RU2519914C2 - Импульсный радиовысотомер - Google Patents

Импульсный радиовысотомер Download PDF

Info

Publication number
RU2519914C2
RU2519914C2 RU2012137840/07A RU2012137840A RU2519914C2 RU 2519914 C2 RU2519914 C2 RU 2519914C2 RU 2012137840/07 A RU2012137840/07 A RU 2012137840/07A RU 2012137840 A RU2012137840 A RU 2012137840A RU 2519914 C2 RU2519914 C2 RU 2519914C2
Authority
RU
Russia
Prior art keywords
receiver
output
input
transmitter
signal
Prior art date
Application number
RU2012137840/07A
Other languages
English (en)
Other versions
RU2012137840A (ru
Inventor
Виктор Михайлович Курейчик
Владимир Викторович Курейчик
Евгений Сергеевич Огурцов
Сергей Федорович Огурцов
Игорь Георгиевич Дорух
Борис Юрьевич Иванченко
Анна Сергеевна Огурцова
Original Assignee
Федеральное государственное автономное образовательное учреждение высшего профессионального образования "ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=50191566&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2519914(C2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Федеральное государственное автономное образовательное учреждение высшего профессионального образования "ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ" filed Critical Федеральное государственное автономное образовательное учреждение высшего профессионального образования "ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ"
Priority to RU2012137840/07A priority Critical patent/RU2519914C2/ru
Publication of RU2012137840A publication Critical patent/RU2012137840A/ru
Application granted granted Critical
Publication of RU2519914C2 publication Critical patent/RU2519914C2/ru

Links

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

Изобретение относится к радиолокационной технике и может быть использовано для измерения высоты полета летательного аппарата при малых и сверхмалых высотах его полета. Достигаемый технический результат - упрощение радиовысотомера, повышение его надежности и помехозащищенности и расширение диапазона измеряемых высот. Указанный результат достигается за счет того, что импульсный радиовысотомер содержит передатчик, приемник, измеритель задержки, управляемый аттенюатор, передающую антенну, приемную антенну и блок управления, контроля и вычисления результатов измерений, определенным образом соединенные между собой. 1 ил.

Description

Предлагаемое изобретение относится к радиолокационной технике и может быть использовано для измерения высоты полета летательного аппарата при малых и сверхмалых высотах его полета.
Известен импульсный радиовысотомер, содержащий СВЧ радиопередатчик с направленной в сторону земной или водной поверхности антенной, приемник отраженного от этой поверхности СВЧ сигнала, предварительно излученного в ее направлении передатчиком, и аппаратуру для измерения промежутка времени между излучением сигнала и приемом отраженного [см., например, обзор в Интернете методов измерения высоты полета ].
Все перечисленные элементы этого аналога входят и в состав заявляемого устройства.
Причиной, препятствующей достижению в этом аналоге технического результата, обеспечиваемого изобретением, является низкая точность измерения высоты в случаях низких и сверхнизких высот полета. Она обусловлена отсутствием учета задержки отраженного сигнала в цепях приемника и соразмерностью разноса между передающей и приемной антеннами радиовысотомера с измеряемой высотой.
Дело в том, что задержка отраженного сигнала в цепях приемника может составлять величину порядка 0,1 мкс, а расстояние R между приемной и передающей антеннами - величину порядка 2 м. Задержка в цепях приемника приводит к увеличению результата измерения высоты относительно фактической примерно на 15 м. Наличие расстояния R между приемной и передающей антеннами приводит к тому, что измеряется не высота Н (перпендикуляр к отражающей поверхности), а наклонная дальность, то есть гипотенуза прямоугольного треугольника с катетами Н и 0,5R, что дает методическую погрешность измерения
Figure 00000001
. В условиях низких и сверхнизких высот H указанные погрешности недопустимо велики.
Известен также импульсный радиовысотомер по авторскому свидетельству СССР №1672834, G01S 13/94, 1989, содержащий передатчик, управляемый аттенюатор, передающую и приемную антенны, направленные в сторону земной или водной поверхности, измеритель задержки, блок управления, датчик помех и блок автоматической регулировки усиления.
Все перечисленные элементы этого аналога, кроме блока управления, датчика помех и блока автоматической регулировки усиления, входят и в состав заявляемого устройства.
В этом радиовысотомере для уменьшения погрешности измерения высоты, вызванной задержкой сигнала в цепях приемника, применяют режим встроенного контроля перед стартом летательного аппарата. В этом режиме искусственно увеличивают коэффициент усиления приемника, что приводит к захвату зондирующего сигнала на выходе приемной антенны за счет ограниченности развязки между приемной и передающей антеннами. При этом измеряется высота Н0, определяемая соотношением;
Figure 00000002
,
где t0 - задержка захваченного зондирующего сигнала в цепях приемника задержки;
С=3·108 м/с - скорость света.
Информация о высоте H0 запоминается. Затем в рабочем режиме измеряется высота Ни по отраженному сигналу, а истинная высота Нист определяется путем вычитания из измеренной величины высоты Ни значения высоты H0, измеренного в режиме контроля
Нистм-H0.
Следует отметить, что в этом случае компенсируется не вся задержка t0. Дело в том, что в процессе полета летательного аппарата возможно дополнительное изменение величины задержки t0 в ту или иную сторону, которое может составлять от 0,03 мкс до 0,06 мкс и привести к ошибке измерения высоты порядка (4,5÷9) м. Что касается методической погрешности ΔН за счет разноса R приемной и передающей антенн, то она в этом аналоге полностью сохраняется.
Таким образом, в радиовысотомере по авторскому свидетельству СССР №1672834, как и в первом аналоге, погрешность определения высоты достаточно велика, что не позволяет достичь в этом аналоге технического результата, обеспечиваемого изобретением.
Наиболее близким по технической сущности к заявляемому (прототипом) является импульсный радиовысотомер, защищенный патентом РФ №2258943, G01S 13/94, 2004 г., содержащий последовательно включенные передатчик, управляемый аттенюатор и передающую антенну, последовательно включенные приемную антенну и приемник, измеритель задержки, первый вход которого соединен со вторым выходом передатчика, а второй - с выходом приемника, блок автоматической регулировки усиления, первый, второй и третий входы которого соединены соответственно с первым выходом измерителя задержки, выходом приемника и вторым выходом измерителя задержки, последовательно соединенные датчик помех, вход которого соединен с выходом приемника, и блок управления, второй вход которого соединен с выходом блока автоматической регулировки усиления, первый выход - с управляющим входом управляемого аттенюатора, а второй выход - со вторым входом приемника, СВЧ выключатель, сигнальный вход которого соединен с выходом устройства отбора мощности передающей антенны, а выход - со входом устройства ввода мощности приемной антенны, и синхронизатор, первый и второй входы которого соединены соответственно с третьим и четвертым выходами измерителя задержки, а второй, третий и четвертый выходы - соответственно с третьим выходом измерителя задержки, управляющим входом передатчика и четвертым входом измерителя задержки.
Все перечисленные признаки радиовысотомера-прототипа, содержащего последовательно соединенные передатчик, управляемый аттенюатор и передающую антенну, последовательно соединенные приемную антенну, приемник, и измеритель задержки, первый и второй входы которого соединены соответственно со вторым выходом передатчика и первым выходом приемника, кроме блока автоматической регулировки усиления, блока управления, датчика помех, СВЧ выключателя, синхронизатора и их связей являются и признаками заявляемого радиовысотомера.
В этом радиовысотомере режим контроля реализуется непосредственно в полете летательного аппарата с достаточно высоким темпом, поэтому накапливаемая нестабильность задержки t0 сигнала в приемнике пренебрежимо мала.
Что касается методической погрешности ΔН за счет разноса R приемной и передающей антенн, то она заранее рассчитывается для всего диапазона низких высот и хранится в памяти измерителя задержки. Промежуток времени между излучением передатчиком зондирующего сигнала и поступлением в приемник отраженного сигнала измеряется обычным методом, а записанная в память погрешность учитывается при окончательном определении высоты.
Причинами, препятствующими достижению в прототипе технического результата, обеспечиваемого изобретением, являются сложность реализации радиовысотомера, относительно узкий диапазон измеряемых частот и недостаточная помехоустойчивость.
Сложность прототипа обусловлена тем, что в его аппаратурный состав помимо присущих любому радиовысотомеру передатчика, приемника и измерителя задержки входят устройство отбора мощности передающей антенны, устройство ввода мощности приемной антенны, СВЧ переключатель, синхронизатор, датчик помех, блок управления и блок автоматической регулировки усиления. Большое количество элементов в аппаратурном составе радиовысотомера существенно снижает его надежность.
Для эффективной регулировки усиления блок автоматической регулировки усиления (АРУ) должен реализовать два вида регулировки (поддержания постоянства амплитуды импульсов) сигнала на выходе приемника: мгновенную (МАРУ) и временную (ВАРУ). Последняя подразумевает адаптацию коэффициента усиления приемника или затухания, вносимого управляемым аттенюатором, к измеряемой высоте полета летательного аппарата, которой соответствует промежуток времени, отсчитываемого с момента излучения зондирующего импульса. Для обеспечения эффективной работы в широком диапазоне измеряемых высот закон ВАРУ должен изменяться при переходе от одного участка этого диапазона к другому, то есть в блоке АРУ по сути должно быть реализовано несколько законов ВАРУ. Это значительно усложнило бы блок АРУ. Фактически в блоке АРУ прототипа ВАРУ не реализована, реализована только МАРУ. Это существенно сужает диапазон высот, измеряемых прототипом.
Следует отметить, что для обеспечения широкого диапазона измеряемых высот представляется целесообразным с изменением высоты полета летательного аппарата изменять и параметры модуляции зондирующего сигнала (длительность и период следования излучаемых радиоимпульсов). Кроме того, для обеспечения помехозащищенности в радиовысотомерах зачастую применяют "вобуляцию" периода следования излучаемых радиоимпульсов, представляющую собой дополнительное изменение периода следования от импульса к импульсу по случайному закону в пределах ±(1(10÷20)% от среднего периода следования. Это затрудняет разведку параметров модуляции зондирующего сигнала и исключает создание активных имитационных помех радиовысотомеру. Эти меры значительно усложнили бы синхронизатор и измеритель задержки. Фактически в прототипе реализовано однократное изменение параметров модуляции зондирующего сигнала с изменением высоты, а вобуляция периода следования излучаемых радиоимпульсов отсутствует. Это существенно снижает помехозащищенность прототипа.
Технической задачей, на решение которой направлено изобретение, является упрощение радиовысотомера, повышение его надежности и помехозащищенности и расширение диапазона измеряемых высот.
Для достижения указанного технического результата в известный импульсный радиовысотомер, содержащий последовательно соединенные передатчик, управляемый аттенюатор и передающую антенну, последовательно включенные приемную антенну и приемник, и измеритель задержки, первый и второй входы которого соединены соответственно со вторым выходом передатчика и первым выходом приемника, введен блок управления, контроля и вычисления результатов измерений, первый и второй входы которого соединены соответственно со вторым выходом приемника и выходом измерителя задержки, первый, второй и третий выходы - с управляющими входами управляемого аттенюатора, приемника и передатчика соответственно, а четвертый выход является выходом радиовысотомера.
Отсутствуют какие-либо источники информации, в которых совокупность вновь введенного блока и его связей с остальными элементами заявляемого радиовысотомера были бы описаны. Поэтому предлагаемый радиовысотомер следует считать новым и имеющим изобретательский уровень.
Сущность изобретения поясняется чертежом, на котором на фиг.1 приведена структурная схема заявляемого радиовысотомера.
Радиовысотомер включает в себя передатчик 1, приемник 2, измеритель 3 задержки, управляемый аттенюатор 4, передающую антенну 5, приемную антенну 6 и блок 7 управления, контроля и вычисления результатов измерений.
Передатчик 1, аттенюатор 4 и антенна 5 соединены последовательно. Первый и второй входы измерителя 3 соединены соответственно со вторым выходом передатчика 1 и первым выходом приемника 2, а выход - со вторым входом блока 7. Первый и третий выходы блока 7 соединены с управляющими входами аттенюатора 4 и передатчика 1 соответственно, а четвертый выход является выходом радиовысотомера.
Управление работой радиовысотомера осуществляется с помощью блока 7.
Радиовысотомер имеет два режима работы: вспомогательный режим "Контроль", предназначенный для проверки работоспособности радиовысотомера и измерения задержки t0 отраженного от подстилающей поверхности сигнала во внутренних цепях приемника 2, и основной режим "Измерение высоты", собственно и предназначенный для измерения высоты полета летательного аппарата.
В режиме "Контроль" блок 7 формирует на своем первом выходе управляющий сигнал, соответствующий минимуму затухания аттенюатора 4, а на втором - сигнал, соответствующий максимальной чувствительности приемника 2, то есть максимальному коэффициенту усиления его усилителя. На третьем выходе блока 7 формируется последовательность прямоугольных видеоимпульсов с фиксированными длительностью порядка 0,1 мкс, периодом следования порядка 10 мкс и амплитудой, соответствующей уровню логической единицы. Сформированные блоком 7 управляющие сигналы поступают:
- с первого выхода блока 7 на управляющий вход аттенюатора 4;
- со второго выхода блока 7 на второй вход приемника 2;
- с третьего выхода блока 7 на управляющий вход передатчика 1.
Передатчик 1 преобразует поступившие на его управляющий вход видеоимпульсы в радиоимпульсы СВЧ и усиливает их по мощности. Кроме того, поступившие на управляющий вход видеоимпульсы поступают через второй выход передатчика 1 на первый вход измерителя 3. Усиленные по мощности радиоимпульсы с первого выхода передатчика 1 в качестве зондирующего сигнала поступают на сигнальный вход аттенюатора 4.
Проходя через аттенюатор 4, имеющий в соответствии с сигналом на своем управляющем входе минимальное затухание, зондирующий сигнал поступает на вход антенны 5, дополнительно усиливается ею и излучается в направлении подстилающей поверхности. Чувствительность приемника 2 в этом режиме в соответствии с управляющим сигналом на его втором (управляющем) входе максимальна. Мощность зондирующего сигнала на выходе антенны 5 также максимальна и достаточна для преодоления развязки между выходом антенны 5 и входом антенны 6, поэтому этот сигнал попадает в антенну 6, усиливается ею и поступает на первый вход приемника 2. Поступивший на первый вход приемника 2 недостаточно подавленный аттенюатором 4 зондирующий сигнал захватывается приемником 2 на сопровождение.
Поступившие на первый вход приемника 2 зондирующие радиоимпульсы детектируются, то есть преобразуются в синхронные с зондирующими радиоимпульсами видеоимпульсы, которые с первого выхода приемника 2 поступают на второй вход измерителя 3. При этом временной сдвиг t0 видеоимпульсов на втором входе измерителя 3 и первом выходе приемника 2 относительно зондирующих импульсов на первом входе измерителя 3 равен задержке сигнала во внутренних цепях приемника 2.
Необходимая для устойчивой работы приемника 2 автоматическая регулировка его усиления для поддержания постоянства амплитуды сопровождаемого им сигнала осуществляется с помощью блока 7. В нем рассчитываются управляющие сигналы как для МАРУ, так и для ВАРУ. В качестве исходной информации для расчета управляющего сигнала на первый вход блока 7 со второго выхода приемника 2 поступает код амплитуды формируемых приемником 2 видеоимпульсов.
Таким образом, с помощью приемника 2 и блока 7 на первом входе измерителя 3 формируются видеоимпульсы, совпадающие по времени с излучаемыми антенной 5 зондирующими импульсами, а на его втором входе - видеоимпульсы, сдвинутые во времени относительно видеоимпульсов на первом входе на время t0, равное времени прохождения зондирующего сигнала через приемник 2.
С помощью измерителя 3 осуществляется оценка временного сдвига t0 между импульсами на первом и втором входах измерителя 3. Эта оценка включает в себя три этапа:
- поиск принятого приемником 2 импульса;
- обнаружение (точная фиксация факта обнаружения наличия) принятых импульсов;
- собственно измерение временного сдвига t0.
Оценим полное время Тк контроля, то есть время, необходимое для выполнения перечисленных операций. Можно записать:
Тк=Tпобни,
где Тп, Тобн и Ти - время поиска импульсов, время обнаружения импульсов и время измерения временного сдвига t0 соответственно.
Строб поиска передвигается со скоростью порядка Δt=0,01 мкс за один период Т следования импульсов. Если принять максимальный временной сдвиг t0 равным t0max=0,2 мкс, а период Т=10 мкс, то максимальное время поиска
Figure 00000003
.
Для надежного обнаружения импульсного сигнала при заданных отношении "сигнал/шум" и вероятностях правильного обнаружения и ложных тревог осуществляют накопление достаточного количества L импульсов. В соответствии с книгой [Вайнштейн Л.А., Зубаков В.Д. Выделение сигналов на фоне случайных помех. - М.: Сов. радио, 1960, с.244, рис.36], при типовых отношении "сигнал/шум" ρ=16 дБ, вероятности правильного обнаружения D=0,999 и вероятности ложных тревог F=10-11 необходимо принять L=4 импульса. Поэтому время обнаружения Тобн определится:
Тобн=L·T=4·10=40 мкс.
Измерение временного интервала t0 основано на подсчете числа коротких импульсов стабильной высокой частоты, умещающихся в интервале t0. Подсчет осуществляется многократно. Результаты подсчета усредняются, а в качестве результата измерения интервала t0 принимается результат этого усреднения.
Для обеспечения высокой точности измерения временного сдвига t0 необходимо производить усреднение достаточно большого числа N единичных измерений этого сдвига. Число N измерений связано с погрешностью дискретизации соотношением:
Figure 00000004
,
где σ - среднее квадратическое отклонение результата измерения высоты;
С - скорость света;
f - тактовая частота счетных импульсов.
Если принять f=109 Гц, σ=0,015 м, то получим:
Figure 00000005
Время измерения составит Ти=N·T=17·10=170 мкс.
Полное время Тк контроля составит:
Ткпобни=200+40+170=410 мкс=0,41 мс.
Столь малое время Тк контроля позволяет измерять временной сдвиг t0 как в предстартовых (предполетных) проверках радиовысотомера, так и непосредственно в процессе полета летательного аппарата.
Измеренное значение временного сдвига t0 поступает с выхода измерителя 3 на второй вход блока 7.
В режиме "Измерение высоты" блок 7 формирует на своем первом выходе управляющий сигнал, под действием которого затухание аттенюатора 4 увеличивается, а на третьем выходе - последовательность прямоугольных видеоимпульсов с амплитудой, соответствующей логической единице. Период следования импульсов на третьем выходе блока 7 и управляющем входе передатчика 1 изменяется по псевдослучайному закону в пределах ±20% относительно среднего. Длительность этих импульсов порядка 1 мкс, а скважность порядка 100, при этом они могут изменяться с изменением высоты полета летательного аппарата - носителя радиовысотомера по определенной программе.
Передатчик 1, как и в режиме "Контроль", формирует и усиливает по мощности зондирующий СВЧ сигнал, однако этот сигнал представляет собой измененные по сравнению с режимом "Контроль" радиоимпульсы (изменены длительность и период следования радиоимпульсов, причем период следования изменяется по псевдослучайному закону). Кроме того, как и в режиме "Контроль" поступающие на управляющий вход передатчика 1 видеоимпульсы транслируются через его второй выход на первый вход измерителя 3. Усиленный по мощности зондирующий сигнал с первого выхода передатчика 1 через аттенюатор 4 поступает на вход антенны 5, усиливается ею и излучается в направлении подстилающей поверхности.
При увеличении затухания аттенюатора 4 мощность зондирующего сигнала на выходе антенны 5 становится недостаточной для преодоления развязки между антеннами 5 и 6, и на вход антенны 6 попадает только отраженный от подстилающей поверхности предварительно излученный антенной 5 зондирующий сигнал. Этот сигнал поступает на первый вход приемника 2 и захватывается им на сопровождение.
Как и в режиме "Контроль" поступившие на первый вход приемника 2 зондирующие радиоимпульсы детектируются (преобразуются в синхронные с излученными антенной 5 радиоимпульсами видеоимпульсы, которые с первого выхода приемника 2 поступают на второй вход измерителя 3). Для поддержания постоянства амплитуды этих видеоимпульсов с помощью блока 7 формируются управляющие сигналы МАРУ и ВАРУ, которые в данном случае поступают как на второй (управляющий) вход приемника 2, так и на управляющий вход аттенюатора 4.
Таким образом, с помощью приемника 2 и блока 7 на первом входе измерителя 3 формируются видеоимпульсы, совпадающие по времени с излученными антенной 5 в направлении подстилающей поверхности зондирующими радиоимпульсами, а на его втором входе - видеоимпульсы, сдвинутые во времени относительно видеоимпульсов на первом входе. Однако теперь радиоимпульсы зондирующего сигнала поступают на первый вход приемника 2 по пути "антенна 5 - подстилающая поверхность - антенна 6", поэтому временной сдвиг tи между видеоимпульсами на первом и втором входах измерителя 3 содержит не только время t0 прохождения зондирующего сигнала через приемник 2, а и интервал времени прохождения этого сигнала от антенны 5 до подстилающей поверхности и от подстилающей поверхности до антенны 6.
Оценка временного сдвига tи, как и оценка временного сдвига t0, осуществляется измерителем 3. Результат оценки tи поступает с выхода измерителя 3 на второй вход блока 7.
Оценка высоты Н полета летательного аппарата производится в блоке 7 путем ее расчета по формуле:
Figure 00000006
где С - скорость света;
R - расстояние между центрами антенн 5 и 6.
Результат расчета поступает на четвертый выход блока 7. При необходимости в состав радиовысотомера может быть включен индикатор (дисплей), и результат вычисления высоты Н с четвертого выхода блока 7 вынесен на дисплей.
Режим "Контроль" достаточно осуществлять один раз в секунду, и с этим темпом обновлять (или подтверждать) измеренное значение временного сдвига t0. Остальное время радиовысотомер может работать в режиме "Измерение высоты", отслеживая изменение высоты полета летательного аппарата.
Предлагаемый радиовысотомер достаточно легко реализуем.
Блок 7 может быть выполнен на основе программируемых логических интегральных схем типа FLEX фирмы "ALTERA". Он может быть реализован также на основе микроконтроллера типа SBC 8360 фирмы "AXIOM". Функции блока 7 может также выполнять бортовой компьютер летательного аппарата-носителя радиовысотомера при осуществлении программирования этого компьютера на выполнение соответствующих функций и установлении соответствующих связей с остальными элементами радиовысотомера.
В качестве остальных элементов предлагаемого радиовысотомера (передатчика 1, приемника 2, измерителя 3, аттенюатора 4, антенн 5 и 6) могут служить соответствующие элементы радиовысотомера-прототипа.
В предлагаемом радиовысотомере, как и в прототипе, имеет место режим "Контроль", позволяющий исключить погрешность измерения высоты, обусловленную задержкой отраженного от подстилающей поверхности сигнала при прохождении через приемник. Исключена также методическая погрешность измерения высоты, обусловленная пространственным разносом приемной и передающей антенн. Это позволяет сделать вывод, что точность измерения высоты в предлагаемом радиовысотомере не ниже, чем в прототипе.
Однако, в предлагаемом радиовысотомере в отличие от прототипа реализована не только МАРУ, а и ВАРУ. Кроме того, здесь предусмотрена многократная автоматическая смена параметров модуляции зондирующего сигнала с изменением высоты полета носителя радиовысотомера. Это позволяет сделать вывод, что диапазон измеряемых высот у предлагаемого радиовысотомера шире, чем у прототипа.
В предлагаемом высотомере предусмотрена "вобуляция" периода следования зондирующих радиоимпульсов. Это затрудняет разведку параметров модуляции зондирующего сигнала и исключает создание активных имитационных помех радиовысотомеру, что в конечном итоге повышает помехозащищенность предлагаемого радиовысотомера по сравнению с прототипом.
Аппаратурно предлагаемый радиовысотомер значительно проще, чем прототип. Блок 7, как отмечалось выше, в принципе в аппаратурный состав радиовысотомера вообще может не входить, а его функции при этом может выполнять бортовой компьютер носителя радиовысотомера. Кроме того, в аппаратурном составе предлагаемого радиовысотомера отсутствуют такие входящие в аппаратурный состав прототипа элементы, как СВЧ переключатель, устройство отбора мощности передающей антенны, устройство ввода мощности приемной антенны, датчик помех, блок управления, блок АРУ и синхронизатор. Большая простота (меньшее количество элементов в аппаратурном составе) предлагаемого радиовысотомера обеспечивает ему более высокую надежность.
Таким образом, предлагаемый радиовысотомер в сравнении с прототипом характеризуется большей простотой, более широким диапазоном измеряемых высот, а также более высокими надежностью и помехозащищенностью.

Claims (1)

  1. Импульсный радиовысотомер, содержащий последовательно соединенные передатчик, управляемый аттенюатор и передающую антенну, последовательно соединенные приемную антенну, приемник, и измеритель задержки, первый и второй входы которого соединены соответственно со вторым выходом передатчика и первым выходом приемника, отличающийся тем, что в него введен блок управления, контроля и вычисления результатов измерений, первый и второй входы которого соединены соответственно со вторым выходом приемника и выходом измерителя задержки, первый, второй и третий выходы - с управляющими входами управляемого аттенюатора, приемника и передатчика соответственно, а четвертый выход является выходом радиовысотомера.
RU2012137840/07A 2012-09-04 2012-09-04 Импульсный радиовысотомер RU2519914C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012137840/07A RU2519914C2 (ru) 2012-09-04 2012-09-04 Импульсный радиовысотомер

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012137840/07A RU2519914C2 (ru) 2012-09-04 2012-09-04 Импульсный радиовысотомер

Publications (2)

Publication Number Publication Date
RU2012137840A RU2012137840A (ru) 2014-03-10
RU2519914C2 true RU2519914C2 (ru) 2014-06-20

Family

ID=50191566

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012137840/07A RU2519914C2 (ru) 2012-09-04 2012-09-04 Импульсный радиовысотомер

Country Status (1)

Country Link
RU (1) RU2519914C2 (ru)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4509049A (en) * 1982-07-26 1985-04-02 Rockwell International Corporation FMCW system for providing search-while-track functions and altitude rate determination
EP1113289A1 (fr) * 1999-12-30 2001-07-04 Thomson-Csf Méthode d'étalonnage d'un radioaltimètre de type FM/CW et radioaltimètre conçu pour la mise en oeuvre de cette méthode
RU2258943C1 (ru) * 2004-04-29 2005-08-20 Жуков Владимир Михайлович Импульсный радиовысотомер
RU2004124672A (ru) * 2004-08-12 2006-01-27 Владимир Михайлович Жуков (RU) Рециркуляционный радиовысотомер
RU2004128516A (ru) * 2004-09-27 2006-03-10 ОАО "Уральское проектно-конструкторское бюро "Деталь" (RU) Радиолокационный импульсный рециркуляционный радиовысотомер
WO2007038068A3 (en) * 2005-09-26 2007-05-18 Honeywell Int Inc Methods and systems for measuring terrain height
RU2336540C1 (ru) * 2007-01-22 2008-10-20 ОАО "Уральское проектно-конструкторское бюро "Деталь" Радиодатчик высоты
EP2124072A2 (en) * 2008-05-23 2009-11-25 Honeywell International Inc. High integrity radio altimeter

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4509049A (en) * 1982-07-26 1985-04-02 Rockwell International Corporation FMCW system for providing search-while-track functions and altitude rate determination
EP1113289A1 (fr) * 1999-12-30 2001-07-04 Thomson-Csf Méthode d'étalonnage d'un radioaltimètre de type FM/CW et radioaltimètre conçu pour la mise en oeuvre de cette méthode
RU2258943C1 (ru) * 2004-04-29 2005-08-20 Жуков Владимир Михайлович Импульсный радиовысотомер
RU2004124672A (ru) * 2004-08-12 2006-01-27 Владимир Михайлович Жуков (RU) Рециркуляционный радиовысотомер
RU2273862C1 (ru) * 2004-08-12 2006-04-10 Владимир Михайлович Жуков Рециркуляционный радиовысотомер
RU2004128516A (ru) * 2004-09-27 2006-03-10 ОАО "Уральское проектно-конструкторское бюро "Деталь" (RU) Радиолокационный импульсный рециркуляционный радиовысотомер
WO2007038068A3 (en) * 2005-09-26 2007-05-18 Honeywell Int Inc Methods and systems for measuring terrain height
RU2336540C1 (ru) * 2007-01-22 2008-10-20 ОАО "Уральское проектно-конструкторское бюро "Деталь" Радиодатчик высоты
EP2124072A2 (en) * 2008-05-23 2009-11-25 Honeywell International Inc. High integrity radio altimeter

Also Published As

Publication number Publication date
RU2012137840A (ru) 2014-03-10

Similar Documents

Publication Publication Date Title
US7911589B2 (en) Optical distance measuring method and corresponding optical distance measurement device
US2837738A (en) Passive range measuring device
KR102063468B1 (ko) 능동형 레이더 모의 타겟 장치
RU2436116C1 (ru) Способ определения дальности до поверхности земли
RU2510043C1 (ru) Способ определения дальности до поверхности земли
RU2540982C1 (ru) Способ определения координат целей (варианты) и комплекс для его реализации (варианты)
US3939476A (en) Passive ranging tail warning device
RU2372626C1 (ru) Способ определения дальности до поверхности земли
CN100504436C (zh) 一种用于在轨探测与着陆的雷达测高仪
US5270929A (en) Radio wave refractivity deduced from lidar measurements
RU2459219C1 (ru) Система встроенного контроля и калибровки моноимпульсной рлс
US6529156B2 (en) Self calibration of transponder apparatus
RU2519914C2 (ru) Импульсный радиовысотомер
US8639462B2 (en) Method and system for determining the time-of-flight of a signal
RU2560011C1 (ru) Лазерный дальномер
RU2538195C1 (ru) Способ распознавания сигналов источника импульсной помехи (варианты) и комплекс для его реализации (варианты)
US7486228B2 (en) Methods and systems for piecewise curve fitting or radar altimeter range gate data
RU2449310C2 (ru) Радиолокационный измеритель малых высот
RU2612201C1 (ru) Способ определения дистанции гидролокатором
RU2554321C1 (ru) Устройство для определения направления и дальности до источника сигнала
CN108983188B (zh) 一种基于干涉成像高度计的雷达回波的搜索跟踪方法
RU2697509C2 (ru) Способ обнаружения, измерения дальности и скорости низколетящей малоскоростной цели в импульсно-доплеровских радиолокационных станциях при высокой частоте повторения импульсов и инвертируемой линейной частотной модуляции
RU2282211C2 (ru) Радиолокационный импульсный рециркуляционный радиовысотомер
RU2410713C2 (ru) Способ распознавания протяженной по дальности цели и устройство для его осуществления
RU2558694C1 (ru) Способ определения высоты летательного аппарата

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20150905