RU2522579C1 - Способ комплексной оценки состояния призабойной зоны пласта - Google Patents

Способ комплексной оценки состояния призабойной зоны пласта Download PDF

Info

Publication number
RU2522579C1
RU2522579C1 RU2013117657/03A RU2013117657A RU2522579C1 RU 2522579 C1 RU2522579 C1 RU 2522579C1 RU 2013117657/03 A RU2013117657/03 A RU 2013117657/03A RU 2013117657 A RU2013117657 A RU 2013117657A RU 2522579 C1 RU2522579 C1 RU 2522579C1
Authority
RU
Russia
Prior art keywords
pressure
formation
zone
bottomhole
processing
Prior art date
Application number
RU2013117657/03A
Other languages
English (en)
Inventor
Инна Николаевна Пономарева
Владимир Валерьевич Поплыгин
Original Assignee
федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Пермский национальный исследовательский политехнический университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Пермский национальный исследовательский политехнический университет" filed Critical федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Пермский национальный исследовательский политехнический университет"
Priority to RU2013117657/03A priority Critical patent/RU2522579C1/ru
Application granted granted Critical
Publication of RU2522579C1 publication Critical patent/RU2522579C1/ru

Links

Images

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

Изобретение относится к нефтяной промышленности и может найти применение при разработке продуктивного пласта и определении параметров продуктивного коллектора. Техническим результатом является повышение точности определения показателей, характеризующих состояние призабойной зоны пласта. Способ комплексной оценки состояния призабойной зоны пласта включает эксплуатацию скважины на установившемся режиме перед проведением гидродинамического исследования, гидродинамическое исследование скважины методом восстановления давления, определение забойного давления и продолжающегося притока жидкости из пласта в скважину после ее остановки, и обработку результатов замеров. Причем при обработке результатов замеров определяют текущее пластовое давление методом произведения, проводят аппроксимацию данных результатов замеров, включающую при коэффициенте детерминации менее 0,99 разделение фактической кривой восстановления давления (КВД) на отдельные участки. Затем осуществляют подбор аппроксимирующих уравнений для выделенных участков, и деление всего периода проведения исследования на интервалы с постоянным шагом по времени. Рассчитывают для указанных интервалов значения забойного давления. Обрабатывают аппроксимированную КВД методом детерминированных моментов давления с определением пластового давления и безразмерного диагностического признака. Сравнивают полученное пластовое давление с давлением, определенным методом произведения. В случае, если они отличаются более чем на 0,3 МПа, выполняют процедуру аппроксимации с использованием других аппроксимирующих уравнений. Далее по результатам опре�

Description

Изобретение относится к нефтяной промышленности и может найти применение при разработке продуктивного пласта и определении параметров продуктивного коллектора.
Известен способ определения фильтрационных параметров призабойной зоны пласта и обнаружения дефектов в конструкции скважины, включающий промысловые гидродинамические исследования скважин. А именно осуществляют гидродинамическое возмущение давления в исследуемом пласте путем периодического или непериодического во времени изменения дебита скважины, регистрируют временные зависимости дебита и давления. При этом давление и дебит измеряют на устье скважины, давление - одновременно в насосно-компрессорных трубах (НКТ) и в межтрубном пространстве. Получают частотные зависимости отношения амплитуды давления к дебиту и сдвига фаз между ними. Проводят расчет отношения амплитуд и сдвига фаз компонент частотного спектра (гармоник) давления к дебиту, приведенных к забою скважины, т.е. комплексного импеданса призабойной зоны. По формулам, полученным из представления конструктивных объемов скважины эквивалентной электрической схемы, включающей две последовательные коаксиальные линии и сосредоточенную емкость в точке их соединения, для соответствующих точек измерения давления, для расчета фильтрационных параметров пласта для используемого непериодического вида воздействия из частотной зависимости импеданса получают временную зависимость давления или дебита, приведенных к забою скважины. По существенному различию значений комплексного импеданса призабойной зоны, рассчитанных по данным давления, делают вывод о наличии нарушений гидродинамической целостности конструкции скважины в точках, удаленных от забоя (см. патент РФ №2445455 от 20.03.2012).
Недостатком известного способа является недостаточная достоверность оценки состояния призабойной зоны пласта вследствие того, что известным способом определяются только фильтрационные параметры. Кроме того, способ трудоемок вследствие длительных измерений изменения дебита скважин во времени.
Наиболее близким способом того же назначения к заявленному изобретению по совокупности признаков является способ исследования скважины, включающий эксплуатацию скважины на установившемся режиме перед проведением гидродинамического исследования, гидродинамическое исследование скважины методом восстановления давления, определение забойного давления и продолжающегося притока жидкости из пласта в скважину после ее остановки, обработку результатов замеров. При фиксировании кривой восстановления давления (КВД) первые 10 мин замеры производят каждые 30 с, в течение первого часа - каждую 1 мин, в течение первых пяти часов - через каждые 10 мин, в течение первых суток - каждый 1 ч, в течение вторых суток - каждые 5 ч, в течение третьих суток - каждые 10 ч и далее через каждые 24 ч. Давление замеряют с точностью 0,01 МПа. Фиксируют не менее двух КВД через временной интервал эксплуатации скважины, достаточный для проявления изменения свойств ПЗ. Перестраивают КВД в кривые перепада давления в логарифмических координатах - логарифм давления как функция логарифма времени. Находят точку совмещения кривых. Пересчитывают координаты полученной точки и определяют глубину засорения ПЗ. Проводят мероприятия по отчистки ПЗ пласта. Вновь фиксируют КВД с вышеприведенными замерами и точностью. Перестраивают КВД в кривую перепада давления в вышеуказанных логарифмических координатах. Сравнивают полученную кривую с последней кривой до мероприятий по обработке ПЗ. Находят точку совмещения кривых. Пересчитывают координаты полученной точки и определяют глубину отчистки (см. патент РФ №2407887 от 27.12.2010). Данный способ принят за прототип.
Признаки прототипа, совпадающие с существенными признаками заявляемого способа - эксплуатация скважины на установившемся режиме перед проведением гидродинамического исследования; гидродинамическое исследование скважины методом восстановления давления; определение забойного давления и продолжающегося притока жидкости из пласта в скважину после ее остановки; обработка результатов замеров.
Недостатками известного способа, принятого за прототип, являются низкая точность определения размеров зоны с улучшенными свойствами из-за использования графического метода; недостаточная достоверность оценки состояния призабойной зоны пласта вследствие того, что известным способом определяют значение размера зоны только с улучшенными свойствами. В известном способе имеются высокие требования к снятию КВД, он более трудоемкий. Кроме того, требует замеров нескольких КВД, что влечет значительные материальные и трудовые затраты.
Задача, на решение которой направлено заявляемое изобретение - повышение достоверности оценки состояния призабойной зоны пласта, упрощение способа.
Техническим результатом, который может быть получен при осуществлении предлагаемого способа, является повышение точности определения показателей, характеризующих состояние призабойной зоны пласта.
Поставленная задача была решена за счет того, что в известном способе, включающем эксплуатацию скважины на установившемся режиме перед проведением гидродинамического исследования, гидродинамическое исследование скважины методом восстановления давления, определение забойного давления и продолжающегося притока жидкости из пласта в скважину после ее остановки, обработку результатов замеров, согласно изобретению, при обработке результатов замеров определяют текущее пластовое давление методом произведения, проводят аппроксимацию данных результатов замеров, включающую при коэффициенте детерминации менее 0,99 разделение фактической кривой восстановления давления на отдельные участки, подбор аппроксимирующих уравнений для выделенных участков, деление всего периода проведения исследования на интервалы с постоянным шагом по времени, расчет для этих интервалов значений забойного давления, обрабатывают аппроксимированную кривую восстановления давления методом детерминированных моментов давления с определением пластового давления и безразмерного диагностического признака, сравнивают полученное пластовое давление с давлением, определенным методом произведения, в случае, если они отличаются более чем на 0,3 МПа, выполняют процедуру аппроксимации с использованием других аппроксимирующих уравнений, далее по результатам определения пластового давления методом произведения оценивают степень восстановления забойного давления, полученного при исследовании скважины и определяют коэффициент продуктивности скважины по режиму, для уточнения положения обрабатываемого участка строят билогарифмический график, выполняют обработку фактической и аппроксимированной кривых восстановления давления методом касательной с определением параметров удаленной зоны пласта, сопоставляют результаты обработки фактической и аппроксимированной кривых восстановления давления методом касательной, в случае отличия коэффициентов проницаемости удаленной зоны пласта по фактической и аппроксимированной кривым более 10% при k>0,1 мкм2; более 15% при 0,1>k>0,01 мкм2; более 20% при k<0,01 мкм2 выполняют процедуру аппроксимации с использованием других аппроксимирующих уравнений, далее определяют скин-фактор для кривой восстановления давления с практически полным не менее 99% восстановлением давления и для недовосстановленных кривых восстановления давления, если выделенный при обработке участок аппроксимируется линейной зависимостью с коэффициентом детерминации не ниже 0,96, в остальных случаях величину скин-фактора S оценивают по зависимости между диагностическим признаком d и S, оценивают состояние призабойной зоны пласта по значениям диагностического признака и скин-фактора, для кривых восстановления давления, обработка которых методом касательной не может быть выполнена, производят обработку дифференциальным или интегральным методами с учетом послепритока, предварительно выполнив процедуру аппроксимации кривых восстановления затрубного и буферного давлений для равноудаленных значений времени, определяют параметры удаленной зоны пласта при использовании нескольких методов с учетом послепритока, в случае ухудшенного состояния призабойной зоны пласта определяют размеры и свойства призабойной зоны пласта, используя определенные ранее значения проницаемости удаленной зоны пласта, оценивают состояние призабойной и удаленной зон пласта по значениям диагностического признака, проницаемости, гидропроводности, пьезопроводности и размеров призабойной зоны пласта.
Признаки заявляемого технического решения, отличительные от прототипа - при обработке результатов замеров определяют текущее пластовое давление методом произведения; проводят аппроксимацию данных результатов замеров, включающую при коэффициенте детерминации менее 0,99 разделение фактической кривой восстановления давления на отдельные участки, подбор аппроксимирующих уравнений для выделенных участков, деление всего периода проведения исследования на интервалы с постоянным шагом по времени, расчет для этих интервалов значений забойного давления; обрабатывают аппроксимированную кривую восстановления давления методом детерминированных моментов давления с определением пластового давления и безразмерного диагностического признака; сравнивают полученное пластовое давление с давлением, определенным методом произведения, в случае, если они отличаются более чем на 0,3 МПа, выполняют процедуру аппроксимации с использованием других аппроксимирующих уравнений; по результатам определения пластового давления методом произведения оценивают степень восстановления забойного давления, полученного при исследовании скважины и определяют коэффициент продуктивности скважины по режиму; для уточнения положения обрабатываемого участка строят билогарифмический график; выполняют обработку фактической и аппроксимированной кривых восстановления давления методом касательной с определением параметров удаленной зоны пласта; сопоставляют результаты обработки фактической и аппроксимированной кривых восстановления давления методом касательной, в случае отличия коэффициентов проницаемости удаленной зоны пласта по фактической и аппроксимированной кривым более 10% при k>0,1 мкм2; более 15% при 0,1>k>0,01 мкм2; более 20% при k<0,01 мкм2 выполняют процедуру аппроксимации с использованием других аппроксимирующих уравнений; определяют скин-фактор для кривой восстановления давления с практически полным не менее 99% восстановлением давления и для недовосстановленных кривых восстановления давления, если выделенный при обработке участок аппроксимируется линейной зависимостью с коэффициентом детерминации не ниже 0,96, в остальных случаях величину скин-фактора S оценивают по зависимости между диагностическим признаком d и S; оценивают состояние призабойной зоны пласта по значениям диагностического признака и скин-фактора; для кривых восстановления давления, обработка которых методом касательной не может быть выполнена, производят обработку дифференциальным или интегральным методами с учетом послепритока, предварительно выполнив процедуру аппроксимации кривых восстановления затрубного и буферного давлений для равноудаленных значений времени; определяют параметры удаленной зоны пласта при использовании нескольких методов с учетом послепритока; в случае ухудшенного состояния призабойной зоны пласта определяют размеры и свойства призабойной зоны пласта, используя определенные ранее значения проницаемости удаленной зоны пласта; оценивают состояние призабойной и удаленной зон пласта по значениям диагностического признака, проницаемости, гидропроводности, пьезопроводности и размеров призабойной зоны пласта.
Отличительные признаки в совокупности с известными позволяют повысить точность определения показателей, характеризующих состояние призабойной зоны пласта, и упростить способ оценки. Повышение точности определения показателей обеспечит высокую достоверность оценки состояния призабойной зоны пласта.
Определение показателей, характеризующих состояние призабойной зоны пласта, ведется различными способами, в зависимости от качества КВД.
Существует несколько основных методов оценки состояния призабойной зоны пласта (ПЗП). Установлено, что каждый из методов характеризуется определенными особенностями и условиями эффективного применения, невыполнение которых может привести к ошибочным результатам.
Распространенный способ оценки состояния ПЗП, основанный на определении скин-фактора при обработке кривых восстановления давления (КВД) методом касательной, можно применять для КВД при практически полном (не менее 99%) восстановлении забойного давления до величины пластового и при однозначном выделении прямолинейного участка. При неполном восстановлении давления величина скин-фактора может быть определена с приемлемой погрешностью, если на КВД в полулогарифмических координатах выделяется заключительный участок, аппроксимируемый линейной зависимостью с величиной коэффициента детерминации не ниже 0,96.
Метод детерминированных моментов применим для обработки КВД, включающих равностоящие нелинейно-возрастающие значения забойного давления. При невыполнении этого условия необходимо проведение процедуры аппроксимации исходных данных. Аппроксимацию целесообразно проводить на отдельных (локальных) характерных участках КВД, на заключительных участках следует использовать логарифмические зависимости. Успешно выполненная обработка КВД методом детерминированных моментов позволяет получать не только качественную, но и количественную характеристику призабойной зоны, что является преимуществом способа.
Для обработки некоторых КВД может быть применен метод Полларда, в первую очередь для условий трещинно-порового коллектора и при достаточно точном определении пластового давления.
Значительное количество КВД, до 50% и более, в качественном отношении не отвечает требованиям, при которых может выполняться их обработка тем или иным методом с получением достоверных результатов. В таких случаях необходимо комплексное использование методов обработки КВД.
Заявляемый способ иллюстрируется чертежами, представленными на фиг.1-11.
На фиг.1 представлена обработка КВД методом произведения.
На фиг.2 - график изменения второй производной давления (ВПД).
На фиг.3 - кусочная аппроксимация КВД.
На фиг.4 - результаты обработки КВД методом детерминированных моментов (ДМД).
На фиг.5 - диагностический билогарифмический график.
На фиг.6 - КВД в полулогарифмических координатах.
На фиг.7 - аппроксимированная КВД в полулогарифмических координатах.
На фиг.8 - зависимость между проницаемостями по индикаторной диаграмме (ИД) и КВД.
На фиг.9 - зависимость между dср и Sср для объектов разработки в карбонатных коллекторах порового типа (пласты Бш).
На фиг.10 - зависимость между dср и Sср для объектов разработки в карбонатных коллекторах трещинно-порового типа (пласты Т-Фм).
На фиг.11 - зависимость между dср и Sср для объектов разработки в терригенных коллекторах.
Способ комплексной оценки состояния призабойной зоны пласта включает эксплуатацию скважины на установившемся режиме перед проведением гидродинамического исследования, гидродинамическое исследование скважины методом восстановления давления, определение забойного давления и продолжающегося притока жидкости из пласта в скважину после ее остановки, обработку результатов замеров.
Обработка результатов замеров осуществляется в следующей последовательности.
1. Обработка фактических данных методом произведения с определением текущего пластового давления.
2. Аппроксимация фактических данных, включающая при коэффициенте детерминации менее 0,99 разделение фактической КВД на отдельные участки; подбор аппроксимирующих уравнений (логарифмических или других) для выделенных участков; деление всего периода проведения исследования на 20-30 интервалов с постоянным шагом по времени; расчет для этих интервалов значений забойного давления.
3. Обработка аппроксимированной КВД методом детерминированных моментов давления с определением пластового давления и безразмерного диагностического признака. Сравнивают полученное пластовое давление с давлением, определенным методом произведения в п.1. В случае если они отличаются не более чем на 0,3 МПа, то обработка методом детерминированных моментов давления (ДМД) считается достоверной. В противном случае необходимо вернуться в п.2 и выполнить процедуру аппроксимации с использованием других аппроксимирующих уравнений.
4. Оценка степени восстановления забойного давления, полученного при исследовании скважины, по результатам определения пластового давления методом произведения.
5. Определение коэффициента продуктивности скважины по режиму (как отношение дебита скважины при установившемся режиме до остановки к разнице между пластовым давлением, определенным в пп.1 и 3, и забойным давлением при установившемся режиме (перед остановкой скважины)).
6. Проведение диагностической процедуры для уточнения положения обрабатываемого участка с построением билогарифмического графика.
7. Обработка фактической и аппроксимированной кривых методом касательной с определением характеристик удаленной зоны пласта. Сопоставление результатов обработки фактической и аппроксимированной КВД методом касательной. В случае отличия коэффициентов проницаемости удаленной зоны пласта по фактической и аппроксимированной кривым более 10% при k>0,1 мкм2; более 15% при 0,1>k>0,01 мкм2; более 20% при k<0,01 мкм2 выполняют процедуру аппроксимации с использованием других аппроксимирующих уравнений. Незначительное расхождение полученных величин подтверждает необходимую точность выполненной процедуры аппроксимации.
8. Определение скин-фактора для КВД с практически полным (не менее 99%) восстановлением давления и для недовосстановленных КВД, если выделенный при обработке участок аппроксимируется линейной зависимостью с коэффициентом детерминации не ниже 0,96. В остальных случаях величина скин-фактора (S) может быть оценена по зависимости между диагностическим признаком (d) и S.
На фиг.9-11 представлены графики зависимости безразмерного диагностического признака d от значений скин-фактора S для трех выделенных групп объектов разработки,
На графиках в координатах «d-S» прослеживается зависимость между этими двумя параметрами.
При обработке с использованием метода ДМД кривых восстановления давления, полученных при исследованиях добывающих скважин, эксплуатирующих башкирские карбонатные отложения нефтяных месторождений, состояние ПЗП следует считать ухудшенным при значениях диагностического признака более 2,6.
Представляется целесообразным оценивать состояние ПЗП для КВД в турнейско-фаменских карбонатных отложениях ухудшенным, если полученное значение безразмерного диагностического признака более 2,7.
Состояние ПЗП в терригенных коллекторах следует считать ухудшенным при d более 2,4.
9. Оценка состояния ПЗП по значениям диагностического признака и скин-фактора.
10. Для КВД, обработка которых методом касательной не может быть выполнена, производится обработка методами с учетом послепритока (дифференциальным, интегральным). Предварительно необходимо выполнить процедуру аппроксимации кривых восстановления затрубного и буферного давлений для равноудаленных значений времени.
11. Определение параметров удаленной зоны пласта при использовании нескольких методов с учетом послепритока (например, как средних величин).
12. В случае ухудшенного состояния ПЗП (по методу ДМД и др.), производится определение размеров и свойств призабойной зоны пласта, используя определенные в п.8 значения проницаемости удаленной зоны пласта.
Величина d сохраняет постоянное значение независимо от фильтрационных свойств однородного коллектора, свойств пластовой нефти, толщины пласта, радиусов скважины и контура питания, дебита скважины до остановки, что позволяет принять d в качестве диагностического признака при интерпретации КВД. С учетом погрешностей измерений и влияния других факторов, действие которых приводит к определенному разбросу значений d, предложена следующая схема [Ибрагимов Л.X., Мищенко И.Т., Челоянц Д.К. Интенсификация добычи нефти. - М.: Наука, 2000. - 414 с.]:
1) d<2,0 - происходит фильтрация ньютоновской жидкости в трещиновато-пористом пласте или фильтрация неньютоновской жидкости (вязко-упругая нефть) в однородном пласте;
2) 2,0≤d≤2,2 - происходит фильтрация ньютоновской жидкости в однородном пласте;
3) d>2,2 - происходит фильтрация ньютоновской жидкости в неоднородном пласте (вокруг скважины имеется кольцевая зона с пониженной проницаемостью).
Интегральная обработка данных исследований скважин дает основание считать, что вычисление детерминированных моментов давления и диагностического критерия d должно происходить достаточно устойчиво для всех моделей фильтрации.
Для однородного пласта после вычисления моментов давления гидропроводность и пьезопроводность определяются по формулам:
ε = k h μ = 4 q 0 M 1 5 M 0 2
Figure 00000001
T = r к 2 χ = 32 M 1 M 0
Figure 00000002
По результатам обработки КВД методом детерминированных моментов давления определяются размеры и свойства прискважинной зоны по следующему алгоритму (при d≥2,2) [Ибрагимов Л.X., Мищенко И.Т., Челоянц Д.К. Интенсификация добычи нефти. - М.: Наука, 2000. - 414 с.]:
Определение dmax и tmax (соответственно, максимальное значение d и соответствующее ему значение времени t на графике, построенном при обработке методом ДМД).
Определение величины коэффициента неоднородности α, равного отношению проницаемости (kузп), гидропроводности (εузп) и пьезопроводности (χузп) УЗП к значениям этих же параметров, характеризующих прискважинную зону пласта.
При этом:
α=1,22·dmax при 2,2<dmax≤2,6
α=3,17+10,25(dmax-2,6) при 2,6<dmax≤3,0
α=7,27+13,89·(dmax-3,0) при 3,0<dmax<∞
Определение времени прохождения волны возмущения через ПЗП
tПЗП=0,01·α·tmax
Определение εузп, kузп и χузп:
ε П З П = ε У З П α
Figure 00000003
; k П З П = k У З П α
Figure 00000004
; χ П З П = χ У З П α
Figure 00000005
Определение (оценка) размеров ПЗП
r П З П = r П З П 1 + r П З П 2 2
Figure 00000006
,
где
r П З П 1 = π χ З П t 0 ,
Figure 00000007
r П З П 2 = 2,5 χ П З П t 0
Figure 00000008
13. Обобщение полученных результатов.
Предложенный способ комплексной оценки позволяет выполнять достоверную качественную и, в некоторых случаях, количественную оценки состояния ПЗП по данным исследований скважин в различных геолого-физических условиях, в том числе при неполном восстановлении забойного давления до величины пластового.
В качестве примера применения способа комплексной оценки состояния ПЗП рассмотрена обработка данных исследования скважины 617 Уньвинского месторождения, показатели эксплуатации которой приведены в табл.1.
Таблица 1
Показатели эксплуатации скв.617
Залежь Бб
Поднятие Палашерское
Дата исследования 27.08.2007
Дебит перед остановкой, м3/сут 6,87
Толщина пласта, м 7
Вязкость нефти, мПа·с 1,16
Объемный коэффициент нефти 1,21
Коэффициент объемного сжатия нефти, 10-10 1/Па 12,86
Коэффициент объемного сжатия нефти, 10-10 1/Па 0,91
Пористость, д.ед. 0,16
Обводненность, % 0,73
Результаты измерения забойного давления при исследовании скважины представлены в табл.2.
Таблица 2
Результаты измерения давления
№ пп 1 2 3 4 5 6 7 8 9 10
t, мин 0 55 130 175 340 460 2170 3550 4280 5110
Рс, МПа 6,55 7,71 9,02 9,54 10,99 11,63 15,87 16,16 16,23 16,33
Определение пластового давления по методу произведения.
КВД скв.617 в координатах «P·t - t» представлена на фиг.1. По результатам обработки КВД пластовое давление составило 16,71 МПа.
С целью проведения аппроксимации выполнен дифференциальный анализ КВД. График изменения второй производной давления (ВПД) во времени представлен на фиг.2.
Вторая производная давления на начальном участке имеет монотонно возрастающий характер, далее практически стабильна, что позволяет выделить на КВД два участка для дальнейшей кусочной аппроксимации (фиг.3).
В соответствии с подобранными при аппроксимации уравнениями произведен расчет забойных давлений для равноотстоящих моментов времени (табл.3).
Таблица 3
Результаты расчета давлений
№ пп t, мин Р, МПа
1 0 6,55
2 255 10,2932
3 510 12,0625
4 765 13,0975
5 1020 13,8318
6 1275 14,4014
7 1530 14,8668
8 1785 15,2603
9 2040 15,6012
10 2295 15,9075
11 2550 15,9644
12 2805 16,0158
13 3060 16,0628
14 3315 16,1060
15 3570 16,1626
16 3825 16,1948
17 4080 16,2249
18 4335 16,2532
19 4590 16,2799
20 4845 16,3051
21 5100 16,3291
По данным, представленным в табл.3, выполнена обработка методом ДМД. Результаты приведены на фиг.4.
Полученное в результате обработки КВД методом ДМД пластовое давление, равное 16,711 МПа, практически совпадает с определенной по методу произведения величиной, что подтверждает достоверность выполненной процедуры аппроксимации.
Значение диагностического признака свидетельствует об ухудшенном состоянии ПЗП.
При пластовом давлении, равном 16,71 МПа, величина коэффициента продуктивности составляет 0,68 м3/(сут·МПа).
В билогарифмических координатах нулевым уклоном характеризуется участок, включающий заключительные четыре точки (фиг.5).
Для определения фильтрационных характеристик пласта в удаленной зоне выполнена обработка КВД методом касательной (фиг.6).
В результате обработки получено значение проницаемости УЗП 0,002 мкм2.
Также выполнена обработка аппроксимированной КВД методом касательной (фиг.7).
Полученное при обработке аппроксимированной КВД значение коэффициента проницаемости (0,002 мкм) совпадает с величиной этого коэффициента при обработке фактической КВД, что также подтверждает достоверность выполненной процедуры аппроксимации.
На графике (фиг.7) в полулогарифмических координатах четко выделяется заключительный участок, аппроксимируемый линейной зависимостью с величиной коэффициента детерминации 0,995, что, в соответствии с полученными ранее выводами, позволяет определять скин-фактор, несмотря на неполное восстановление забойного давления до пластового. По результатам расчетов величина скин-фактора составляет 2,6, что позволяет оценить состояние ПЗП как ухудшенное.
По результатам обработки КВД методом ДМД состояния ПЗП также оценивается как ухудшенное; результаты определения размеров и свойств ПЗП приведены в табл.4.
Таблица 4
Результаты определения размеров и свойств ПЗП
Максимальное значение диагностического признака 3,15
Проницаемость УЗП, мкм2 0,002
Коэф-т неоднородности 7,05
Проницаемость ПЗП, мкм2 0,0003
Радиус ПЗП, м 5,6
Обработка КВД по предложенному способу позволяет получать большое количество информации о состоянии пластовой системы и может быть использована для комплексной оценки результатов проведения геолого-технических мероприятий на скважинах.
Для оценки достоверности результатов, полученных при анализе КВД, выполнена обработка данных более 20 индикаторных исследований скважин. Известно, что в результате обработки индикаторных диаграмм (ИД), полученных в ходе проведения гидродинамических исследований скважин при установившихся режимах, определяется проницаемость пласта, которая является осредненной характеристикой зоны дренирования пласта. В случае если коллектор в зоне действия исследуемой скважины является зонально неоднородным, то полученную проницаемость можно рассматривать как эффективную, определяемую по формуле:
k э ф = ln r к / r c 1 k У З П ln r к / r П З П + 1 k П З П ln r П З П / r с ,                                   ( 1 )
Figure 00000009
Определенные изменения в состоянии прискважинных и более удаленных зон пласта после остановки скважин для снятия КВД должны отражаться на получаемых при обработке результатах, поэтому практически полного совпадения проницаемости, определяемой по индикаторной диаграмме (ИД) и при обработке КВД, то есть эффективной проницаемости, может не быть.
На фиг.8 приведены результаты обработки кривых восстановления давления с определением проницаемости УЗП и ПЗП, эффективной проницаемости по формуле (1) и результаты обработки индикаторных диаграмм.
Анализ полученных данных позволяет сделать вывод о некоторых расхождениях между эффективными проницаемостями, определенными в результате обработки КВД в соответствии с предложенным способом, и проницаемостями, определенными по индикаторным диаграммам для большей части скважин. В то же время достаточно однозначная зависимость между этими проницаемостями подтверждает достоверность результатов обработки КВД в соответствии с предложенным способом.
Высокая достоверность результатов оценки состояния ПЗП является преимуществом заявляемого способа комплексной оценки по сравнению с известными способами. Кроме того, способ прост и менее трудозатратен, так как для комплексной оценки состояния скважины по данному способу достаточна разовая остановка скважины на снятие КВД.

Claims (1)

  1. Способ комплексной оценки состояния призабойной зоны пласта, включающий эксплуатацию скважины на установившемся режиме перед проведением гидродинамического исследования, гидродинамическое исследование скважины методом восстановления давления, определение забойного давления и продолжающегося притока жидкости из пласта в скважину после ее остановки, обработку результатов замеров, отличающийся тем, что при обработке результатов замеров определяют текущее пластовое давление методом произведения, проводят аппроксимацию данных результатов замеров, включающую при коэффициенте детерминации менее 0,99 разделение фактической кривой восстановления давления на отдельные участки, подбор аппроксимирующих уравнений для выделенных участков, деление всего периода проведения исследования на интервалы с постоянным шагом по времени, расчет для этих интервалов значений забойного давления, обрабатывают аппроксимированную кривую восстановления давления методом детерминированных моментов давления с определением пластового давления и безразмерного диагностического признака, сравнивают полученное пластовое давление с давлением, определенным методом произведения, в случае, если они отличаются более чем на 0,3 МПа, выполняют процедуру аппроксимации с использованием других аппроксимирующих уравнений, далее по результатам определения пластового давления методом произведения оценивают степень восстановления забойного давления, полученного при исследовании скважины и определяют коэффициент продуктивности скважины по режиму, для уточнения положения обрабатываемого участка строят билогарифмический график, выполняют обработку фактической и аппроксимированной кривых восстановления давления методом касательной с определением параметров удаленной зоны пласта, сопоставляют результаты обработки фактической и аппроксимированной кривых восстановления давления методом касательной, в случае отличия коэффициентов проницаемости удаленной зоны пласта по фактической и аппроксимированной кривым более 10% при k>0,1 мкм2; более 15% при 0,1>k>0,01 мкм2; более 20% при k<0,01 мкм2 выполняют процедуру аппроксимации с использованием других аппроксимирующих уравнений, далее определяют скин-фактор для кривой восстановления давления с практически полным не менее 99% восстановлением давления и для недовосстановленных кривых восстановления давления, если выделенный при обработке участок аппроксимируется линейной зависимостью с коэффициентом детерминации не ниже 0,96, в остальных случаях величину скин-фактора S оценивают по зависимости между диагностическим признаком d и S, оценивают состояние призабойной зоны пласта по значениям диагностического признака и скин-фактора, для кривых восстановления давления, обработка которых методом касательной не может быть выполнена, производят обработку дифференциальным или интегральным методами с учетом послепритока, предварительно выполнив процедуру аппроксимации кривых восстановления затрубного и буферного давлений для равноудаленных значений времени, определяют параметры удаленной зоны пласта при использовании нескольких методов с учетом послепритока, в случае ухудшенного состояния призабойной зоны пласта определяют размеры и свойства призабойной зоны пласта, используя определенные ранее значения проницаемости удаленной зоны пласта, оценивают состояние призабойной и удаленной зон пласта по значениям диагностического признака, проницаемости, гидропроводности, пьезопроводности и размеров призабойной зоны пласта.
RU2013117657/03A 2013-04-16 2013-04-16 Способ комплексной оценки состояния призабойной зоны пласта RU2522579C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013117657/03A RU2522579C1 (ru) 2013-04-16 2013-04-16 Способ комплексной оценки состояния призабойной зоны пласта

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013117657/03A RU2522579C1 (ru) 2013-04-16 2013-04-16 Способ комплексной оценки состояния призабойной зоны пласта

Publications (1)

Publication Number Publication Date
RU2522579C1 true RU2522579C1 (ru) 2014-07-20

Family

ID=51217420

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013117657/03A RU2522579C1 (ru) 2013-04-16 2013-04-16 Способ комплексной оценки состояния призабойной зоны пласта

Country Status (1)

Country Link
RU (1) RU2522579C1 (ru)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2559247C1 (ru) * 2014-07-28 2015-08-10 Открытое акционерное общество "Татнефть" им. В.Д. Шашина Способ экспресс-определения характеристик призабойной зоны малодебитных скважин, применяемый при освоении скважин, и система его реализующая
RU2605972C2 (ru) * 2014-07-28 2017-01-10 Публичное акционерное общество "Татнефть" имени В.Д. Шашина (ПАО "Татнефть" им. В.Д. Шашина) Система определения характеристик призабойной зоны малодебитных скважин
RU2620100C1 (ru) * 2016-02-12 2017-05-23 Закрытое акционерное общество "ХИМЕКО-ГАНГ" Способ поиска проблемных скважин нефтяной залежи для проведения в них стимуляции методами опз или грп
RU2651647C1 (ru) * 2017-01-10 2018-04-23 Общество с ограниченной ответственностью "РН-Юганскнефтегаз" Способ определения параметров ближней зоны пласта
RU2659445C1 (ru) * 2017-10-02 2018-07-02 федеральное государственное бюджетное образовательное учреждение высшего образования "Пермский национальный исследовательский политехнический университет" Способ исследования нефтедобывающей скважины
RU2687828C1 (ru) * 2018-07-30 2019-05-16 федеральное государственное бюджетное образовательное учреждение высшего образования "Пермский национальный исследовательский политехнический университет" Способ оценки состояния призабойной зоны пласта
CN112049630A (zh) * 2020-10-21 2020-12-08 陕西延长石油(集团)有限责任公司 一种特低渗透油藏压力场模拟方法
CN113298669A (zh) * 2020-12-09 2021-08-24 中国石油天然气股份有限公司 基于压力恢复数据确定抽汲井抽汲周期的方法及装置
CN114151049A (zh) * 2020-08-18 2022-03-08 中国石油化工股份有限公司 基于多参数分析的水井工况诊断方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2235540A (en) * 1989-08-31 1991-03-06 Applied Geomechanics Inc Evaluating properties of porous formation
RU2179637C1 (ru) * 2001-05-08 2002-02-20 Чикин Андрей Егорович Способ определения характеристик скважины, призабойной зоны и пласта и устройство для его осуществления
RU2245442C1 (ru) * 2003-10-02 2005-01-27 Закиров Сумбат Набиевич Способ определения типа карбонатного коллектора по данным специализированных исследований скважины
RU2301886C1 (ru) * 2006-08-17 2007-06-27 Анастасия Викторовна Белова Способ определения гидропроводности пласта
RU2407887C1 (ru) * 2010-03-03 2010-12-27 Открытое акционерное общество "Татнефть" им. В.Д. Шашина Способ исследования скважины

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2235540A (en) * 1989-08-31 1991-03-06 Applied Geomechanics Inc Evaluating properties of porous formation
RU2179637C1 (ru) * 2001-05-08 2002-02-20 Чикин Андрей Егорович Способ определения характеристик скважины, призабойной зоны и пласта и устройство для его осуществления
RU2245442C1 (ru) * 2003-10-02 2005-01-27 Закиров Сумбат Набиевич Способ определения типа карбонатного коллектора по данным специализированных исследований скважины
RU2301886C1 (ru) * 2006-08-17 2007-06-27 Анастасия Викторовна Белова Способ определения гидропроводности пласта
RU2407887C1 (ru) * 2010-03-03 2010-12-27 Открытое акционерное общество "Татнефть" им. В.Д. Шашина Способ исследования скважины

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2559247C1 (ru) * 2014-07-28 2015-08-10 Открытое акционерное общество "Татнефть" им. В.Д. Шашина Способ экспресс-определения характеристик призабойной зоны малодебитных скважин, применяемый при освоении скважин, и система его реализующая
RU2605972C2 (ru) * 2014-07-28 2017-01-10 Публичное акционерное общество "Татнефть" имени В.Д. Шашина (ПАО "Татнефть" им. В.Д. Шашина) Система определения характеристик призабойной зоны малодебитных скважин
RU2620100C1 (ru) * 2016-02-12 2017-05-23 Закрытое акционерное общество "ХИМЕКО-ГАНГ" Способ поиска проблемных скважин нефтяной залежи для проведения в них стимуляции методами опз или грп
RU2651647C1 (ru) * 2017-01-10 2018-04-23 Общество с ограниченной ответственностью "РН-Юганскнефтегаз" Способ определения параметров ближней зоны пласта
RU2659445C1 (ru) * 2017-10-02 2018-07-02 федеральное государственное бюджетное образовательное учреждение высшего образования "Пермский национальный исследовательский политехнический университет" Способ исследования нефтедобывающей скважины
RU2687828C1 (ru) * 2018-07-30 2019-05-16 федеральное государственное бюджетное образовательное учреждение высшего образования "Пермский национальный исследовательский политехнический университет" Способ оценки состояния призабойной зоны пласта
CN114151049A (zh) * 2020-08-18 2022-03-08 中国石油化工股份有限公司 基于多参数分析的水井工况诊断方法
CN114151049B (zh) * 2020-08-18 2023-11-28 中国石油化工股份有限公司 基于多参数分析的水井工况诊断方法
CN112049630A (zh) * 2020-10-21 2020-12-08 陕西延长石油(集团)有限责任公司 一种特低渗透油藏压力场模拟方法
CN112049630B (zh) * 2020-10-21 2023-09-05 陕西延长石油(集团)有限责任公司 一种特低渗透油藏压力场模拟方法
CN113298669A (zh) * 2020-12-09 2021-08-24 中国石油天然气股份有限公司 基于压力恢复数据确定抽汲井抽汲周期的方法及装置
CN113298669B (zh) * 2020-12-09 2024-03-01 中国石油天然气股份有限公司 基于压力恢复数据确定抽汲井抽汲周期的方法及装置

Similar Documents

Publication Publication Date Title
RU2522579C1 (ru) Способ комплексной оценки состояния призабойной зоны пласта
CN109564296B (zh) 用于检测反射液压信号的井中对象的方法和系统
EP1319116B1 (en) Evaluation of multilayer reservoirs
US11340367B2 (en) Fracture wave depth, borehole bottom condition, and conductivity estimation method
US20020096324A1 (en) Production optimization methodology for multilayer commingled reservoirs using commingled reservoir production performance data and production logging information
US11753918B2 (en) Method for multilayer hydraulic fracturing treatment with real-time adjusting
US20160047215A1 (en) Real Time and Playback Interpretation of Fracturing Pressure Data
RU2008118152A (ru) Способы и системы для определения коллекторских свойств подземных пластов с уже существующими трещинами
US10119396B2 (en) Measuring behind casing hydraulic conductivity between reservoir layers
Laochamroonvorapongse et al. Performance assessment of miscible and immiscible water-alternating gas floods with simple tools
Parkhonyuk et al. Measurements while fracturing: nonintrusive method of hydraulic fracturing monitoring
US20190112898A1 (en) Method for determining filtration parameters in multi-well system via pulse-code observation well testing method
RU2179637C1 (ru) Способ определения характеристик скважины, призабойной зоны и пласта и устройство для его осуществления
Kuchuk Applications of convolution and deconvolution to transient well tests
WO2017126974A1 (en) Method and apparatus for automated pressure integrity testing (apit)
CN113396270A (zh) 再压裂效率监测
RU2407887C1 (ru) Способ исследования скважины
Chipperfield After-closure analysis to identify naturally fractured reservoirs
Wright et al. Robust Technique for Real-Time Closure Stress Determination
Kabir et al. Estimating drainage-area pressure with flow-after-flow testing
RU2445455C2 (ru) Способ определения фильтрационных параметров призабойной зоны пласта и обнаружения дефектов в конструкции скважины
Agnia Data Bias in Rate Transient Analysis of Shale Gas Wells
RU2796265C1 (ru) Способ определения зон развития трещин многостадийного гидроразрыва пласта
US20230009947A1 (en) Detection and prediction of screen outs during downhole fracturing operations
RU2687828C1 (ru) Способ оценки состояния призабойной зоны пласта

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190417