость затухания ультразвука. В частности, было установлено, что если форма отражающей поверхности совпадает с формой волнового фронта, то отраженная волна достигает приемного преобразователя с фронтом, близким к плоскому. В результате девиация частоты оказывается минимальной.
Таким образом, предлагаемый способ определения типа дефекта в металлических изделиях позволяет расширить функциональные возможности способов ультразвукового эхо-метода неразрушающего контроля за счет использования в качестве информативного признака определения типа дефекта значения мгновенной частоты ультразвукового импульсного эхо-сигнала, соответствующего моментам времени внутри импульса.
Практическая реализация предлагаемого способа, в которой полученные результаты представлены в виде безразмерных параметров - нормированных девиаций частоты, определенных в трех точках (одна - в максимуме огибающей, и две другие - в точках на фронте и срезе импульса, где амплитуда огибающей равна половине ее максимального значения) позволяет отличать друг от друга, в частности, эхо-сигналы, отраженные от плоскостных дефектов, выходящих на поверхность объекта контроля (зарубки, двугранные углы, непровары сварного шва), плоских поверхностей образца и локальных дефектов с криволинейной поверхностью (сквозных боковых цилиндрических отверстий и плоскодонных сверлений). Таким образом, используя в качестве информативного признака соотношение между девиациями частоты ƒr1 и ƒr2 можно отличить плоскостные дефекты, выходящие на поверхность, от плоскостных дефектов, не выходящих на поверхность, и от дефектов типа ″сквозное боковое цилиндрическое отверстие″.
Claims (1)
- Способ определения типа дефекта в металлических изделиях, включающий импульсное облучение исследуемой зоны ультразвуковым излучением, регистрацию исходного отраженного сигнала, его компьютерную обработку для определения информативных параметров, по которым судят о наличии и типе дефекта, отличающийся тем, что к исходному отраженному сигналу от каждого обнаруженного дефекта применяют преобразование Гильберта, получая аналитический сигнал, затем вычисляют модуль аналитического сигнала, получая огибающую исходного сигнала, на огибающей находят моменты времени t0, t1, и t2, соответствующие максимуму амплитуды огибающей и половине ее максимального значения слева и справа от максимума, применяя непрерывное вейвлетное преобразование к аналитическому сигналу, по формуле
, где
ξ*=ξ*(θ) - значение маштабного коэффициента ξ, соответствующее максимуму модуля вейвлетного спектра аналитического сигнала при ;
θ - параметр сдвига вейвлетного преобразования;
находят зависимость мгновенной частоты от времени, на которой выбирают для дальнейшего анализа частоты ƒ0, ƒ1 и ƒ2, соответствующие моментам времени t0, t1, и t2, затем используя частоты ƒ0, ƒ1 и ƒ2 формируют новые безразмерные параметры - нормированные девиации частоты
, где
ƒн - несущая (номинальная) частота импульсного ультразвукового излучения;
ƒ0, ƒ1, и ƒ2 - значения мгновенной частоты в трех точках, соответствующих моментам времени t0, t1 и t2;
отображают значения ƒr1 и ƒr2 в виде точки на двумерной диаграмме, по расположению которой в определенной области диаграммы судят о типе дефекта.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2013101082/28A RU2524451C1 (ru) | 2013-01-09 | 2013-01-09 | Способ определения типа дефекта в металлических изделиях |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2013101082/28A RU2524451C1 (ru) | 2013-01-09 | 2013-01-09 | Способ определения типа дефекта в металлических изделиях |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2013101082A RU2013101082A (ru) | 2014-07-20 |
RU2524451C1 true RU2524451C1 (ru) | 2014-07-27 |
Family
ID=51215150
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2013101082/28A RU2524451C1 (ru) | 2013-01-09 | 2013-01-09 | Способ определения типа дефекта в металлических изделиях |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2524451C1 (ru) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115184413A (zh) * | 2022-06-22 | 2022-10-14 | 安徽巨一科技股份有限公司 | 点焊质量在线检测方法 |
CN115166049B (zh) * | 2022-09-07 | 2022-12-02 | 广东工业大学 | 一种基于增材制造的激光超声实时检测系统及方法 |
CN117969681B (zh) * | 2024-03-28 | 2024-06-28 | 宝鸡富士特钛业(集团)有限公司 | 一种钛合金管材的内部损伤及缺陷的分析方法及系统 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1206690A1 (ru) * | 1984-06-20 | 1986-01-23 | Московский авиационный технологический институт им.К.Э.Циолковского | Способ ультразвукового контрол качества издели |
SU1668933A1 (ru) * | 1989-06-14 | 1991-08-07 | Московский авиационный технологический институт им.К.Э.Циолковского | Способ ультразвукового контрол качества изделий |
RU2308028C2 (ru) * | 2005-10-12 | 2007-10-10 | Общество с ограниченной ответственностью "Корпорация "СпектрАкустика" | Способ контроля дефектности объекта |
US8074520B2 (en) * | 2006-05-12 | 2011-12-13 | H & B System Co., Ltd. | Ultrasonic inspection method utilizing resonant phenomena |
-
2013
- 2013-01-09 RU RU2013101082/28A patent/RU2524451C1/ru not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1206690A1 (ru) * | 1984-06-20 | 1986-01-23 | Московский авиационный технологический институт им.К.Э.Циолковского | Способ ультразвукового контрол качества издели |
SU1668933A1 (ru) * | 1989-06-14 | 1991-08-07 | Московский авиационный технологический институт им.К.Э.Циолковского | Способ ультразвукового контрол качества изделий |
RU2308028C2 (ru) * | 2005-10-12 | 2007-10-10 | Общество с ограниченной ответственностью "Корпорация "СпектрАкустика" | Способ контроля дефектности объекта |
US8074520B2 (en) * | 2006-05-12 | 2011-12-13 | H & B System Co., Ltd. | Ultrasonic inspection method utilizing resonant phenomena |
Non-Patent Citations (1)
Title |
---|
Экспериментальное исследование ультразвукового спектрального метода определения характера дефектов, Дефектоскопия. 1977, N 6, с. 40-53. Теоретическое исследование ультразвукового спектрального метода определения характера дефектов, Дефектоскопия. 1977, N 6, с. 75-84. * |
Also Published As
Publication number | Publication date |
---|---|
RU2013101082A (ru) | 2014-07-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11366082B2 (en) | Non-linear Lamb wave mixing method for measuring stress distribution in thin metal plates | |
US4274288A (en) | Method for measuring the depth of surface flaws | |
Shakibi et al. | Resolution enhancement of ultrasonic defect signals for crack sizing | |
US11092573B2 (en) | Apparatus, systems, and methods for determining nonlinear properties of a material to detect early fatigue or damage | |
CN111044613A (zh) | 一种基于非线性Lamb波的金属板微缺陷检测方法 | |
US20190145940A1 (en) | Classification of Ultrasonic Indications Using Pattern Recognition | |
EP2778673B1 (en) | Ultrasonic inspection method for diffusion bonded articles | |
Hua et al. | In-situ ultrasonic detection of resistance spot welding quality using embedded probe | |
Yeh et al. | An alternative Ultrasonic TimeofFlight Diffraction (TOFD) method | |
US4669312A (en) | Method and apparatus for ultrasonic testing of defects | |
RU2524451C1 (ru) | Способ определения типа дефекта в металлических изделиях | |
Jin et al. | Reduction of layered dead zone in time-of-flight diffraction (TOFD) for pipeline with spectrum analysis method | |
Papanaboina et al. | The defect identification and localization using ultrasonic guided waves in aluminum alloy | |
CN113884567A (zh) | 基于超声Lamb波的钢轨焊缝损伤检测方法和装置 | |
Murav’eva et al. | Analysis of reflected signals in testing cylindrical specimens by the multiple reflection echo-shadow method | |
Dawson et al. | Acquisition and analysis of angle-beam wavefield data | |
KR20050042542A (ko) | 비선형 음향반응을 이용한 비파괴 음향 탐사장치 및탐사방법 | |
KR101963820B1 (ko) | 반사모드 비선형 초음파 진단 장치 | |
KR101964758B1 (ko) | 비접촉식 가진에 의한 비선형 초음파 진단 장치 | |
Nemytova et al. | Instantaneous frequency estimation used for the classification of echo signals from different reflectors | |
RU2246724C1 (ru) | Способ ультразвукового контроля качества материала | |
Nemytova et al. | Comparative classification of flaws using ultrasonic-tomography methods and evaluation of the instantaneous frequency of echo signals | |
KR100485450B1 (ko) | 초음파 탐상 시험 장치 및 그 제어방법 | |
Jin et al. | Reducing Dead Zone in Ultrasonic Time-of-Flight Diffraction (TOFD): A Review | |
Bunget et al. | Flaw characterization through nonlinear ultrasonics and wavelet cross-correlation algorithms |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20160110 |