RU2513710C2 - Модуляционный датчик горения - Google Patents

Модуляционный датчик горения Download PDF

Info

Publication number
RU2513710C2
RU2513710C2 RU2012123894/08A RU2012123894A RU2513710C2 RU 2513710 C2 RU2513710 C2 RU 2513710C2 RU 2012123894/08 A RU2012123894/08 A RU 2012123894/08A RU 2012123894 A RU2012123894 A RU 2012123894A RU 2513710 C2 RU2513710 C2 RU 2513710C2
Authority
RU
Russia
Prior art keywords
signal
optical
raster
test
gratings
Prior art date
Application number
RU2012123894/08A
Other languages
English (en)
Other versions
RU2012123894A (ru
Inventor
Михаил Юрьевич Щеглов
Маргарита Михайловна Буслаева
Андрей Владимирович Сингаевский (аспирант)
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский национальный исследовательский технический университет им. А.Н. Туполева-КАИ"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский национальный исследовательский технический университет им. А.Н. Туполева-КАИ" filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский национальный исследовательский технический университет им. А.Н. Туполева-КАИ"
Priority to RU2012123894/08A priority Critical patent/RU2513710C2/ru
Publication of RU2012123894A publication Critical patent/RU2012123894A/ru
Application granted granted Critical
Publication of RU2513710C2 publication Critical patent/RU2513710C2/ru

Links

Images

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Control Of Combustion (AREA)

Abstract

Изобретение относится к противопожарной технике и может быть использовано для обнаружения горения. Технический результат заключается в увеличении чувствительности датчика и уменьшении потребляемой мощности. Модуляционный датчик горения содержит оптическую систему 1, модулятор 3 с неподвижной 4 и подвижной 5 растровыми решетками с электромеханическим осциллятором 2. Каждая из растровых решеток модулятора 3 имеет одну зону модуляции оптического сигнала. Оптическая система 1 содержит источник оптического тестового сигнала 8 и выполнена таким образом, что на ее выходе имеются два сигнала: тестовый сигнал и сигнал контролируемого пространства, которые разделены в пространстве и не смешиваются. Параметры растровых решеток 4, 5 выбираются таким образом, что за один период движения подвижной растровой решетки 5 оптический поток контролируемого пространства последовательно перекрывается и открывается для прохождения через модулятор 3. В промежутке времени, соответствующем перекрытию оптического потока контролируемого пространства на фотоприемник 6, осуществляется включение тестового источника 8 на короткий промежуток времени с помощью схемы обработки сигналов 7. Оптический сигнал преобразуется фотоприемником 6 в электрический сигнал в виде двух импульсов: амплитуда первого импульса соответствует сигналу контролируемого пространства, а амплитуда второго импульса - тестовому сигналу. Таким образом, за счет конструкции растровых решеток и схемы обработки сигналов 7 на входе фотоприемника 6 может присутствовать только один оптический сигнал: либо тестовый, либо сигнал контролируемого пространства. 4 ил.

Description

Изобретение относится к противопожарной технике и может быть использовано для обнаружения горения.
Известны датчики, основанные на восприятии инфракрасного излучения в связи с нагревом или появлением пламени. В пожарном датчике (Авторское свидетельство СССР 1251144 A1, G08B 17/12, опубл. 15.08.86) - [1] излучение, возникшее в связи с нагревом или появлением пламени, попадает в волоконный световод, в результате чего на выходе датчика имеет место воспринятое излучение, которое может быть зарегистрировано, например, детектором ИК-излучения.
В устройстве для пожарной сигнализации (Авторское свидетельство СССР 1517050 A1, G08B 17/12, опубл. 23.10.89) - [2] для регистрации и сигнализации о пожаре используется суммирование последовательности отрицательных импульсов, соответствующей воспринятому чувствительным элементом инфракрасному излучению пламени и последовательности положительных импульсов, соответствующих пожароопасной ситуации, поступающих с генератора. Здесь, в отличие от изобретения [1], реализована более высокая информативность, поскольку можно судить об исправности или неисправности устройства, а также реализована более высокая достоверность регистрации пожара.
Модуляционный датчик пламени (МДП) (Патент РФ RU 2179743 С1, G08B 17/12, 17/103, 17/06, опубл. 20.02.2002) - [3] содержит герметичный корпус, внутри которого установлены светофильтр, пропускающий ИК-излучение, детектор ИК-излучения, усилитель сигнала, питающий генератор, электронный ключ, включающий автоматическую систему пожаротушения. Между светофильтром и детектором ИК-излучения установлен маятниковый модулятор, а детектор ИК-излучения и усилитель сигнала связаны с электронным ключом через последовательно соединенные формирователь прямоугольных импульсов и счетчик импульсов. Маятниковый модулятор представляет собой исполнительный механизм, на который подается напряжение от питающего генератора, и маятник, колеблющийся перед глазком детектора ПК-излучения с частотой 25 Гц. В корпусе установлена также микролампа тестирования, смещенная относительно продольной оси корпуса таким образом, что световой сигнал от микролампы попадает к детектору ИК-излучения через маятниковый модулятор, отражаясь от светофильтра. При тестировании контролируется работа всего тракта МДП, но система пожаротушения блокируется. При дистанционном включении тестирующей микролампы ИК-излучение от нее попадает на светофильтр, а затем, отражаясь от него, на детектор ИК-излучения. При этом это излучение прерывается маятниковым модулятором, так же как и при возгорании, однако, срабатывание системы пожаротушения автоматически блокируется.
Недостатками устройства является невысокая информативность сигнала, получаемого в режиме тестирования, из-за смешения оптического сигнала контролируемого пространства и тестового сигнала, большое энергопотребление и габариты вследствие наличия маятникового модулятора, малые быстродействие и достоверность регистрации пожара, что снижает эффективность датчика.
Указанные аналоги обладают невысокими быстродействием, информативностью, чувствительностью и достоверностью регистрации пожара, что является их недостатками.
Прототипом предлагаемого изобретения является модуляционный датчик горения (Патент РФ RU 2332723 C1, G08B 17/12, опубл. 27.08.2008) - [4]. Модуляционный датчик горения содержит оптическую систему, модулятор, выполненный в виде неподвижной растровой решетки и подвижной растровой решетки, механически связанной с электромеханическим осциллятором, при этом каждая из растровых решеток модулятора имеет две зоны модуляции оптических сигналов с одинаковыми постоянными периодами. Выходом устройства является выход схемы обработки сигналов, входы которой подключены к фотоприемнику и электромеханическому осциллятору. Оптическая система содержит источник оптического тестового сигнала и выполнена таким образом, что на ее выходе имеются два сигнала: тестовый сигнал и сигнал контролируемого пространства, которые разделены в пространстве и не смешиваются. Параметры растровых решеток выбираются таким образом, что за один период движения подвижной растровой решетки два этих оптических потока проходят по очереди, раздельно во времени через модулятор, преобразуются фотоприемником в электрический сигнал в виде двух импульсов: амплитуда первого импульса соответствует тестовому сигналу, а амплитуда второго импульса - сигналу контролируемого пространства. Таким образом, за счет конструкции растровых решеток на входе фотоприемника может присутствовать только один оптический сигнал: либо тестовый, либо сигнал контролируемого пространства. Для этого параметры растровых решеток должны соответствовать неравенствам:
Figure 00000001
где d - период растровых решеток, d1, d2 - ширина прозрачного участка неподвижной и подвижной растровых решеток соответственно, d3, d4 - расстояние между зонами модуляции оптических сигналов неподвижной 4 и подвижной 5 растровых решеток соответственно, xm - амплитуда колебания подвижной растровой решетки.
Основными недостатками прототипа являются невысокая чувствительность, сложная конструкция двухканального модулятора и высокое энергопотребление вследствие непрерывной работы тестового источника.
Технический результат, на достижение которого направлено заявляемое изобретение, заключается в повышении эффективности датчика - увеличении чувствительности датчика и уменьшении потребляемой мощности.
Технический результат достигается тем, что в модуляционном датчике горения, содержащем оптическую систему с источником оптического тестового сигнала, электромеханический осциллятор, модулятор, выполненный в виде неподвижной растровой решетки и подвижной растровой решетки, механически связанной с электромеханическим осциллятором, фотоприемник, схему обработки сигналов, новым является то, что каждая из растровых решеток имеет одну зону модуляции оптических сигналов, а параметры решеток выполнены в соответствии с системой неравенств:
Figure 00000002
где d - период растровых решеток, d1, d2 - ширина прозрачного участка неподвижной и подвижной растровых решеток соответственно, xm - амплитуда колебания подвижной растровой решетки, при этом источник тестового сигнала оптической системы, управляемый схемой обработки сигналов, выполнен с возможностью управления его включением и выключением для периодического контроля работоспособности датчика, а фотоприемник выдает периодический сигнал в виде последовательности уровней сигнала контролируемого пространства, нулевого сигнала и тестового сигнала.
Сущность изобретения представлена на фиг.1-3, где фиг.1 - структурная схема, фиг.2 - структура растровых решеток, фиг.3 - схема формирования сигнала. Здесь: 1 - оптическая система, 2 - электромеханический осциллятор, 3 - модулятор, 4 - неподвижная растровая решетка, 5 - подвижная растровая решетка, 6 - фотоприемник, 7 - схема обработки сигналов, 8 - источник тестового сигнала, 9 - диафрагма, 10 - светофильтр.
Модуляционный датчик горения содержит оптическую систему 1, модулятор 3, выполненный в виде неподвижной растровой решетки 4 и подвижной растровой решетки 5, механически связанной с электромеханическим осциллятором 2, при этом каждая из растровых решеток модулятора 3 имеет одну зону модуляции оптического сигнал. Выходом устройства является выход схемы обработки сигналов 7, входы которой подключены к фотоприемнику 6, тестовому источнику 8 и электромеханическому осциллятору 2. Оптическая система 1 содержит источник оптического тестового сигнала 8 и выполнена таким образом, что на ее выходе имеются два сигнала: тестовый сигнал и сигнал контролируемого пространства, которые разделены в пространстве и не смешиваются. Параметры растровых решеток 4, 5 выбираются таким образом, что за один период движения подвижной растровой решетки 5 оптический поток контролируемого пространства последовательно перекрывается и открывается для прохождения через модулятор 3. В промежутке времени, соответствующем перекрытию оптического потока контролируемого пространства на фотоприемник 6, осуществляется включение тестового источника 8 на короткий промежуток времени с помощью схемы обработки сигналов 7. Оптический сигнал преобразуется фотоприемником 6 в электрический сигнал в виде двух импульсов: амплитуда первого импульса соответствует сигналу контролируемого пространства, а амплитуда второго импульса - тестовому сигналу.
Оптическая система 1 может быть реализована, например, на элементах, описанных в [3]: диафрагмы, светофильтра, пропускающего ИК-излучение, и микролампы тестирования.
Электромеханический осциллятор 2, являющийся приводом подвижной растровой решетки, может быть выполнен, например, в виде упругого подвеса, приводящегося в резонансные колебания с помощью электромагнита.
Датчик работает следующим образом. Он выполняет свою функцию при следующих значениях параметров растровых решеток 4, 5 модулятора 3, представленного на фиг.2:
Figure 00000003
где d - период растровых решеток, d1, d2 - ширина прозрачного участка неподвижной и подвижной растровых решеток соответственно, xm - амплитуда колебания подвижной растровой решетки.
Оптическая система 1 выдает два разделенных в пространстве оптических сигнала: сигнал контролируемого пространства, поступающий на вход оптической системы, и тестовый сигнал, источник которого содержится в оптической системе 1. Далее сигнал контролируемого пространства проходит через модулятор 3, подвижная растровая решетка 5 которого совершает периодические колебания под управлением электромеханического осциллятора 2. В положении 1 подвижной растровой решетки 5 все прозрачные участки неподвижной растровой решетки 4 перекрыты непрозрачными участками подвижной растровой решетки 5, поэтому оптический сигнал контролируемого пространства и тестовый сигнал через модулятор 3 не проходят, и на фотоприемнике 6 мы получаем нулевой уровень сигнала Um1. При перемещении подвижной растровой решетки 5 из положения 1 в положение 2 прозрачные участки неподвижной растровой решетки 4 постепенно открываются, поэтому на фотоприемнике 6 получаем нарастание сигнала контролируемого пространства, который в положении 2 подвижной растровой решетки 5 достигает максимального уровня Um2, пропорционального уровню излучения контролируемого пространства. Уровень Um2 не изменится до положения 3 подвижной растровой решетки 5. С положения 3 до положения 4 подвижной растровой решетки 5 сигнал на фотоприемнике 6 линейно убывает, а в положении 4 и до положения 7 подвижной растровой решетки 5 прозрачные участки неподвижной растровой решетки 4 в обеих частях пространства перекрыты непрозрачными участками подвижной растровой решетки 5. В положении 5 растровой решетки и до положения 6 осуществляется засветка фотоприемника тестовым источником, при этом включение тестового источника управляется схемой обработки сигналов, что можно видеть по схеме, приведенной на фиг.3а. Таким образом, в положениях 4-5 и 6-7 подвижной растровой решетки 5 на фотоприемнике 6 мы получаем нулевой уровень сигнала Um1, а в положении 5-6 - уровень тестового сигнала U m2, представленные на фиг.3б.
Отметим, что в положениях 2-3 и 4-5 подвижной растровой решетки 5 уровни сигналов, получаемые на фотоприемнике 6, не меняются, поскольку прозрачные участки подвижной растровой решетки 5 более узкие, чем прозрачные участки неподвижной растровой решетки 4. При различных значениях параметров растровых решеток 4, 5 получим различные формы сигнала на фотоприемнике 6, например, в одном из частных случаев трапецеидальная форма сигнала, изображенного на фиг.3, вырождается в треугольную форму. Прошедший через модулятор 3 оптический сигнал контролируемого пространства и тестовый оптический сигнал попадают на фотоприемник 6, который преобразует их в электрический сигнал. Сигнал с фотоприемника 6 поступает на схему обработки сигналов 7.
Результаты сравнения уровня сигнала контролируемого пространства и нулевого уровня, уровня тестового сигнала и уровня сигнала контролируемого пространства, уровня тестового сигнала и нулевого уровня определяют состояние датчика:
1. Снижение разности между нулевым уровнем и уровнем тестового сигнала. Это может свидетельствовать либо о неисправности элементов датчика, либо о неконтролируемом снижении мощности электропитания источника тестового оптического сигнала, что соответствует выходному сигналу "Неисправность" датчика.
2. Увеличение разности между нулевым уровнем и уровнем тестового сигнала может свидетельствовать о неконтролируемом (самопроизвольном) увеличении мощности электропитания источника тестового оптического сигнала ("Неисправность").
3. Снижение разности между нулевым уровнем и уровнем сигнала контролируемого пространства может свидетельствовать о неисправности модулятора ("Неисправность").
4. Увеличение разности между нулевым уровнем и уровнем сигнала контролируемого пространства свидетельствует о пожаре в контролируемом пространстве ("Пожар").
5. Снижение разности между уровнем тестового сигнала и уровнем сигнала контролируемого пространства может свидетельствовать либо о пожаре в контролируемом пространстве ("Пожар"), либо о неконтролируемом снижении мощности электропитания источника тестового оптического сигнала ("Неисправность"), либо о неисправности модулятора ("Неисправность").
6. Увеличение разности между уровнем тестового сигнала и уровнем сигнала контролируемого пространства может свидетельствовать либо о неконтролируемом (самопроизвольном) увеличении мощности электропитания источника тестового оптического сигнала ("Неисправность"), либо о неисправной работе модулятора ("Неисправность").
Все остальные случаи, когда результаты сравнения сигналов находятся на допустимых уровнях, соответствуют выходному сигналу "Норма" датчика.
Таким образом, модуляционный датчик горения несложен в исполнении, прост и надежен в работе и за счет применения в модуляторе 3 оптических растровых решеток 4, 5 с параметрами d, d1, d2, xm, связанными приведенной ранее системой неравенств, позволяет:
1) повысить чувствительность и информативность устройства, поскольку сравнивая между собой уровень сигнала контролируемого пространства, уровень тестового сигнала и нулевой уровень, имеется возможность не только регистрации пожара и проверки работоспособности устройства в целом, но и контроля наиболее важных узлов устройства, а также регистрации тления (беспламенного горения);
2) повысить достоверность регистрации пожара, поскольку результат выдается на основании сравнения непосредственно уровня сигнала контролируемого пространства с нулевым уровнем и уровнем тестового сигнала, а не на основании анализа только сигнала контролируемого пространства;
3) повысить быстродействие датчика, поскольку анализ электрического сигнала осуществляется непрерывно, кроме того, растровые решетки модулятора можно изготовить с периодами довольно малой величины (до сотых долей мм), что дает возможность использовать малые амплитуды и большие частоты колебаний для перемещения подвижной растровой решетки, по этой же причине уменьшаются энергопотребление и габариты устройства, снижаются механические вибрации.

Claims (1)

  1. Модуляционный датчик горения, содержащий оптическую систему с источником оптического тестового сигнала, электромеханический осциллятор, модулятор, выполненный в виде неподвижной растровой решетки и подвижной растровой решетки, механически связанной с электромеханическим осциллятором, фотоприемник, схему обработки сигналов, отличающийся тем, что каждая из растровых решеток имеет одну зону модуляции оптического сигнала, а параметры решеток выполнены в соответствии с системой неравенств:
    Figure 00000004

    где d - период растровых решеток, d1, d2 - ширина прозрачного участка неподвижной и подвижной растровых решеток соответственно, xm - амплитуда колебания подвижной растровой решетки, при этом источник тестового сигнала оптической системы, управляемый схемой обработки сигналов, выполнен с возможностью управления его включением и выключением для периодического контроля работоспособности датчика, а фотоприемник выдает периодический сигнал в виде последовательности уровней сигнала контролируемого пространства, нулевого сигнала и тестового сигнала.
RU2012123894/08A 2012-06-08 2012-06-08 Модуляционный датчик горения RU2513710C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012123894/08A RU2513710C2 (ru) 2012-06-08 2012-06-08 Модуляционный датчик горения

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012123894/08A RU2513710C2 (ru) 2012-06-08 2012-06-08 Модуляционный датчик горения

Publications (2)

Publication Number Publication Date
RU2012123894A RU2012123894A (ru) 2013-12-20
RU2513710C2 true RU2513710C2 (ru) 2014-04-20

Family

ID=49784454

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012123894/08A RU2513710C2 (ru) 2012-06-08 2012-06-08 Модуляционный датчик горения

Country Status (1)

Country Link
RU (1) RU2513710C2 (ru)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5859706A (en) * 1995-07-20 1999-01-12 Hochiki Kabushiki Kaisha Photoelectric smoke detector and disaster monitoring system using the photoelectric smoke detector
RU2332723C1 (ru) * 2006-12-14 2008-08-27 Казанский государственный технический университет им. А.Н. Туполева Модуляционный датчик горения

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5859706A (en) * 1995-07-20 1999-01-12 Hochiki Kabushiki Kaisha Photoelectric smoke detector and disaster monitoring system using the photoelectric smoke detector
RU2332723C1 (ru) * 2006-12-14 2008-08-27 Казанский государственный технический университет им. А.Н. Туполева Модуляционный датчик горения

Also Published As

Publication number Publication date
RU2012123894A (ru) 2013-12-20

Similar Documents

Publication Publication Date Title
JP4347296B2 (ja) 散乱光式煙感知器
FI100836B (fi) Testin käynnistämislaite jatkuvalla tai pulssitulolla
CN102568145B (zh) 具有在低电池电压时抑制声告警的装置的散光火灾报警器
US20090114800A1 (en) Motion sensor with led alignment aid
US9400264B2 (en) Ultrasonic test equipment and evaluation method thereof
CN109601019B (zh) 根据散射光原理进行火灾探测的方法和散射光烟雾报警器
US9905102B2 (en) Open scattered light smoke detector and testing device for an open scattered light smoke detector of this type
US7956329B2 (en) Flame detector and a method
EP1613934A2 (en) Method and apparatus for real-time vibration imaging
DE3037636A1 (de) Streustrahlungs-rauchdetektor
JPS61501230A (ja) 侵入報知器のための試験装置
RU2513710C2 (ru) Модуляционный датчик горения
RU125373U1 (ru) Модуляционный датчик горения
US20030127585A1 (en) Obscuration detector
RU2332723C1 (ru) Модуляционный датчик горения
CN101517520A (zh) 激光器控制器
JP7212121B2 (ja) 腕時計ケースの内部の相対湿度レベルを測定するためのアセンブリ
RU2578740C2 (ru) Способ и устройство тестирования извещателя
US5528936A (en) Optoelectronic spatial acceleration sensor
RU2224293C1 (ru) Пожарный извещатель с автотестированием
RU139048U1 (ru) Устройство охранной сигнализации для контроля оконных и остекленных дверных конструкций
JP2013213741A (ja) センサ装置
RU2544745C1 (ru) Устройство охранной сигнализации для контроля оконных и остекленных дверных конструкций
RU2809346C1 (ru) Сигнализатор обледенения
RU124420U1 (ru) Устройство контроля пожарного извещателя

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20150609