RU2518108C1 - Способ измерения скорости сближения ракеты с астероидом при встречных курсах их перемещения и устройство для его реализации - Google Patents

Способ измерения скорости сближения ракеты с астероидом при встречных курсах их перемещения и устройство для его реализации Download PDF

Info

Publication number
RU2518108C1
RU2518108C1 RU2012148956/07A RU2012148956A RU2518108C1 RU 2518108 C1 RU2518108 C1 RU 2518108C1 RU 2012148956/07 A RU2012148956/07 A RU 2012148956/07A RU 2012148956 A RU2012148956 A RU 2012148956A RU 2518108 C1 RU2518108 C1 RU 2518108C1
Authority
RU
Russia
Prior art keywords
frequency
signal
rocket
speed
objects
Prior art date
Application number
RU2012148956/07A
Other languages
English (en)
Other versions
RU2012148956A (ru
Inventor
Виктор Леонидович Семенов
Original Assignee
Виктор Леонидович Семенов
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Виктор Леонидович Семенов filed Critical Виктор Леонидович Семенов
Priority to RU2012148956/07A priority Critical patent/RU2518108C1/ru
Publication of RU2012148956A publication Critical patent/RU2012148956A/ru
Application granted granted Critical
Publication of RU2518108C1 publication Critical patent/RU2518108C1/ru

Links

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

Группа изобретений относится к высокоскоростной радиолокационной технике и может использоваться при создании измерителей скорости объектов. Достигаемый технический результат - повышение надежности измерения скорости сближения объектов за счет более надежного обнаружения локатором сверхскоростных целей. Измерение скорости приближения ракеты к астероиду при встречных курсах их сближения заключается в измерении интервала времени t между моментами обнаружения, на установленном на ракете локаторе с частотно-модулированным сигналом, двух сигналов с разностными частотами, формируемыми между моментами пролета ракетой известного интервала расстояния S=Д12, и вычислении скорости V=S/t сближения объектов, при этом разностными сигналами являются сигналы с частотой Fp1=(N+4)Fp и Fp2=N(Fp=Fдо+А=2Vofo/С+Вtз), где N - число, значительно большее 1, когда между антенной РЛС и астероидом будут соответственно расстояния, соизмеримые с: Д1=(Fp1-A+Fi)C/2B и Д2=(Fp2-А+Fi)×С/2В, где Fi=2Vifo/C - частота Доплера при точном сближении объектов, Vi, Vo и С - соответственно скорости: сближения объектов, ракеты и света, fo - частота излучаемого непрерывного сигнала с частотной модуляцией по одностороннему пилообразному линейно возрастающему закону (НЛЧМ сигнал), В=Fmdfm - скорость изменения частоты НЛЧМ сигнала, A=Btз - часть частоты разностного сигнала, возникающая за счет искусственной задержки на время tз излучаемого НЛЧМ сигнала, Fm и dfm соответственно частота модуляции и девиация частоты НЛЧМ сигнала, выбираемые из условия До/Vo=fo/B, где До - известное базовое расстояние. Устройство для измерения скорости приближения ракеты к астероиду при встречных курсах их сближения содержит: приемно-передающую антенну, элемент задержки, смеситель, передатчик непрерывного сигнала с частотной модуляцией по одностороннему пилообразному линейно возрастающему закону и последовательно соединенные: фильтр разностных частот, обнаружитель сигналов узкополосного спектра частот, измеритель интервала времени и вычислитель. 2 н.п. ф-лы.

Description

Группа изобретений относится к высокоскоростной радиолокационной технике и может быть использована при создании высокоточных измерителей начальной и средней скоростей перемещения сверхскоростных объектов, в частности скорости сближения спутника с астероидом.
Наиболее просто измерить скорость сближения двух объектов посредством набора узкополосных доплеровских фильтров (РЛС обнаружения AN/FPS-50 (США)). Так при излучении с ракеты в сторону астероида непрерывного сигнала частотой fo=10 ГГц и точном приближении объектов друг к другу, например со скоростью V20=20 км/с, необходимо будет на БР обнаружить сигнал с доплеровской частотой Fд=2V20fo/С=(4/3) МГц, где С - скорость света. При этом при точности измерения скорости сближения объектов в 2 м/с (например, требование для разработки: измерителей начальной скорости снарядов (патент РФ №2250476 от 30.09.2002), комплексов активной защиты объектов (КАЗ «Дрозд»), радиовзрывателей для ракет, и т.п.) необходимо будет использовать набор узкополосных полосовых кварцевых фильтров (УПФ) с полосой пропускания Δf=(400/3) Гц, центральной частотой порядка fц=(4/3) МГц и стабильностью Гц не менее 10-5, реализовать который (набор из 100÷1000 УПФ) весьма проблематично.
Известна РЛС измерения начальной скорости снаряда с использованием способа определения моментов пролета снарядом начала и конца известного интервала расстояния [патент 2367975, RU, G01S 13/58], содержащая антенну, вход которой, работающий на передачу, подключен к высокомощному выходу передатчика непрерывного сигнала с частотной модуляцией по одностороннему пилообразному линейно спадающему закону, а выход, работающий на прием, подключен к первому входу смесителя, второй вход которого подключен к маломощному выходу передатчика, а выход через последовательно соединенные фильтр разностных частот, обнаружитель сигналов узкополосного спектра частот, измеритель интервала времени - к вычислителю начальной скорости снаряда
Известный измеритель, при использовании в нем непрерывного сигнала с частотной модуляцией по одностороннему пилообразному линейно возрастающему закону, позволяет сформировать импульс-команды на выходе обнаружителя сигналов узкополосного спектра частот в момент возникновения и обнаружения на нем разностных сигналов частотой Fдо=2Vofo/С и 3Fдо, когда между его антенной и приближающейся к ней со скоростью Vi целью будут расстояния D1=Do+(Vi/Vo)Do и D2=3Do+(Vi/Vo)Do,
где Do и Vo - выбираемые из условия Do/Vo=fo/Fmdfm постоянные базовое расстояние и скорость;
fo, Fm и dfm - соответственно средняя частота, частота модуляции и девиация частоты излучаемого сигнала.
Причем интервал расстояния D2-D1=2Do, независимо от скорости сближения объектов, всегда будет постоянным. А значит, интервал времени ti между формированиями импульс-команд будет пропорционален скорости сближения объектов. То есть можно утверждать, что Vi=2Do/ti.
Пусть для реализации известного измерителя взят, например, локатор с параметрами НЛЧМ сигнала (Fm=142,8…кГц, dfm=350×MГц, fo=100 ГГц), взятыми при Do/Vo=0,3 м/(150 м/c) и Vi=20 км/c, а также опорный сигнал для смесителя в обнаружителе Fоп=100 кГц. Тогда на выходе данного локатора импульс-команда будет сформирована при пролете целью точек пространства в D1=40,3 и D2=40,9 метрах от антенны РЛС. При этом величина частоты преобразованного разностного сигнала при выдаче импульс-команд определится величиной Fдо=100 кГц, т.е. в 1,428 … раза меньше, чем частота модуляции Fm. Очевидно, что обнаружить в данном случае преобразованный разностный сигнал невозможно. То есть недостатком известного измерителя является его низкая надежность, определяемая ненадежностью обнаружения сверхскоростных целей.
Целью изобретения является повышение надежности измерения скорости сближения сверхскоростных объектов.
Поставленная цель достигается за счет осуществления искусственной задержки излучаемого НЛЧМ сигнала, что позволяет существенно повысить частоту разностного сигнала и соответственно повысить надежность его обнаружения.
Измерение скорости сближения ракеты с астероидом при встречных курсах их перемещения заключается в измерении интервала времени t между моментами обнаружения, на установленном на ракете локаторе с частотно-модулированным сигналом, двух сигналов с разностными частотами, формируемыми между моментами пролета ракетой известного интервала расстояния S=Д12, и вычислении скорости V=S/t сближения объектов, при этом разностными сигналами являются сигналы с частотой
Fp1=(N+4)Fp и Fp2=N(Fp=Fдo+A=2Vofo/C+Btз), где N - число, значительно большее 1, когда между антенной РЛС и астероидом будут соответственно расстояния, соизмеримые с:
Д1=(Fp1-A+Fi)C/2B и Д2=(Fp2-А+Р1)С/2В,
где
Fi=2Vifo/C - частота Доплера при точном сближении объектов со скоростью Vi, Vo и С - скорость ракеты при точном сближении объектов и скорость света, fo - частота излучаемого непрерывного сигнала с частотной модуляцией по одностороннему пилообразному линейно возрастающему закону (НЛЧМ сигнал), В=Fmdfm - скорость изменения частоты НЛЧМ сигнала, A=Btз - часть частоты разностного сигнала, возникающая за счет искусственной задержки на время tз излучаемого НЛЧМ сигнала, Fm и dfm соответственно частота модуляции и девиация частоты НЛЧМ сигнала, выбираемые из условия До/Vo=fo/В, где До - известное базовое расстояние.
Устройство для измерения скорости сближения ракеты с астероидом при встречных курсах их перемещения содержит: приемно-передающую антенну, выход которой, работающий на прием, подключен к первому входу смесителя, второй вход которого подключен к маломощному выходу передатчика частотно-модулированного сигнала, а выход через последовательно соединенные фильтр разностных частот, обнаружитель сигналов узкополосного спектра частот и измеритель интервала времени - к вычислителю скорости, при этом передатчик формирует непрерывный сигнал с частотной модуляцией по одностороннему пилообразному линейно возрастающему закону (НЛЧМ сигнал), а вход приемно-передающей антенны, работающий на передачу, подключен к высокомощному выходу передатчика НЛЧМ сигнала через элемент задержки.
Рассмотрим, в том числе на примере, работу устройства для измерения скорости сближения ракеты с астероидом при встречных курсах их перемещения.
Пусть через приемно-передающую антенну излучают формируемый передатчиком и задержанный на время tз×10-8 c элементом задержки НЛЧМ сигнал, с параметрами сигнала, например, Fm=106 Гц, dfm=5×107 Гц, fo=100 ГГц, выбранными при Do=0,3 м, Vo=150 м/с и До/Vo=fo/Fm×dfm=0,002 с, а также при скорости сближения объектов Vi=20 км/с, опорным сигналом, например, foп=31,2 МГц, поступающими на смеситель в обнаружителе сигнала узкополосного спектра частот, и при: 2B=2Fmdfm=1014 Гц, A=Btз=2,5×l06 Гц, N=10, Fp1=36,4×106 Гц, Fp2=26×106 Гц, Fi=(40/3)×106 Гц.
Тогда если ракета и астероид будут со скоростью 20 км/с точно приближаться друг к другу и находиться друг от друга (антенна от астероида) на удалении:
Д1=[Fp1-A+Fi]C/2B=[36,4×l06-2,5×l06+(40/3)×l06](3×l08м/c)/1014=141,7 м или Д2=[Fp2-A+Fi]C/2B=[26×106-2,5×106+(40/3)×106](3×108 м/с)/1014=110,5 м, то в смесителе будут формироваться разностные сигналы с частотами: Fp1=(N+4)Fp=36,4 МГц и Fp2=NFp=26 МГц, которые выделятся фильтром разностных частот, выполняющим в основном роль подавления суммарных частот преобразования, входных сигналов и сигнала гетеродина, а на выходе смесителя в обнаружителе узкополосного спектра частот будет выделяться преобразованный разностный сигнал частотой 5,2МГц. При этом при выполнении условий:
А+(2Д1×Fmdfm/С)-(2Vi×fo/С)=Fp1 и A+(2Д2×Fmdfm/C)-(2Vi×fo/C)=Fp2 на выходе обнаружителя узкополосного спектра частот будут сформированы две импульс-команды, через интервал времени t=(Д12)/Vi=0,00156 с, информация о длительности которого, после измерения в измерителе интервала времени, поступит в вычислитель скорости, осуществляющий вычисление выражения
Vi=(Д12)/t,
то есть вычисление скорости сближения ракеты с астероидом.
Таким образом, можно утверждать, что за счет проведения искусственной задержки НЛЧМ сигнала величина частоты преобразованного разностного сигнала будет повышена в 5,2 МГц/200 кГц=26 раз, что позволяет, очевидно, более надежно обнаружить разностный сигнал при сближения сверхскоростных объектов.

Claims (2)

1. Способ измерения скорости сближения ракеты с астероидом при встречных курсах их перемещения, заключающийся в измерении интервала времени t между моментами обнаружения, на установленном на ракете локаторе с частотно-модулированным сигналом, двух сигналов с разностными частотами, формируемыми между моментами пролета ракетой известного интервала расстояния S=Д12, и вычислении скорости V=S/t сближения объектов, отличающийся тем, что разностными сигналами являются сигналы с частотой Fp1=(N+4)Fp и Fp2=N(Fp=Fдо+А=2Vofo/С+Вtз), где N - число, значительно большее 1, когда между антенной РЛС и астероидом будут соответственно расстояния, соизмеримые с:
Д1=(Fp1-A+Fi)C/2B и Д2=(Fp2-А+Fi)С/2В,
где
Fi=2Vifo/C - частота Доплера при точном сближении объектов со скоростью Vi,
Vo и С - скорость ракеты при точном сближении объектов и скорость света,
fo - частота излучаемого непрерывного сигнала с частотной модуляцией по одностороннему пилообразному линейно возрастающему закону (НЛЧМ сигнал),
В=Fmdfm - скорость изменения частоты НЛЧМ сигнала,
A=Btз - часть частоты разностного сигнала, возникающая за счет искусственной задержки на время tз излучаемого НЛЧМ сигнала,
Fm и dfm соответственно частота модуляции и девиация частоты НЛЧМ сигнала, выбираемые из условия До/Vo=fo/В, где До - известное базовое расстояние.
2. Устройство для измерения скорости сближения ракеты с астероидом при встречных курсах их перемещения, содержащее приемно-передающую антенну, выход которой, работающий на прием, подключен к первому входу смесителя, второй вход которого подключен к маломощному выходу передатчика частотно-модулированного сигнала, а выход через последовательно соединенные фильтр разностных частот, обнаружитель сигналов узкополосного спектра частот и измеритель интервала времени - к вычислителю скорости, отличающееся тем, что передатчик формирует непрерывный сигнал с частотной модуляцией по одностороннему пилообразному линейно возрастающему закону (НЛЧМ сигнал), а вход приемно-передающей антенны, работающий на передачу, подключен к высокомощному выходу передатчика НЛЧМ сигнала через элемент задержки.
RU2012148956/07A 2012-11-16 2012-11-16 Способ измерения скорости сближения ракеты с астероидом при встречных курсах их перемещения и устройство для его реализации RU2518108C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012148956/07A RU2518108C1 (ru) 2012-11-16 2012-11-16 Способ измерения скорости сближения ракеты с астероидом при встречных курсах их перемещения и устройство для его реализации

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012148956/07A RU2518108C1 (ru) 2012-11-16 2012-11-16 Способ измерения скорости сближения ракеты с астероидом при встречных курсах их перемещения и устройство для его реализации

Publications (2)

Publication Number Publication Date
RU2012148956A RU2012148956A (ru) 2014-05-27
RU2518108C1 true RU2518108C1 (ru) 2014-06-10

Family

ID=50774998

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012148956/07A RU2518108C1 (ru) 2012-11-16 2012-11-16 Способ измерения скорости сближения ракеты с астероидом при встречных курсах их перемещения и устройство для его реализации

Country Status (1)

Country Link
RU (1) RU2518108C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2592259C1 (ru) * 2015-08-21 2016-07-20 Ирина Викторовна Гагарина Способ измерения курсовой скорости объекта
RU2593457C1 (ru) * 2015-08-21 2016-08-10 Георгий Галиуллович Валеев Способ измерения курсовой скорости объекта

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6683558B1 (en) * 2002-08-06 2004-01-27 Bushnell Performance Optics Speed measurement device with statistic gathering capability
RU2235955C2 (ru) * 2002-11-10 2004-09-10 Открытое акционерное общество Научно-производственное объединение "Искра" Установка улавливания легких фракций нефти
RU2250476C2 (ru) * 2002-09-30 2005-04-20 ОАО "Научно-исследовательский институт "Стрела" Способ измерения начальной скорости снаряда и устройство для его осуществления
WO2005098471A3 (en) * 2004-04-05 2005-12-15 Weibel Scient As System and method for radar detection of an object
RU2273034C1 (ru) * 2004-09-15 2006-03-27 Открытое акционерное общество "Научно-исследовательский институт измерительных приборов" (ОАО "НИИИП") Способ измерения скорости относительно движения источника и приемника волн и устройство для его реализации
EP1651978A1 (en) * 2003-07-25 2006-05-03 Raytheon Company An improved process for phase-derived range measurements
RU2351947C2 (ru) * 2007-01-19 2009-04-10 Государственное образовательное учреждение высшего профессионального образования Московский государственный институт электронной техники (технический университет) Способ измерения начальной скорости снаряда
RU2367975C1 (ru) * 2007-12-20 2009-09-20 Виктор Леонидович Семенов Способ определения моментов пролета снарядом начала и конца известного интервала расстояния, рлс измерения начальной скорости снаряда
RU2374597C2 (ru) * 2007-12-20 2009-11-27 Виктор Леонидович Семенов Способ формирования команды на пуск защитного боеприпаса, устройство формирования команды на пуск защитного боеприпаса, способ определения момента выдачи команды на пуск защитного боеприпаса, рлс определения момента выдачи команды на пуск защитного боеприпаса, способы обнаружения сигналов узкополосного спектра частот, обнаружитель сигналов узкополосного спектра частот
RU2392639C1 (ru) * 2009-06-22 2010-06-20 Сергей Михайлович Мужичек Способ измерения начальной скорости снаряда и устройство для его осуществления

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6683558B1 (en) * 2002-08-06 2004-01-27 Bushnell Performance Optics Speed measurement device with statistic gathering capability
RU2250476C2 (ru) * 2002-09-30 2005-04-20 ОАО "Научно-исследовательский институт "Стрела" Способ измерения начальной скорости снаряда и устройство для его осуществления
RU2235955C2 (ru) * 2002-11-10 2004-09-10 Открытое акционерное общество Научно-производственное объединение "Искра" Установка улавливания легких фракций нефти
EP1651978A1 (en) * 2003-07-25 2006-05-03 Raytheon Company An improved process for phase-derived range measurements
WO2005098471A3 (en) * 2004-04-05 2005-12-15 Weibel Scient As System and method for radar detection of an object
RU2273034C1 (ru) * 2004-09-15 2006-03-27 Открытое акционерное общество "Научно-исследовательский институт измерительных приборов" (ОАО "НИИИП") Способ измерения скорости относительно движения источника и приемника волн и устройство для его реализации
RU2351947C2 (ru) * 2007-01-19 2009-04-10 Государственное образовательное учреждение высшего профессионального образования Московский государственный институт электронной техники (технический университет) Способ измерения начальной скорости снаряда
RU2367975C1 (ru) * 2007-12-20 2009-09-20 Виктор Леонидович Семенов Способ определения моментов пролета снарядом начала и конца известного интервала расстояния, рлс измерения начальной скорости снаряда
RU2374597C2 (ru) * 2007-12-20 2009-11-27 Виктор Леонидович Семенов Способ формирования команды на пуск защитного боеприпаса, устройство формирования команды на пуск защитного боеприпаса, способ определения момента выдачи команды на пуск защитного боеприпаса, рлс определения момента выдачи команды на пуск защитного боеприпаса, способы обнаружения сигналов узкополосного спектра частот, обнаружитель сигналов узкополосного спектра частот
RU2392639C1 (ru) * 2009-06-22 2010-06-20 Сергей Михайлович Мужичек Способ измерения начальной скорости снаряда и устройство для его осуществления

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2592259C1 (ru) * 2015-08-21 2016-07-20 Ирина Викторовна Гагарина Способ измерения курсовой скорости объекта
RU2593457C1 (ru) * 2015-08-21 2016-08-10 Георгий Галиуллович Валеев Способ измерения курсовой скорости объекта

Also Published As

Publication number Publication date
RU2012148956A (ru) 2014-05-27

Similar Documents

Publication Publication Date Title
US9354304B2 (en) Method for cyclically measuring distances and velocities of objects using an FMCW radar sensor
RU2367975C1 (ru) Способ определения моментов пролета снарядом начала и конца известного интервала расстояния, рлс измерения начальной скорости снаряда
US2837738A (en) Passive range measuring device
CN105301591A (zh) 一种道路交通监控雷达及其实现方法
US7352319B2 (en) Methods and systems utilizing Doppler prediction to enable fusing
CN105022059A (zh) 一种相参处理的安防监控雷达系统的多目标跟踪方法
CN203012135U (zh) 一种调频连续波雷达系统
CN104345308A (zh) 车辆侦测器和量测车辆距离以及车辆速度的方法
CN107783128B (zh) 基于毫米波雷达的固定翼无人机多目标防撞系统
RU2518108C1 (ru) Способ измерения скорости сближения ракеты с астероидом при встречных курсах их перемещения и устройство для его реализации
RU2525303C2 (ru) Способ определения моментов выдачи команд на пуск и подрыв защитного боеприпаса. радиовзрыватель
KR101233745B1 (ko) 거리 측정 장치 및 방법
Jahagirdar A high dynamic range miniature DDS-based FMCW radar
Kaminski et al. K-band FMCW radar module with interferometic capability for industrial applications
KR101403357B1 (ko) 고도 적응형 전파고도계를 이용하는 정밀지형 참조 항법장치
US3054103A (en) Distance measuring system providing interrogation rate control
CN218630184U (zh) 一种超音速靶弹调频连续波脱靶量测量装置
RU2467349C1 (ru) Рлс измерения начальной скорости снаряда, установленная на стволе орудия
RU2533659C1 (ru) Автономное радиолокационное устройство селекции воздушной цели
RU2468387C1 (ru) Измеритель вертикальной составляющей скорости ветра для обнаружения сдвига ветра
RU2474843C1 (ru) Рлс измерения мгновенной скорости пули
CN201126637Y (zh) 实时脉宽测量无线电高度表
RU2635366C1 (ru) Способ определения дальности и радиальной скорости цели в рлс с непрерывным излучением и устройство его реализующее
RU2518099C1 (ru) Способ измерения длинны перемещающегося объекта и устройство для его реализации
Ilin Analysis of Radar Range Measurement Methods