RU2513691C2 - Способ очистки фракции навозного стока преприятий апк, сточной воды жкх и водоканалов с использованием метанового брожения - Google Patents
Способ очистки фракции навозного стока преприятий апк, сточной воды жкх и водоканалов с использованием метанового брожения Download PDFInfo
- Publication number
- RU2513691C2 RU2513691C2 RU2012113103/10A RU2012113103A RU2513691C2 RU 2513691 C2 RU2513691 C2 RU 2513691C2 RU 2012113103/10 A RU2012113103/10 A RU 2012113103/10A RU 2012113103 A RU2012113103 A RU 2012113103A RU 2513691 C2 RU2513691 C2 RU 2513691C2
- Authority
- RU
- Russia
- Prior art keywords
- water
- wastewater
- bioreactor
- fermentation
- manure
- Prior art date
Links
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 title claims abstract description 126
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 91
- 238000000034 method Methods 0.000 title claims abstract description 76
- 238000000855 fermentation Methods 0.000 title claims abstract description 70
- 230000004151 fermentation Effects 0.000 title claims abstract description 70
- 239000002351 wastewater Substances 0.000 title claims abstract description 56
- 239000010871 livestock manure Substances 0.000 title claims abstract description 38
- 210000003608 fece Anatomy 0.000 title claims abstract description 37
- 238000000746 purification Methods 0.000 title abstract description 8
- 238000004065 wastewater treatment Methods 0.000 title description 21
- 241001148471 unidentified anaerobic bacterium Species 0.000 claims abstract description 48
- 230000008569 process Effects 0.000 claims abstract description 41
- 239000007788 liquid Substances 0.000 claims abstract description 23
- 239000013543 active substance Substances 0.000 claims abstract description 16
- 239000003651 drinking water Substances 0.000 claims abstract description 14
- 239000000243 solution Substances 0.000 claims abstract description 13
- 238000002360 preparation method Methods 0.000 claims abstract description 12
- 238000001914 filtration Methods 0.000 claims abstract description 10
- 239000007787 solid Substances 0.000 claims abstract description 7
- 238000001035 drying Methods 0.000 claims abstract description 4
- 239000013049 sediment Substances 0.000 claims abstract description 4
- 238000010790 dilution Methods 0.000 claims abstract description 3
- 239000012895 dilution Substances 0.000 claims abstract description 3
- 238000004064 recycling Methods 0.000 claims abstract description 3
- 239000000203 mixture Substances 0.000 claims description 35
- 239000004927 clay Substances 0.000 claims description 32
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 31
- 150000001875 compounds Chemical class 0.000 claims description 26
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 claims description 21
- 239000002245 particle Substances 0.000 claims description 18
- 239000010802 sludge Substances 0.000 claims description 18
- 239000000843 powder Substances 0.000 claims description 17
- 229910052751 metal Inorganic materials 0.000 claims description 16
- 239000002184 metal Substances 0.000 claims description 16
- 150000004675 formic acid derivatives Chemical class 0.000 claims description 14
- 235000020188 drinking water Nutrition 0.000 claims description 12
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 claims description 10
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 claims description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 10
- 235000019253 formic acid Nutrition 0.000 claims description 10
- 150000002739 metals Chemical class 0.000 claims description 10
- 239000002253 acid Substances 0.000 claims description 9
- 230000000035 biogenic effect Effects 0.000 claims description 9
- 239000010941 cobalt Substances 0.000 claims description 8
- 229910017052 cobalt Inorganic materials 0.000 claims description 8
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 8
- 239000011777 magnesium Substances 0.000 claims description 8
- 229910052749 magnesium Inorganic materials 0.000 claims description 8
- 229910052742 iron Inorganic materials 0.000 claims description 7
- 229910052748 manganese Inorganic materials 0.000 claims description 7
- 239000011572 manganese Substances 0.000 claims description 7
- 239000003446 ligand Substances 0.000 claims description 6
- 238000011068 loading method Methods 0.000 claims description 6
- 239000011701 zinc Substances 0.000 claims description 6
- 229910052725 zinc Inorganic materials 0.000 claims description 6
- 239000004471 Glycine Substances 0.000 claims description 5
- 238000004140 cleaning Methods 0.000 claims description 5
- 239000003895 organic fertilizer Substances 0.000 claims description 5
- 230000009467 reduction Effects 0.000 claims description 5
- OXYOBDANCFSCGB-UHFFFAOYSA-J silicon(4+) tetraformate Chemical compound [Si+4].[O-]C=O.[O-]C=O.[O-]C=O.[O-]C=O OXYOBDANCFSCGB-UHFFFAOYSA-J 0.000 claims description 5
- GHOKWGTUZJEAQD-ZETCQYMHSA-N (D)-(+)-Pantothenic acid Chemical compound OCC(C)(C)[C@@H](O)C(=O)NCCC(O)=O GHOKWGTUZJEAQD-ZETCQYMHSA-N 0.000 claims description 4
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 4
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 4
- DFPAKSUCGFBDDF-UHFFFAOYSA-N Nicotinamide Chemical compound NC(=O)C1=CC=CN=C1 DFPAKSUCGFBDDF-UHFFFAOYSA-N 0.000 claims description 4
- 238000002156 mixing Methods 0.000 claims description 4
- GHOKWGTUZJEAQD-UHFFFAOYSA-N Chick antidermatitis factor Natural products OCC(C)(C)C(O)C(=O)NCCC(O)=O GHOKWGTUZJEAQD-UHFFFAOYSA-N 0.000 claims description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 3
- MDXRFOWKIZPNTA-UHFFFAOYSA-L butanedioate;iron(2+) Chemical compound [Fe+2].[O-]C(=O)CCC([O-])=O MDXRFOWKIZPNTA-UHFFFAOYSA-L 0.000 claims description 3
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 claims description 3
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 claims description 2
- 239000004115 Sodium Silicate Substances 0.000 claims description 2
- 229940088623 biologically active substance Drugs 0.000 claims description 2
- 235000018417 cysteine Nutrition 0.000 claims description 2
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 claims description 2
- 229960003966 nicotinamide Drugs 0.000 claims description 2
- 235000005152 nicotinamide Nutrition 0.000 claims description 2
- 239000011570 nicotinamide Substances 0.000 claims description 2
- 229940055726 pantothenic acid Drugs 0.000 claims description 2
- 235000019161 pantothenic acid Nutrition 0.000 claims description 2
- 239000011713 pantothenic acid Substances 0.000 claims description 2
- 229910052911 sodium silicate Inorganic materials 0.000 claims description 2
- 239000004575 stone Substances 0.000 claims description 2
- AGFGXVAAIXIOFZ-UHFFFAOYSA-L zinc;butanedioate Chemical compound [Zn+2].[O-]C(=O)CCC([O-])=O AGFGXVAAIXIOFZ-UHFFFAOYSA-L 0.000 claims description 2
- 238000011049 filling Methods 0.000 claims 1
- 230000015572 biosynthetic process Effects 0.000 abstract description 34
- 230000000694 effects Effects 0.000 abstract description 31
- 239000000126 substance Substances 0.000 abstract description 28
- 239000000758 substrate Substances 0.000 abstract description 16
- 239000000463 material Substances 0.000 abstract description 13
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 6
- 229910052760 oxygen Inorganic materials 0.000 abstract description 6
- 239000001301 oxygen Substances 0.000 abstract description 6
- 239000010865 sewage Substances 0.000 abstract description 4
- 235000012206 bottled water Nutrition 0.000 abstract 2
- 238000005755 formation reaction Methods 0.000 description 21
- 239000002609 medium Substances 0.000 description 20
- 108090000790 Enzymes Proteins 0.000 description 19
- 102000004190 Enzymes Human genes 0.000 description 19
- 241000894006 Bacteria Species 0.000 description 18
- 230000003078 antioxidant effect Effects 0.000 description 14
- 230000004060 metabolic process Effects 0.000 description 14
- 239000003963 antioxidant agent Substances 0.000 description 13
- 235000006708 antioxidants Nutrition 0.000 description 13
- 210000004027 cell Anatomy 0.000 description 13
- 238000006243 chemical reaction Methods 0.000 description 13
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 11
- 238000002474 experimental method Methods 0.000 description 11
- 235000015097 nutrients Nutrition 0.000 description 10
- 229910052802 copper Inorganic materials 0.000 description 9
- 239000010949 copper Substances 0.000 description 9
- 238000005516 engineering process Methods 0.000 description 9
- 239000003337 fertilizer Substances 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 9
- 239000002957 persistent organic pollutant Substances 0.000 description 9
- 229910052710 silicon Inorganic materials 0.000 description 9
- 241000283690 Bos taurus Species 0.000 description 8
- 241001465754 Metazoa Species 0.000 description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 8
- 229910052799 carbon Inorganic materials 0.000 description 8
- 239000012528 membrane Substances 0.000 description 8
- 239000010703 silicon Substances 0.000 description 8
- 230000003197 catalytic effect Effects 0.000 description 7
- 230000006378 damage Effects 0.000 description 7
- 230000007613 environmental effect Effects 0.000 description 7
- 230000006870 function Effects 0.000 description 7
- 230000012010 growth Effects 0.000 description 7
- 239000002028 Biomass Substances 0.000 description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 6
- 230000004071 biological effect Effects 0.000 description 6
- 235000013339 cereals Nutrition 0.000 description 6
- FDJOLVPMNUYSCM-UVKKECPRSA-L cobalt(3+);[(2r,3s,4r,5s)-5-(5,6-dimethylbenzimidazol-1-yl)-4-hydroxy-2-(hydroxymethyl)oxolan-3-yl] [(2r)-1-[3-[(2r,3r,4z,7s,9z,12s,13s,14z,17s,18s,19r)-2,13,18-tris(2-amino-2-oxoethyl)-7,12,17-tris(3-amino-3-oxopropyl)-3,5,8,8,13,15,18,19-octamethyl-2,7, Chemical compound [Co+3].N#[C-].C1([C@H](CC(N)=O)[C@@]2(C)CCC(=O)NC[C@@H](C)OP([O-])(=O)O[C@H]3[C@H]([C@H](O[C@@H]3CO)N3C4=CC(C)=C(C)C=C4N=C3)O)[N-]\C2=C(C)/C([C@H](C\2(C)C)CCC(N)=O)=N/C/2=C\C([C@H]([C@@]/2(CC(N)=O)C)CCC(N)=O)=N\C\2=C(C)/C2=N[C@]1(C)[C@@](C)(CC(N)=O)[C@@H]2CCC(N)=O FDJOLVPMNUYSCM-UVKKECPRSA-L 0.000 description 6
- 235000013305 food Nutrition 0.000 description 6
- 230000003834 intracellular effect Effects 0.000 description 6
- 230000000813 microbial effect Effects 0.000 description 6
- 244000005700 microbiome Species 0.000 description 6
- 244000005706 microflora Species 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 238000003786 synthesis reaction Methods 0.000 description 6
- 239000002699 waste material Substances 0.000 description 6
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical compound C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 5
- 241000196324 Embryophyta Species 0.000 description 5
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 5
- 150000001720 carbohydrates Chemical class 0.000 description 5
- 235000014633 carbohydrates Nutrition 0.000 description 5
- 238000011161 development Methods 0.000 description 5
- 230000018109 developmental process Effects 0.000 description 5
- 235000014113 dietary fatty acids Nutrition 0.000 description 5
- 239000003344 environmental pollutant Substances 0.000 description 5
- 229930195729 fatty acid Natural products 0.000 description 5
- 239000000194 fatty acid Substances 0.000 description 5
- 150000004665 fatty acids Chemical class 0.000 description 5
- 229910003472 fullerene Inorganic materials 0.000 description 5
- 244000144972 livestock Species 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 5
- 231100000719 pollutant Toxicity 0.000 description 5
- 239000008399 tap water Substances 0.000 description 5
- 235000020679 tap water Nutrition 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- 108010034145 Helminth Proteins Proteins 0.000 description 4
- 241000282412 Homo Species 0.000 description 4
- 239000000370 acceptor Substances 0.000 description 4
- 230000009471 action Effects 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 239000003242 anti bacterial agent Substances 0.000 description 4
- 229940088710 antibiotic agent Drugs 0.000 description 4
- 235000010323 ascorbic acid Nutrition 0.000 description 4
- 239000011668 ascorbic acid Substances 0.000 description 4
- 238000009835 boiling Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 238000000354 decomposition reaction Methods 0.000 description 4
- 230000029087 digestion Effects 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 239000008187 granular material Substances 0.000 description 4
- 244000000013 helminth Species 0.000 description 4
- 150000004679 hydroxides Chemical class 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 229910052500 inorganic mineral Inorganic materials 0.000 description 4
- 239000011707 mineral Substances 0.000 description 4
- 235000010755 mineral Nutrition 0.000 description 4
- 239000002244 precipitate Substances 0.000 description 4
- 150000003254 radicals Chemical class 0.000 description 4
- 230000001105 regulatory effect Effects 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 238000004659 sterilization and disinfection Methods 0.000 description 4
- 229910052567 struvite Inorganic materials 0.000 description 4
- 238000009210 therapy by ultrasound Methods 0.000 description 4
- ALYNCZNDIQEVRV-UHFFFAOYSA-N 4-aminobenzoic acid Chemical compound NC1=CC=C(C(O)=O)C=C1 ALYNCZNDIQEVRV-UHFFFAOYSA-N 0.000 description 3
- 241000209140 Triticum Species 0.000 description 3
- 235000021307 Triticum Nutrition 0.000 description 3
- 235000001014 amino acid Nutrition 0.000 description 3
- 150000001413 amino acids Chemical class 0.000 description 3
- CKMXBZGNNVIXHC-UHFFFAOYSA-L ammonium magnesium phosphate hexahydrate Chemical compound [NH4+].O.O.O.O.O.O.[Mg+2].[O-]P([O-])([O-])=O CKMXBZGNNVIXHC-UHFFFAOYSA-L 0.000 description 3
- 230000000844 anti-bacterial effect Effects 0.000 description 3
- 229960005070 ascorbic acid Drugs 0.000 description 3
- 235000013405 beer Nutrition 0.000 description 3
- 230000033228 biological regulation Effects 0.000 description 3
- 235000008429 bread Nutrition 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 235000021186 dishes Nutrition 0.000 description 3
- 238000005265 energy consumption Methods 0.000 description 3
- 239000013505 freshwater Substances 0.000 description 3
- 230000034659 glycolysis Effects 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 3
- 229910052622 kaolinite Inorganic materials 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 230000002503 metabolic effect Effects 0.000 description 3
- 230000000696 methanogenic effect Effects 0.000 description 3
- 239000011785 micronutrient Substances 0.000 description 3
- 235000013369 micronutrients Nutrition 0.000 description 3
- 150000004045 organic chlorine compounds Chemical class 0.000 description 3
- 150000002894 organic compounds Chemical class 0.000 description 3
- 239000000575 pesticide Substances 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- -1 processing wool) Substances 0.000 description 3
- 230000001603 reducing effect Effects 0.000 description 3
- 239000011150 reinforced concrete Substances 0.000 description 3
- 230000001954 sterilising effect Effects 0.000 description 3
- 229910000851 Alloy steel Inorganic materials 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 2
- ZZZCUOFIHGPKAK-UHFFFAOYSA-N D-erythro-ascorbic acid Natural products OCC1OC(=O)C(O)=C1O ZZZCUOFIHGPKAK-UHFFFAOYSA-N 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-M Formate Chemical compound [O-]C=O BDAGIHXWWSANSR-UHFFFAOYSA-M 0.000 description 2
- 229920002488 Hemicellulose Polymers 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 241000205011 Methanothrix Species 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 241000576755 Sclerotia Species 0.000 description 2
- 229930003268 Vitamin C Natural products 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 238000005273 aeration Methods 0.000 description 2
- 230000004103 aerobic respiration Effects 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 230000004099 anaerobic respiration Effects 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 230000037358 bacterial metabolism Effects 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- GVPFVAHMJGGAJG-UHFFFAOYSA-L cobalt dichloride Chemical compound [Cl-].[Cl-].[Co+2] GVPFVAHMJGGAJG-UHFFFAOYSA-L 0.000 description 2
- 239000005515 coenzyme Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 229910001431 copper ion Inorganic materials 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- IJKVHSBPTUYDLN-UHFFFAOYSA-N dihydroxy(oxo)silane Chemical compound O[Si](O)=O IJKVHSBPTUYDLN-UHFFFAOYSA-N 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 239000010840 domestic wastewater Substances 0.000 description 2
- 235000013601 eggs Nutrition 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 230000008030 elimination Effects 0.000 description 2
- 238000003379 elimination reaction Methods 0.000 description 2
- 239000012737 fresh medium Substances 0.000 description 2
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 229920005610 lignin Polymers 0.000 description 2
- 150000002632 lipids Chemical class 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000002207 metabolite Substances 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- 235000019645 odor Nutrition 0.000 description 2
- 239000005416 organic matter Substances 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 231100000614 poison Toxicity 0.000 description 2
- 230000008092 positive effect Effects 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000022558 protein metabolic process Effects 0.000 description 2
- 235000018102 proteins Nutrition 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 239000008213 purified water Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000007226 seed germination Effects 0.000 description 2
- 229910052711 selenium Inorganic materials 0.000 description 2
- 239000011669 selenium Substances 0.000 description 2
- 150000003345 selenocysteines Chemical class 0.000 description 2
- 150000003377 silicon compounds Chemical class 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 239000003440 toxic substance Substances 0.000 description 2
- 230000014616 translation Effects 0.000 description 2
- 238000002604 ultrasonography Methods 0.000 description 2
- 229930003231 vitamin Natural products 0.000 description 2
- 235000013343 vitamin Nutrition 0.000 description 2
- 239000011782 vitamin Substances 0.000 description 2
- 229940088594 vitamin Drugs 0.000 description 2
- 235000019154 vitamin C Nutrition 0.000 description 2
- 239000011718 vitamin C Substances 0.000 description 2
- MSTNYGQPCMXVAQ-KIYNQFGBSA-N 5,6,7,8-tetrahydrofolic acid Chemical compound N1C=2C(=O)NC(N)=NC=2NCC1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 MSTNYGQPCMXVAQ-KIYNQFGBSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 241000186361 Actinobacteria <class> Species 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 208000031295 Animal disease Diseases 0.000 description 1
- 241000203069 Archaea Species 0.000 description 1
- 102000004452 Arginase Human genes 0.000 description 1
- 108700024123 Arginases Proteins 0.000 description 1
- 241000238421 Arthropoda Species 0.000 description 1
- 108010024957 Ascorbate Oxidase Proteins 0.000 description 1
- 241001112696 Clostridia Species 0.000 description 1
- 241000195493 Cryptophyta Species 0.000 description 1
- 108050008072 Cytochrome c oxidase subunit IV Proteins 0.000 description 1
- 102000000634 Cytochrome c oxidase subunit IV Human genes 0.000 description 1
- SBJKKFFYIZUCET-JLAZNSOCSA-N Dehydro-L-ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(=O)C1=O SBJKKFFYIZUCET-JLAZNSOCSA-N 0.000 description 1
- SBJKKFFYIZUCET-UHFFFAOYSA-N Dehydroascorbic acid Natural products OCC(O)C1OC(=O)C(=O)C1=O SBJKKFFYIZUCET-UHFFFAOYSA-N 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- 206010015124 Ergot poisoning Diseases 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 108010024636 Glutathione Proteins 0.000 description 1
- 102000006587 Glutathione peroxidase Human genes 0.000 description 1
- 108700016172 Glutathione peroxidases Proteins 0.000 description 1
- 240000005979 Hordeum vulgare Species 0.000 description 1
- 235000007340 Hordeum vulgare Nutrition 0.000 description 1
- 241000205280 Methanomicrobium Species 0.000 description 1
- 241000205276 Methanosarcina Species 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 102000004316 Oxidoreductases Human genes 0.000 description 1
- 108090000854 Oxidoreductases Proteins 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 108010009736 Protein Hydrolysates Proteins 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 229930003270 Vitamin B Natural products 0.000 description 1
- 229930003571 Vitamin B5 Natural products 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000004520 agglutination Effects 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 239000002154 agricultural waste Substances 0.000 description 1
- 239000000809 air pollutant Substances 0.000 description 1
- 231100001243 air pollutant Toxicity 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 229910000323 aluminium silicate Inorganic materials 0.000 description 1
- 229940072107 ascorbate Drugs 0.000 description 1
- 230000001651 autotrophic effect Effects 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000003851 biochemical process Effects 0.000 description 1
- 238000006065 biodegradation reaction Methods 0.000 description 1
- 230000001851 biosynthetic effect Effects 0.000 description 1
- 230000036983 biotransformation Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 229960002079 calcium pantothenate Drugs 0.000 description 1
- 230000023852 carbohydrate metabolic process Effects 0.000 description 1
- 235000021256 carbohydrate metabolism Nutrition 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000030833 cell death Effects 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 230000019522 cellular metabolic process Effects 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- HUCWJGJNKWEVHB-UHFFFAOYSA-M chlorosilver platinum Chemical compound [Ag]Cl.[Pt] HUCWJGJNKWEVHB-UHFFFAOYSA-M 0.000 description 1
- 238000005352 clarification Methods 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 239000000701 coagulant Substances 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- FDJOLVPMNUYSCM-IQFXPAJWSA-L cobalt(3+);[5-(5,6-dimethylbenzimidazol-1-yl)-4-hydroxy-2-(hydroxymethyl)oxolan-3-yl] [(2s)-1-[3-[(2r,3r,4z,7s,9z,12s,13s,14z,17s,18s,19r)-2,13,18-tris(2-amino-2-oxoethyl)-7,12,17-tris(3-amino-3-oxopropyl)-3,5,8,8,13,15,18,19-octamethyl-2,7,12,17-tetrahyd Chemical compound [Co+3].N#[C-].C1([C@H](CC(N)=O)[C@@]2(C)CCC(=O)NC[C@H](C)OP([O-])(=O)OC3C(C(OC3CO)N3C4=CC(C)=C(C)C=C4N=C3)O)[N-]\C2=C(C)/C([C@H](C\2(C)C)CCC(N)=O)=N/C/2=C\C([C@H]([C@@]/2(CC(N)=O)C)CCC(N)=O)=N\C\2=C(C)/C2=N[C@]1(C)[C@@](C)(CC(N)=O)[C@@H]2CCC(N)=O FDJOLVPMNUYSCM-IQFXPAJWSA-L 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000009089 cytolysis Effects 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 235000020960 dehydroascorbic acid Nutrition 0.000 description 1
- 239000011615 dehydroascorbic acid Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000001784 detoxification Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000000386 donor Substances 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000009297 electrocoagulation Methods 0.000 description 1
- 230000019439 energy homeostasis Effects 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 208000006852 ergotism Diseases 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 235000013312 flour Nutrition 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000003574 free electron Substances 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 239000003502 gasoline Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229960003180 glutathione Drugs 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 239000005431 greenhouse gas Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 230000035876 healing Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 239000000852 hydrogen donor Substances 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 150000001261 hydroxy acids Chemical class 0.000 description 1
- 239000003295 industrial effluent Substances 0.000 description 1
- 239000010842 industrial wastewater Substances 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 239000010985 leather Substances 0.000 description 1
- 230000037356 lipid metabolism Effects 0.000 description 1
- 230000033001 locomotion Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 230000035800 maturation Effects 0.000 description 1
- 230000037323 metabolic rate Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 108091056774 miR-1991 stem-loop Proteins 0.000 description 1
- 239000012569 microbial contaminant Substances 0.000 description 1
- 230000002906 microbiologic effect Effects 0.000 description 1
- 210000003470 mitochondria Anatomy 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000010815 organic waste Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000004792 oxidative damage Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 244000045947 parasite Species 0.000 description 1
- 235000011837 pasties Nutrition 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 239000003415 peat Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 230000000243 photosynthetic effect Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000001863 plant nutrition Effects 0.000 description 1
- 239000010908 plant waste Substances 0.000 description 1
- 239000002574 poison Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 238000001243 protein synthesis Methods 0.000 description 1
- 230000005180 public health Effects 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 150000003212 purines Chemical class 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000007348 radical reaction Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000008844 regulatory mechanism Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000001850 reproductive effect Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000005070 ripening Effects 0.000 description 1
- 150000004671 saturated fatty acids Chemical class 0.000 description 1
- 235000003441 saturated fatty acids Nutrition 0.000 description 1
- 238000009738 saturating Methods 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 235000021309 simple sugar Nutrition 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 238000009331 sowing Methods 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 231100000027 toxicology Toxicity 0.000 description 1
- 239000011573 trace mineral Substances 0.000 description 1
- 235000013619 trace mineral Nutrition 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 150000004670 unsaturated fatty acids Chemical class 0.000 description 1
- 235000021122 unsaturated fatty acids Nutrition 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 235000019156 vitamin B Nutrition 0.000 description 1
- 239000011720 vitamin B Substances 0.000 description 1
- 235000009492 vitamin B5 Nutrition 0.000 description 1
- 239000011675 vitamin B5 Substances 0.000 description 1
- 150000003722 vitamin derivatives Chemical class 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
- 150000003751 zinc Chemical class 0.000 description 1
- 150000003752 zinc compounds Chemical class 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/30—Fuel from waste, e.g. synthetic alcohol or diesel
Landscapes
- Treatment Of Sludge (AREA)
- Fertilizers (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Abstract
Изобретение относится к биотехнологии. Предложен способ очистки фракции навозного стока и сточной воды ЖКХ с использованием метанового брожения, осуществляемого биоценозом анаэробных бактерий. Осуществляют кавитационную обработку жидкой фракции навоза или сточной воды. Отдельно приготавливают структурированную и биологически активную воду с последующим разбавлением ее в анаэробном биореакторе в 10-30 раз кавитационно обработанной жидкой фракцией навоза или сточной водой. Приготавливают раствор биологически активных веществ (БАВ). Заполняют биореактор раствором БАВ в объеме 0,1% от общего объема сбраживаемой среды. Вносят посевной материал в количестве 30% от объема сбраживаемой среды для осуществления метанового брожения, ведут метановое брожение в мезофильном режиме. Осуществляют сушку выработанного биогаза. Получают возвратную технологическую воду путем фильтрации сбраживаемой жидкости через первый биологический фильтр. Направляют первый биологический фильтр с осевшими твердыми частицами в шламосборник для освобождения от осадка. Затем направляют просочившуюся через первый биологический фильтр технологическую воду на рециркуляцию обратно в биореактор или на последующую фильтрацию через второй фильтр для получения физиологически полноценной питьевой воды. Изобретение позволяет усилить интенсивность процесса брожения, увеличить глубину брожения сбраживаемого субстрата с увеличением выхода биогаза с содержанием метана более 75%, ускорить формирование биоценоза анаэробных бактерий, уменьшить ХПК на 78% от исходной величины, получить оборотное водоснабжение с возможностью получения физиол�
Description
Изобретение относится к технической биоэнергетике и касается очистки стоков и получению биогаза путем метанового сбраживания органических веществ сточных вод агропромышленного комплекса, в частности жидкой фракции навоза животноводческих ферм, а также отходов растительного и животного происхождения микробиологической и пищевой промышленностей, легкой промышленности (текстильная, кожевенная, переработка шерсти), сточной воды жилищно-коммунального хозяйства (ЖКХ). Метановое брожение сточных вод с органическими загрязнителями касается и одновременного получения биологически активной питьевой воды.
Достижения научно-технического прогресса коррелируются с ростом антропогенных изменений в природе. Немалую роль в этом оказали в первую очередь отходы сельского хозяйства, в частности животноводческих ферм. Важно отметить, что животноводство во всем мире представляет собой самый большой антропогенный источник метана, который приблизительно в 23 раза опаснее для климата, чем CO2. Метан - парниковый газ и им до 20% обусловлен парниковый эффект, поскольку в атмосфере он под воздействием солнечных лучей, озона и радикалов медленно окисляется на СО2 и Н2О.
Сельское хозяйство относится к основным потребителям пресной воды, запасы которой в мире неуклонно снижаются. Подсчитано, что ресурсы пресной воды могут быть исчерпаны уже в этом столетии. Дефицит пресной воды в мире - прежде всего следствие безвозвратного ее потребления, все возрастающего загрязнения природных вод агропромышленными и бытовыми стоками, а также необходимостью многократного разбавления ею сточных вод перед сбросом их в водоемы. Сточные воды в большинстве случаев представляют собой сложную физико-химическую систему. Например, жидкая фракция навоза крупного рогатого скота (КРС) кроме значительного количества растворенных загрязнителей органической и неорганической природы содержит трудно разлагаемые лигноцеллюлозные частицы навоза, а также микробные загрязнители и яйца гельминтов. Наряду с загрязнением гидросферы животноводческие стоки оказывают отрицательное влияние на качество атмосферного воздуха, поскольку они являются источниками разнообразных газов со специфическим запахом, например, выделяют в атмосферу из навозохранилищ загрязняющие атмосферу газообразные вещества (сероводород, аммиак), обусловливают попадание в воздушную среду микробных загрязнителей сточной воды, которые могут вызвать более 100 заболеваний животных. Эти микробные загрязнители воздушного бассейна также негативно влияют на человека.
В природе деструкция сложного комплекса органических загрязнителей сточных вод принадлежит микроорганизмам, обитающим на различных экологических нишах и вовлекающим их в свой метаболизм. Важно отметить, что с помощью аэробной очистки не всегда удается добиться полной биодеструкции органических загрязнителей сточных вод.
Вместе с тем, фундаментальные исследования в области трансформации микроорганизмами сложного комплекса органических соединений сточной воды привели к созданию экологически безопасной и экономически выгодной природоохранной технологии - анаэробной биологической очистки сточных вод, осуществляемой анаэробным активным илом, представляющим собой, биоценоз анаэробных бактерий, осуществляющих метановое сбраживание концентрированных органических субстратов. Конечными продуктами метанового брожения сточных вод с органическими загрязнителями являются биогаз с содержанием метана до 70% и более, а также вода, частично очищенная от органических загрязнителей. По теплоте сгорания 1,0 м3 биогаза эквивалентен 0,8 м3 природного газа; 0,7 кг мазута; 0,6 кг бензина и 1,5 кг дров (в абсолютно сухом состоянии; из 1 м3 биогаза генератор может вырабатывать до 2 кВт электроэнергии). Следует иметь в виду, что потенциал органических субстратов, который можно использовать для выработки биогаза составляет около 86% для сельского хозяйства и около 8% для коммунальных отходов и пищевой промышленности.
Метановое брожение проводится в анаэробном биореакторе и, как уже отмечалось, осуществляется сложным биоценозом анаэробных бактерий, условно разделяющихся на углеводсбраживающие, аммонифицирующие, сульфатвосстанавливающие и метанобразующие (метаногены). Последние непосредственно проводят заключительную стадию конверсии органических веществ сточной воды в метан. В конце метанового брожения наблюдается существенное снижение содержания в сточной воде органических веществ и небольшое уменьшение образовавшихся в начале процесса брожения летучих жирных кислот (ЛЖК), общего азота, аммиака. Наряду с конверсией органических загрязнителей при метаногенезе на 50% сокращается содержание растворимых солей тяжелых металлов. Интересно отметить, что в процессе метанового брожения вся микрофлора и яйца гельминтов сброженной сточной воды погибают.
Важно отметить, что характер сбраживаемого субстрата и условия, создаваемые в анаэробном биореакторе, определяют преобладание тех или иных видов анаэробных бактерий, участвующих в метановом брожении. Однако ключевую роль играют метановые археи родов Methanosarcina, Methanosaeta (Methanothrix), Methanomicrobium и другие. В настоящее время выявлено до 40 видов метанобразующих бактерий, которые филогенетически весьма неоднородны, но в то же время имеющие ряд общих особенностей. Это касается состава клеточной стенки, транскрипции и трансляции, простетических групп ферментов, механизма автотрофной фиксации СО2, а также способа получения энергии из возобновляемого сырья, т.е. донором водорода могут быть органические вещества среды. Надо отдать должное метаногены используют в энергетических реакциях только простые соединения: низшие жирные кислоты и соответствующие спирты.
Большинство метаногенов мезофиллы с оптимумом роста в интервале 34-36°C и pH 6,5-7,5, хотя имеются термофилы (55-57°C). Поскольку метаногены строгие анаэробы и кислород для них является ядом, то активность их роста и развития зависят от показателя окислительно-восстановительного потенциала (ОВП) среды. Установлено, что они активно растут и развиваются при ОВП около -300 мВ. В зависимости от производственной потребности процесс метанового брожения может проводиться в режиме периодического или непрерывного действия, осуществляемого путем выгрузки определенного объема отработавшего в биореакторе вещества с одновременной загрузкой такого же объема свежего материала. Это обеспечивает большее снижение ХПК и соответственно больший выход метана. ХПК (мг О2/л воды) - это количество кислорода, эквивалентное количеству расходуемого окислителя, необходимого для окисления всех восстановленных сточных вод. Чем выше этот показатель, тем грязнее вода. Эффективность очистки сточной воды зависит от степени адаптации биоценоза анаэробных бактерий к сбраживаемому субстрату.
Анализ литературы по метановому брожению с несомненностью указывает, что основной проблемой анаэробно-аэробной технологии очистки стоков является очень медленное формирование биоценоза анаэробных бактерий вследствие низкой физиолого-биохимической активности анаэробных бактерий сообщества. Важно отметить, что метаногены растут и размножаются медленнее анаэробных бактерий сообщества и поэтому они определяют интенсивность всего процесса брожения (1 - Воробьева Л.И. Научные основы получения кормовых препаратов витамина B12. /1 - Доклады АН СССР. М., 1987; 2 - Кузнецов А.Е. Синицин А.В. Анаэробно-аэробная технология очистки сточных вод для пивоваренных предприятий. /Пиво и напитки. 2005, 4, 18-21). Из анализа цитируемых работ следует, что устойчивый процесс метанового брожения возможен только при обеспечении необходимых условий для интенсивного развития метанобразующих бактерий. Установлено, что рост бактерий метанового сообщества зависит от поступления питательных веществ, включая органические вещества и минеральные соли. Экспериментально зафиксировано, что необходимыми факторами роста биоценоза анаэробных бактерий, являются аминокислоты, витамины, соединения биогенных металлов: K, Mg, Fe, Cu, Zn, Mn и другие. Отдельно следует указать, что метаногенная активность анаэробного ила зависит от его метаболитов. Так установлено, что метаногенная активность анаэробного ила зависит от количества летучих жирных кислот (ЛЖК). Экспериментальные факты указывают на то, что чем их больше, тем выше метаногенная активность (Hulshaf, 1989).
Разработанные способы очистки и утилизации стоков агропромышленного комплекса, включающего кроме сельского хозяйства пищевую промышленность, и ЖКХ требуют огромных затрат, сложного оборудования и проводятся по сложным технологиям. В ранее цитируемой работе (Кузнецов А.Е, Синицын А.В./Пиво и напитки. 2005, 4, 18-21) предложена схема биологической очистки сточных вод пивоваренной промышленности, осуществляемый в анаэробном и аэробном биореакторах, выполненных из легированной стали и имеющих высокую стоимость. Согласно биологическому способу очистки метановое брожение - предварительная ступень перед аэробной очисткой, в основе которой лежат процессы, обусловленные присутствием микроорганизмов активного ила, являющегося смешанной культурой, состоящей из различных систематических групп - бактерий, актиномицетов, грибов, водорослей и членистоногих. Основу биомассы составляют бактерии. Заключительная стадия очистки стоков осуществляется в аэробном биореакторе при продувке воздуха.
Следует отметить, что анаэробный способ очистки стоков отличается от аэробного способа значительно меньшей скоростью накопления биомассы активного ила. Так, при метановом брожении образуется анаэробного избыточного ила в среднем до 0,04 кг биомассы/кг ХПК, в то время как при аэробной очистке формируется приблизительно в 10 раз больше аэробного избыточного ила, который необходимо обезвоживать и обезвреживать, что представляет возникшую новую экологическую проблему.
Рассматриваемый способ очистки сточных вод имеет следующие недостатки: 1) необходимость разбавления высококонцентрированных стоков для очистных сооружений ведет к увеличению объема перерабатываемых стоков и увеличению очистных сооружений; повышению потребления технологической воды; 2) высокая потребность в электроэнергии до 5-8 кВт·ч/кг ХПК; 3) образование большого количества избыточного аэробного ила, который обусловливает возникновение новой экологической проблемы (требует его утилизации или захоронения); 4) для осуществления рассматриваемого способа требуются большие площади - 1 кг ХПК/м2; 5) очищенная сточная вода сбрасывается в рыболовные пруды.
В патенте РФ №1838415 предложен способ получения биогаза с использованием в качестве субстрата ацетонобутиловой барды с содержанием 1,93% сухих веществ. Субстрат обогащается метиловым спиртом в количестве 1,0% от объема сбраживаемой барды и хлористым кобальтом 10 г на 1 м3 барды. Согласно способу каждый 1,0 м3 барды образует 12,5 м3 метана.
Способ имеет следующие недостатки: 1) медленное формирование биоценоза анаэробных бактерий обусловливает применением в большом количестве дорогостоящих реагентов - метилового спирта и хлористого кобальта; 2) ограниченность области применения способа - только ацетонобутиловая барда; 3) низкий выход биогаза с единицы сбраживаемой барды - 12,5 м3/м3.
В патентах РФ №2115657 и №2266683 для стимуляции метанового брожения применяют смешанолигандное комплексное соединение цинка с ПАБК (парааминобензойная кислота, витамин В10) и глицином. Биокомплекс готовится отдельно и его раствором обогащается сбраживаемая среда. С использованием этого биокомплекса цинка в количестве 0,5 мг/л в сбраживаемых средах достигается более глубокое их выбраживание, сопровождаемое увеличением выхода биогаза. Важно отметить, что несмотря на использование указанного регулятора метаболизма бактерий количественный выход биогаза в основном зависит от природы сырья. Так при сбраживании ацетонобутиловой барды выход биогаза составлял 16,5 л/л субстрата против контроля 12 л/л; спиртовой барды (л/л) - 25 против контроля 22; коровий навоз (л/л) - 29 против контроля - 27.
Недостатки способа обусловлены: 1) большими расходами смешанолигандного комплексного соединения цинка; 2) основной недостаток способа в том, что он не обеспечивает получения не только физиологически полноценной питьевой воды, но и технологической воды; 3) очищенный сток сливается в рыболовные пруды.
Известен способ очистки сточных вод, загрязненных органическими веществами (патент Литовской Республики LT 51612), заменивший заключительную стадию очистки сточной воды (аэробный процесс очистки стоков) на электроплазменную технологию. Этот способ очистки сточных вод по наибольшему числу сходных признаков и достигнутому положительному эффекту рассматривается в качестве прототипа предлагаемого изобретения.
Согласно аналогу-прототипу технологическая очистка сточных вод от органических загрязнителей включает следующие основные операции. Сточная вода с высокой концентрацией органических веществ сначала разбавляется технологической водой основного производства и с помощью различных реактивов регулируется pH сточной воды до 7-8. После этого сточная вода направляется в предварительно инокулированный консорциумом (биоценозом) анаэробных бактерий биореактор из нержавеющей стали, в котором осуществляют предварительную очистку сточной воды при 33-35°C методом метанового брожения. После окончания брожения осуществляют доочистку сточной воды от образовавшихся суспензий и остаточных взвешенных веществ путем ее фильтрования. Следует отметить, что обеззараживание сточной воды, выходящей из анаэробного биореактора, достигается ультрафиолетовым облучением. Согласно цитируемому способу сточные воды перед направлением в анаэробный биореактор обогащают предшественниками активных центров внутриклеточных ферментов, усиливающих интенсивность метанового брожения. Для усиления брожения используют известные (патент РФ №2115657) смешанолигандные комплексные соединения Mg, Mn, Fe, Co, Сu в концентрации от 0,00014 до 0,494 г/л субстрата (дано по металлу). Следует отметить, что молекулярный состав биокомплексов и способ их приготовления в аналоге-прототипе не указаны. Окончательную очистку стоков вместо аэробного биореактора осуществляют, обрабатывая водный поток, выходящий из анаэробного биореактора, импульсными электроплазменными разрядами с дополнительным наложением внешнего магнитного поля. Для более полной очистки сточной воды от органических загрязнителей она перед обработкой электроплазменными разрядами подвергается электрокоагуляции и электрофлотации с последующим отстаиванием образовавшегося органического шлама, который после выпадения в осадок собирают в шламосборник. При необходимости небольшими порциями вводят коагулянт-катализатор в активном состоянии.
Недостатками способа являются: 1) использование без указания состава молекул смешанолигандных комплексных соединений пяти биогенных металлов, взятых из действующего патента РФ №2115657. Отсутствие указания о составе биокомплексов не представляет возможности их использования в способе для очистки промышленных стоков с разным составом органических загрязнений. Это связано с тем, что каждый сток обусловливает использование определенного состава молекул биокомплексов. Иначе возможно ингибирование процессов метанового брожения; 2) способ весьма энергозатратен; 3) разбавление технологической водой сточной воды существенно увеличивает объем воды для метанового брожения; 4) медленное формирование биоценоза анаэробных бактерий; 5) отсутствие способа регулирования метаболизма анаэробных бактерий сообщества; 6) указанное в способе оборудование промышленностью не производится и поэтому использование этого способа для очистки сточных вод агропромышленного комплекса и ЖКХ не представляется возможным; 7) главным недостатком способа является то, что он не позволяет получать физиологически полноценную питьевую воду.
Анализ изложенного материала указывает, что рассматриваемые аналоги имеют общие недостатки, обусловленные низкой физиолого-биохимической активностью биоценоза анаэробных бактерий, следствием которой является невысокая степень интенсификации сбраживания сточной воды, а следовательно, не полное решение экологической задачи очистки стока. Кроме того, рассматриваемые аналоги не позволяют получать из сточной воды физиологически полноценную питьевую воду.
В этой связи коллективом авторов настоящего изобретения в целях создания и внедрения высокоэффективных технологий переработки и утилизации техногенных образований и отходов, позволяющих рационально и основательно решать проблему, была разработана в рамках ФЦП "Исследования и разработка по приоритетным направлениям развития научно-технологического комплекса России на 2007-2012 годы" тематика: "Создание малоотходного экологичного энергоресурсосберегающего утилизирующего комплекса многоцелевого назначения (МЭЭУК МН) для агропромышленных холдингов, предприятий пищевой промышленности, жилищно-коммунального хозяйства и водоканалов". (Заявка зарегистрирована Министерством образования и науки РФ за номером 14092 от 15.07.2011 г. и была официально размещена на его сайте). Настоящее изобретение, наряду с приведенными в описании и другими работами авторов и коллег, является по существу основой для решения данной глобальной проблемы.
Техническим результатом предлагаемого изобретения являются: ускорение формирования биоценоза анаэробных бактерий с повышенным уровнем физиолого-биохимической активности, приводящего к усилению репродуктивности анаэробных бактерий на 10-15%, обладающих повышенным на 25-60% уровнем каталитического действия; интенсификация метанового брожения и увеличение глубины брожения сбраживаемого субстрата, приводящих к увеличению выхода биогаза с содержанием метана более 75%, к стабилизации брожения и снижению энергозатрат; сокращение продолжительности выхода анаэробного биореактора на проектный режим при его первичном запуске или после длительной остановки процесса брожения; снижение концентрации органических загрязнителей в жидкой фракции стока до 78%, что дает возможность удалить из технологической цепи дорогостоящий аэробный процесс очистки стоков из биореактора, в котором он осуществляется, а также связанных с аэробным илом экологических проблем; получение высокоурожайных экологически чистых минералоорганических удобрений, содержащих физиологически активные микроудобрения, позволяющие получать высокие урожаи с повышенной биологической ценностью при сниженной продолжительности времени (до 18-21 суток) созревания урожая; снижение себестоимости конечных продуктов. Предлагаемое изобретение позволяет получать оборотное водоснабжение с возможностью получения физиологически полноценной биологически активной питьевой воды. Под термином «биологическая активность воды» понимается приобретенное в результате внешних факторов свойство Н2О - влиять на процессы жизнедеятельности биологических объектов.
Технический результат достигается тем, что в предлагаемом способе получение биогаза и физиологически полноценной питьевой воды обусловлены следующими последовательными операциями технологии очистки сточной воды: 1 - кавитационная обработка сточной воды; 2 - отдельное приготовление биологически активной воды; 3 - разбавление ее в 10-30 раз в анаэробном биореакторе кавитационно обработанной сточной водой; 4 - внесение в сбраживаемую среду посевного материала с повышенной физиолого-биохимической активностью, обеспечивающего интенсивное метановое брожение, 5 - обогащение в биореакторе сбраживаемой среды биологически активными веществами (БАВ), обеспечивающими повышение анаэробным бактериям консорциума физиолого-биохимической активности и ведение с ними интенсивного метанового брожения, обусловившего более глубокое сбраживание сточной воды; 6 - сушка выработанного биогаза и его последующее использование в различных энергетических технологических операциях предприятия; 7 - получение возвратной технологической воды, достигаемое посредством фильтрации, вышедшей из анаэробного биореактора сброженной сточной воды и отделение от нее твердых частиц навозного стока; 8 - осадок на фильтрующем материале направляется для приготовления высокоурожайных минерально-органических удобрений, фильтрат представляет собой возвратную технологическую воду; 9 - получение физиологически полноценной и биологически активной питьевой воды, достигаемое путем фильтрации полученной технологической воды.
Итак, сущность первой операции технологии очистки жидкой фракции навозного стока состоит в ее кавитационной обработке, приводящей к обогащению сбраживаемой среды энергетическими и питательными веществами, которые образуются при разрушении сложных углеводов до уровня мономерных субъединиц; разложение клетчатки на простые сахара, разрушение полисахаридов на сахара и жиров на жирные кислоты, белков до аминокислот, а также деструкция токсичных веществ, например пестицидов и хлорорганических соединений на не токсичные вещества. Особенность образуемых перечисленных питательных веществ является хорошая их ассимиляция анаэробными бактериями сообщества. Кроме того, имеет место частичная деструкция частиц растительных отходов, сопровождаемая разрушением целлюлозы, гемицеллюлозы и частично лигнина до ассимилируемых бактериями углеводов. Следует также отметить, что при кавитационной обработке сточной воды имеет место последовательная деградация структурных элементов клеток микробного загрязнения, обогащающих сток минорными количествами углеводов, аминокислот, макро- и микроэлементами и т.д. Практическое получение перечисленных признаков обогащения сбраживаемой среды энергетическими и питательными веществами и деградации клеток микробного загрязнения служит основными критериями при выборе способов проведения кавитационной обработки стоков. Целесообразно проведение кавитационной обработки стоков обеспечением одновременного воздействия на водную среду ультразвуковых колебаний различной частоты, направленных навстречу друг другу: предпочтителен вариант, когда основная высокочастотная частота колебаний составляет 1,8 кГц, а частота колебаний, создаваемая низкочастотным источником, составляет 18 кГц при достижении в обрабатываемой среде индекса кавитации, равного 0,15-0,5 (Патент 2467956). Возможно проведение кавитационной обработки стоков гидродинамическим роторным кавитатором со ступенчатым повышением pH и с обеспечением гибели патогенной флоры по методу, изложенному в Патенте 2328450.
Особого внимания заслуживает вопрос, связанный с тем, что загрузка анаэробного биореактора кавитационно обработанной жидкой фракцией навоза осуществляется совместно с растительными частицами навозного стока, подвергшимися измельчению и диспергации с размером частиц 0,1 мк и выше и используемые в дальнейшем для приготовления органических удобрений, в которых эти дисперсные частицы выполняют функцию рекультиватора почв.
Обращаем внимание, при внесении этой дисперсной фазы в анаэробный биоректор следует помнить, что для обеспечения свободного перемещения фаз при газообразовании верхняя граница органических отходов в биореакторе должна составлять 10-15% от объема сбраживаемого субстрата.
Важно отметить, что среди глин медицинского назначения наибольшей позитивной эффективностью воздействия на биосистемы обладает черная глина вследствие содержания широкого спектра структурных примесей: кварца, Fe, Mg, Ca, Sr, AL и Si в виде оксидов и гидроксидов, мало растворимых в воде, что в свою очередь потребовало разработки способа получения растворимых соединений перечисленных металлов в воде. Имеются сведения, что черная глина из-за большого в ней содержания структурных примесей является средством, нормализующим клеточный обмен веществ, активирующим процессы детоксикации и кровообращения.
Возвращаясь к технологической операции приготовления биологически активной воды, следует отметить, что она приготовляется в отдельной емкости по способу, согласно которому сначала производилось смешивание порошка черной или голубой глины с 10% муравьиной кислотой при соотношении объемов глины и раствора кислоты 1:1,5-2,0. В результате смешивания 10%-ной муравьиной кислоты с порошком голубой или черной глины происходит стерилизация глины, а также взаимодействие кислоты с гидроксидами или оксидами металлов примесных веществ с образованием формиатов, находящихся на поверхности частиц порошка глины и хорошо растворимых в воде.
Перед смешиванием порошка глины с 10%-ной муравьиной кислотой в эту 10%-ную кислоту вносился силикат натрия в количестве 20 мг/дм3 (расчетный интервал потребления для человека 20-40 мг/день). Полученную смесь перемешивали, в результате реакции муравьиной кислоты с силикатом кремния образуется органическое соединение кремния - производный формиат кремния, который формируется путем замещения остатком SiO3 2- у 2-х молекул кислоты по гидроксилу. Производное формиата кремния имеет вид (НСО)2SiO3.
Полученный тестообразный порошок глины затем сушили на воздухе при комнатной температуре 22±2°C в течение 24-х часов. Затем глину прогревали при температуре выше температуры разложения кислоты (100,8°C), но при общепринятых режимах стерилизации, т.е в интервале температуры от 120 до 140°C в течение 5-10 минут (2-ой этап стерилизации порошка). Из физических свойств муравьиной кислоты представляет интерес то, что температура ее кипения (100,8°C) практически совпадает с температурой кипения воды (100°C). Интересно отметить, что температура плавления муравьиной кислоты равна 8,4°C, а ее соли характеризуются более высокими значениями температуры плавления и высокой растворимостью в воде (Р. Досон, Д. Элиот, У. Элиот, К. Джонсон. Справочник Биохимика. Издательство «МИР» 1991, стр.48, 49). Следовательно, при прогреве обработанного порошка глины имеет место как выкипание воды, так и разложение свободной кислоты, протекающей с выделением диоксида углерода и водорода. Следует отметить, что при выкипании свободной воды формиаты осаждаются на поверхности частиц глины.
После охлаждения подготовленной массы глины с формиатами она используется в качестве информационной матрицы, обеспечивающей изменение физико-химических показателей воды и ее биологической активности.
Обобщая изложенный материал, можно констатировать, что получение водорастворимых соединений примесных металлов глины, находящихся в ней в виде нерастворимых или мало растворимых в воде оксидов и гидроксидов, достигается путем смешивания порошка глины с 10% муравьиной кислотой при соотношении объемов 1:1,5-2,0. В результате реакции кислоты с оксидами и гидроксидами образуются водорастворимые формиаты металлов, ассимилируемые анаэробными бактериями.
Одновременно порошок обогащался производным формиата кремния, получаемого путем растворения в 10% кислоте силиката натрия (Na2SiO3) с концентрацией 20 мг/дм3 (по кремнию). Результатом их взаимодействия является продукт реакции - производное формиата кремния, локализованного также на поверхности частиц глины. Потенцирование исследуемой воды с помощью подготовленной массы глины осуществляется через создание дисперсной системы, в которой частицы глины (дисперсная фаза) с этой водой образуют большое количество поверхностей раздела, являющихся местом растворения ранее сформированных формиатов.
Обращаем внимание на то, что концентрированная муравьиная кислота (80%) при попадании на кожу вызывает сильные ожоги, что обусловило использование 10% муравьиной кислоты, которая при этой концентрации обеспечивает стерилизацию глины.
Несколько слов о действии кремния на организм. Использование кремния для обогащения воды обусловлено его широким спектром фармакологического действия на организм человека и животных. Так кремний в метаболических процессах организма тесно связан с обменом микроэлементов Ca, K, Cl, F, Na, S, Al, Mo, Со. Его соединения играют существенную роль во всех метаболических процессах живого организма, но особенно - в метаболизме липидов. Следует отметить, что в клетках кремний накапливается преимущественно в ядрах и митохондриях. [Воронков М.Г. Зелчан Г.И., Лукевиц Э.Я. Кремний и жизнь (Биохимия, фармокология и токсикология соединений кремния. Рига: Знание, 1978, 587 стр.]. Рекомендуемая ежесуточная норма потребления кремния для человека составляет 20-30 мг/сутки.
После охлаждения подготовленной массы глины с формиатами она используется в качестве информационной матрицы, обеспечивающей изменение физико-химических показателей воды и ее биологической активности. Для этого обработанный порошок глины помещается в емкость с водопроводной или технологической водой и тщательно перемешивается до образования взвеси. После самоосаждения частиц глины вода декантируется. Доказано, что декантированная вода структурирована и обладает биологической активностью. Под термином "структурированная вода" понимается измененное, по сравнению с обычной водой, под воздействием магнитного поля ее молекулярное строение. (Патент Ю.И. Шишкова, WO 2009101528 А4 "Структурированная вода, обработанная импульсными электроплазменными разрядами"). Под термином «биологическая активность воды» понимается приобретенное в результате воздействия на нее внешних факторов свойство Н2О влиять на процессы жизнедеятельности живого организма. Экспериментально установлено, что оптимальное значение окислительно-восстановительного потенциала (ОВП) внутренней среды организма человека, измеренное в системе платина - хлорсеребряный электрод, варьируется в пределах -50÷-100 мВ. Однако по данным других исследователей этот показатель находится в интервале от -50 до -70 мВ. Интересно отметить, что оптимальное значение ОВП полученной биологически активной воды равно -51,7 мВ. Высокая отрицательная величина ОВП указывает на наличие в воде свободных электронов и, чем больше отрицательное его значение, тем более высокой энергией эти электроны обладают. Отсюда следует, что электронодонорное свойство воды и энергия ее электронов являются важнейшими характеристиками внутренней среды организма, поскольку они напрямую связаны с фундаментальными процессами его жизнедеятельности. Наблюдаемый в эксперименте высокий отрицательный ОВП активированной воды указывает на более высокую энергию ее электронов, чем у воды контроля (чистая водопроводная или технологическая вода). Следовательно, у структурированной активной воды возрастают восстановительные свойства, повышающие жизнедеятельность организма, подтверждаемые модельными экспериментами на животных и дрожжах при приготовлении пшеничого хлеба. У животных, употреблявших активную воду вместо водопроводной воды, повысилась физическая выносливость и адаптационная способность приблизительно на 31% по сравнению с контрольными животными, пившими водопроводную воду. Пшеничный хлеб, выпеченный на активной воде, по качественным показателям превосходил контрольный образец хлеба, приготовленный на водопроводной воде. (Ю.И. Шишков, В.В. Голубев "Взаимосвязь энергетического гомеостаза и антиоксидантного статуса организма с замедлением процессов его старения", Международная научно-практическая конференция, "Россия-ЕС: сотрудничество по инвестициям и инновациям в области повышения здоровья населения и противодействия старению", 26-27 января 2012 г., г. Брюссель).
Итак, надосадочная вода характеризуется как структурированная и биологически активная вода, содержащая формиаты биогенных металлов. Перед началом метанового брожения декантированная активная вода направляется в биореактор, в котором она разбавляется в 10-30 раз кавитационно обработанной сточной водой. В соответствии с современными представлениями активная вода придает сточной воде свойства биологически активной структурированной воды, которая при воздействии на организм усиливает его биохимическую функцию.
Из всех известных механизмов регуляции обмена веществ биосистем (биологических систем) считают решающими механизмы, которые определяют биохимическую функцию организма. На основе изучения индукции и репрессии, и представлений белкового синтеза создана система представлений о регуляции активности внутриклеточных ферментов. К таким регуляторным механизмам относится индукция синтеза одного или нескольких ферментов компонентами питательной среды либо модуляция активности уже присутствующих в клетке ферментов.
Представляется, что структурированная сточная вода через перевод внутриклеточных ферментных систем бактерий, включая анаэробные бактерии сообщества, в конформационно-неравновесное состояние способствует повышению их активности, в свою очередь, отражающейся на интенсивности метаболизма живого организма. Отметим следующее, в биореакторе активная вода разбавляется сточной водой в 10-30 раз, обогащаясь при этом формиатами биогенных металлов в сверхнизких концентрациях. Важно подчеркнуть, что в последнее время формируется новое направление в науке о живых системах, связанное с явлениями, обусловленными влиянием ультранизких концентраций (10-11-10-18 М) различных БАВ и ультраслабых физических полей на биосистемы - от молекулярных до популяционных (Бурлакова Е.Б., Конрадов А.А., Мальцева Е.П. «Действие сверхмалых доз биологически активных веществ и низко интенсивных физических факторов» /Химическая физика. 2003, т.22, №2; Панасюк А.Л. "Формирование биологически активной воды", журнал "Пиво и напитки", 2009 г.). По данным цитируемой литературы эффекты сверхмалых доз в биосистемах связаны с образованием новой структуры воды как при растворении в ней веществ, так при значительном ее разбавлении. В анаэробных бактериях формиаты разрушаются на ион металла и формиат-ион, которые используются этими организмами в различных метаболических процессах. Так ионы металлов вовлекаются в биосинтез ферментов, а отрицательно заряженный формиат образует активное соединение с тетрагидрофолиевой кислотой, через которую он участвует в синтезе пуринов и образовании формилметионина-т-РНК, инициирующего синтез полипептидных цепей, а также вовлекается организмом в синтез других важнейших для него соединений, получаемых при протекании биосинтетических реакций.
Заслуживает внимания тот факт, что в отличие от анаэробных бактерий сообщества метаногены ассимилируют формиат в качестве источника углерода для синтеза метана.
Упомянув о действии формиатов металлов на организм, можно отметить, что с целью увеличения интенсивности белкового и углеводного обмена всех анаэробных бактерий консорциума питательная среда должна быть обогащена регуляторами их метаболизма. Поэтому в сточную воду помимо формиатов металлов дополнительно вносилась смесь биологически активных веществ (БАВ). Эти БАВ являются органической формой биогенных металлов (Co, Cu, Mg, Mn, Fe, Zn, Se), имеющих координативную или ковалентную связь с органическими соединениями. Соединения, входящие в состав смеси БАВ, были приготовлены по способам, описанным в наших действующих патентах РФ №2115657 и №2266683. В отличие от прототипа эти соединения не являются предшественниками активных центров внутриклеточных ферментов, а представляют собой транспортные средства по доставке в клетку биологически активных веществ (БАВ), вовлекаемых ею в различные процессы метаболизма. Доказано, что биогенные металлы органической формы с указанными химическими связями транспортируются в клетки по механизму активного трансмембранного переноса с затратой энергии, создаваемой на мембране градиентом электрохимического потенциала, т.е. трансмембранный перенос в клетку этих соединений может осуществляться против градиента концентрации. Итогом их участия в процессах метаболизма является корригирование физиолого-биохимической активности клеток и соответственно интенсивности их метаболизма.
Обращаем внимание на то, что синтезируемые сукцинат железа в дозе 10 мг/л (по железу) и производное селеноцистеина с концентрацией 1,0 мкг/л (по селену) по способам, описанным в цитируемых патентах, в организме формируют соединения, которые с химической позиции обладают способностью участвовать в окислительно-восстановительных реакциях гомолитического (радикального) типа. В таких реакциях эти соединения выступают в роли восстановителя (донора электрона) по отношению к какому-либо радикальному субстрату R•, переходя при этом в свою окисленную форму. Таким образом, формируемые этими биогенными металлами соединения антиоксидантного действия уменьшают кумулятивные эффекты от окислительных повреждений, способных привести даже к гибели клеток.
Для усиления антиоксидантной защиты метаногенов от негативного действия кислорода сбраживаемая вода дополнительно обогащалась аквакомплексным соединением меди с витамином С. Отметим, что молекула воды в молекуле комплекса крайне лабильна и обеспечивает активный трансмембранный перенос комплекса в клетки. Концентрация аквакомплекса меди в среде 0,00014 г/л (по меди), в то время как токсическое действие меди на бактерии сообщества составляет 170-300 мг/л (или 0,17-0,3 г/л). В организме аскорбат меди разлагается на ионы меди и аскарбиновую кислоту - витамин С, участвующие в различных процессах. Если биологическая роль высвободившейся в организме аскорбиновой кислоты связана с участием в окислительно-восстановительных процессах, то ионы двухвалентной меди вовлекаются организмом в формирование простетических групп некоторых ферментов, например, медь входит в состав простетических групп оксидаз (тирокиназа, аскорбатоксидаза и цитохромоксидаза).
Итак, аскорбиновая кислота согласно химическим свойствам способна обратимо окисляться в дегидроаскорбиновую кислоту, образуя окислительно-восстановительную систему, связанную с отщеплением и присоединением электронов и протонов. Окисление может быть вызвано различными факторами, в частности кислородом воздуха, перекисью водорода и др. Таким образом, аскорбиновая кислота проявляет четко выраженные антиоксидантные свойства. Для повышения антиоксидантного статуса анаэробных бактерий сообщества в состав водной смеси БАВ было внесено производное сеноцистеина совместно с побочными продуктами реакции образования этого соединения. Следует особо отметить, что в организме производное селеноцистеина участвует в биосинтезе повышенной активности ключевого фермента антиоксидантного ряда организма - глутатионпероксидазы. При этом в организме побочный продукт - окисленная форма глутатиона восстанавливается и его восстановленная форма является антиоксидантом. Таким образом, формируемые антиоксиданты повышают антиоксидантный статус консорциума анаэробных бактерии, следствием которого являются, во-первых, устранение нарушений у самих анаэробных бактерий, во вторых, с ростом антиоксидантного статуса у них увеличивается активность биотрансформации находящихся в воде пестицидов и хлорорганических соединений. Ранее было обнаружено, что эти соединения биотрансформируют до 20% находящихся в водной среде пестицидов и хлорорганических соединений.
Известно, что антибиотики поступают с жидкую среду навоза от животных, которым прописаны антибиотики. Установлено, что антибиотики сбраживаемого субстрата угнетают активность ферментов у анаэробных бактерий консорциума или полностью прекращают их действие и в результате нарушается нормальный обмен веществ в организме, следствием которого является снижение активности метанового брожения или его прекращение. Однако с ростом антиоксидантного статуса предупреждается вызываемые антибиотиками нарушения в организме и он функционирует на уровне физиологической нормы.
Кобальт (Со2+) стимулирует процессы распада углеводов. Доказано, что аквааминное соединение кобальта транспортируется в клетку по механизму активного трансмембранного переноса с использованием энергии, создаваемого на мембране градиента электрохимического потенциала. Концентрации кобальта в сбраживаемом субстрате обычно соответствует 0,00014 г/л среды. Он оказывает влияние на белковый обмен, активирует аргиназу. Установлено, что кобальт входит в состав цианкобаламина (витамина В12), который синтезируется, в частности метаногенами. Биологическая роль этого витамина в организме связана не свободным витамином B12, а с так называемыми В12 - коферментами. Поэтому химические реакции, в которых витамин В12 принимает участие как кофермент, условно делят на две группы в соответствии с его химической природой. К первой группе относятся реакции трансметилирования, где он выполняет роль промежуточного переносчика метильной группы (сюда относится реакция синтеза ацетата - важного продукта питания для бактерий метанового брожения). Вторая группа реакций заключается в переносе водорода и образовании новой углеродводородной связи. Лечебный эффект витамина В12 не рассматривается.
В состав смеси БАВ были включены в строго определенной концентрации: сукцинат цинка в количестве 0,00045 г/л (по цинку), смешанолигандное соединение магния с никотинамидом - витамин В5 и глицином в дозе 0,49 г/л (по магнию), аквакомплекс марганца с пантотеновой кислотой и цистеином в количестве 0,25 г/л (по марганцу), сукцинат железа в дозе 0.0010 г/л (по железу) и аквааминный комплекс кобальта с глицином с концентрацией 0,014 г/л (по кобальту).
Обобщая изложенный материал, можно констатировать, что усиление антиоксидантного статуса анаэробных бактерий сообщества - гарантия их защиты от свободнорадикальных реакций, вызывающих те или иные нарушения в организме. Усиление антиоксидантного статуса анаэробных бактерий в совокупности с воздействием формиатов и БАВ на анаэробные бактерии сообщества способствуют корригированию их метаболизма, достигаемое за счет биосинтеза организмом ферментов с повышенным уровнем каталитического действия. Отсюда наблюдается стабильное усиление интенсивных процессов метанового брожения. При этом отмечается прямая коррелятивность между ростом микроорганизмов, их активной жизнедеятельностью и образованием главных и других продуктов метаболизма, влияющих на биосинтез метана метаногенами, поскольку брожение - это внутренний окислительно-восстановительный процесс, называемый также анаэробным дыханием, отличающийся от аэробного дыхания. Это отличие обусловлено весьма существенным различием в природе акцепторов электронов, используемых при аэробном и анаэробном типах брожения. Так при аэробном дыхании акцептором электронов является кислород, в то время как при анаэробном дыхании роль конечного окислителя или акцептора электронов играет обычно какая-нибудь органическая молекула, образуемая в ходе самого брожения. Отсюда под термином «брожение» следует понимать такие энергетические процессы, в которых углеродсодержащие соединения функционируют одновременно как доноры, так и акцепторы электронов.
К настоящему времени установлено, что центральное место в обмене веществ организмов занимают гликолиз и брожение. Гликолиз осуществляет ферментативное анаэробное расщепление углеродсодержащих соединений под действием ферментов. Таким образом, в результате процессов гликолиза и брожения происходит освобождение энергии, заключенной в молекулах углеродсодержащих соединений. Эта энергия частично трансформируется в энергию АТФ, используемую организмом для обеспечения различных физиологических видов работ. В этом случае представляет интерес вносимая в сбраживаемую среду смесь БАВ, способствующая биосинтезу АТФ у анаэробных бактерий приблизительно на 20-30% выше, чем в контроле. Этот принцип, несомненно, работает в отношении метаногенов. Возможность их развития и формирование у них АТФ, с нашей точки зрения, усиливается вследствие повышения антиоксидантного статуса у этих облигатных анаэробов. Представляется, что все это в совокупности обеспечивает биоценозу анаэробных бактерий проведение устойчивого и активного процесса метанового брожения.
Изложенное поясняется экспериментальными фактами, приведенные в примере 1.
Пример 1.
Перед метановым сбраживанием навозного стока производилась обработка ультразвуком 2 л жидкой фракции навоза КРС (крупного рогатого скота). Обработку стока проводили на лабораторной установке Elma 949M в режиме: мощность - 340 Вт, температура 25°C, продолжительность обработки сточной воды с твердыми частицами 1,0 час.
Исходное ХПК стока - 4200 мг O2/л, взвешенных частиц до 110 мг/л. Обработанная ультразвуком жидкая фракция навоза КРС уменьшила содержание взвешенных частиц до 104 мг/л.
После окончания обработки стока ультразвуком взято было 10 мл отдельно приготовленной структурированной и биологически активной воды, которую поместили в 2 л стеклянную емкость и разбавили ее в 10 раз обработанным ультразвуком жидкой фракции навоза КРС. Затем в этот раствор добавляли 2 мл указанной ранее смеси БАВ. Раствор тщательно перемешивали и после этого внесли посевной материал - консорциум анаэробных бактерий в количестве 0,3 л (или 30% от объема бродящей среды), взятый с городской очистительной станции. Процесс метанового брожения проводился в мезофильном режиме в течение 2,5 суток. Затем метановое брожение стока проводили с ежесуточной заменой 25% сброженной среды на свежую с добавлением 2 мл раствора БАВ. В качестве свежей среды использовали ранее обработанную ультразвуком жидкую фракцию навоза. Процесс брожения контролировали по значению ХПК. Следует особо отметить, что по истечении 4-х суток метанового брожения навозного стока наблюдалось увеличение биомассы консорциума анаэробных бактерий приблизительно на 20-30%. При этом наблюдалось уменьшение ХПК на 3276 мг О2/л, т.е. на 78% от исходной величины ХПК. Выход биогаза составил 0,41 дм3/л среды.
Наблюдаемый экспериментальный факт убедительно доказывает, что в анаэробных условиях очистки воды сочетаются два процесса: размножение бактерий с энергичным сбраживанием углеводов. Отсюда можно придти к выводу, что регулирующим фактором, обеспечивающим в значительной мере интенсивное размножение бактерий сообщества, является высокая концентрация питательных веществ в сбраживаемой сточной воде.
Пример 2 (контроль)
В контрольном опыте консорциум анаэробных бактерий выращивали в жидкой фракции навоза КРС, не прошедшего кавитационную обработку, без добавки БАВ и биологически активной воды. Далее сбраживание жидкой фракции навоза проводили по аналогии с опытным вариантом эксперимента.
В итоге по окончании метанового брожения в контрольном эксперименте наблюдалось снижение ХПК на 1638 мг О2/л или 38% от исходного значения. Выход биогаза составил 0,32 дм3/л среды. Таким образом, ведение метанового брожения по предлагаемому способу (пример 1) способствует увеличению выброду стока (приблизительно на 40%) и увеличению выхода биогаза на 46% по сравнению с контролем.
Пример 3
Эксперимент проводили по аналогии с примером 1. Отличие состояло в том, что перед кавитационной обработкой навозного стока для выявления в ней микрофлоры отбиралась сточная вода и наносилась на чашки Петри с питательной средой и производилось выращивание микрофлоры. Выращенная микрофлора содержала бактерии группы кишечной палочки, молочнокислые бактерии, клостридии и споры гельминтов. Важно подчеркнуть, что после ультразвуковой обработки навозного стока и его анаэробной очистки микрофлора и споры гельминтов не были жизнеспособными.
Пример 4
Эксперимент проводили по аналогии с примером 3 отличие было в том, что в навозный сток внесли семена злаков: пшеницы и ячменя. Перед началом эксперимента часть семян злаков помещали на фильтровальную бумагу чашек Петри, смоченную водопроводной водой и осуществляли проращивание семян при комнатной температуре. Прорастание семян оценивали по появлению проростков. До ультразвуковой обработки и метанового брожения этого стока все исследуемые семена злаков проросли. После ультразвуковой обработки стока с семенами осуществляли метановое сбраживание навозного стока с семенами злаков. По окончании метанового брожения семена злаков извлекались и помещались в чашки Петри с фильтровальной бумагой, смоченной водопроводной водой. После этого проводили проращивание семян. Однако после указанных технологических операций семена не проросли. Наблюдаемые результаты позволяют сделать вывод, что склероции (спорынья, выросшая на злаковых; примесь склероциев в муке или корме вызывает тяжелое заболевание - эрготизм, ранее «антонов огонь») после метанового сбраживания жидкой фракции навозного стока, проводимого по заявляемой технологической схеме, будут не жизнеспособными. Это особенно важно, если принять во внимание, что по предлагаемой технологии очистки навозного стока будет приготовлено минерально-органическое удобрение.
Таким образом, результаты экспериментов 3-4 свидетельствуют о том, что очистка сточной воды по новой технологической схеме полностью убивают микрофлору и паразиты растительного организма.
Анализ результатов проведенных экспериментов указывает на зависимость регуляции биохимических процессов биоценоза анаэробных бактерий от условий их культивирования, связанной прежде всего с составом питательной среды. Известно, что внешние условия определяют химический состав клеток, в том числе и анаэробных бактерий сообщества, который в свою очередь обусловливает их биохимическую функцию. Эта функция в конечном итоге определяются ферментами, их биосинтезом и уровнем каталитического действия. Оказалось, что под действием смеси БАВ клетки синтезируют ферменты повышенного уровня активности по сравнению с контролем приблизительно на 25-60% при незначительном увеличении биомассы до 10-15% от исходного количества. Следовательно смесь БАВ повышает физиолого-биохимическую активность анаэробных бактерий сообщества.
Следует заметить, что особи популяции имеют различный химический состав, приводящий к разнообразию их физико-химического состояния. Совокупность литературных данных и результатов собственных исследований позволяет сделать вывод, что следствием разнообразия физико-химического состояния особей популяции является и неадекватность степени очистки сточной воды у различных особей этой популяции. Итак, изменение химического состава у отдельных особей консорциума анаэробных бактерий прежде всего отражается на изменении состава клеточной мембраны, а именно на соотношении количества липидов с ненасыщенными жирными кислотами и липидами с насыщенными жирными кислотами. Это отражается на величине биопотенциала поверхностной мембраны. Результаты сравнительных экспериментов, проводимых со смесью БАВ, свидетельствуют о том, что эти изменения состава мембран сопровождаются ростом у них величины отрицательного значения ОВП поверхностной мембраны. Таким образом, увеличение у анаэробных бактерий сообщества отрицательного биопотенциала поверхностных мембран приводит к электростатическому отталкиванию отдельных особей, снижая этим их агглютинацию (агрегацию, склеивание). Отсюда характерной особенностью ключевой группы микробной популяции является то, что поверхность у особей этой группы популяции не блокирована соседними бактериями и поэтому ферменты у них доступны для органических веществ сточной воды. Таким образом, наблюдается тенденция уменьшения ХПК и ЛЖК и, напротив, возрастание выхода биогаза с увеличенным содержанием метана. При этом рост культуры не только не замедляется, но и не прекращается.
Иная картина наблюдается у микробов популяции с невысоким значением отрицательного ОВП, т.е. отрицательной величины биопотенциала поверхностной мембраны - они склеиваются в гранулы, также разрушающие органические вещества сточной воды с образованием метана, но уже в меньшей степени, чем не агглютинированные бактерии. Подобная картина имеет место при классическом способе ведения метанового брожения (Lettinga et al., 1980). Установлено, что образуются пористые гранулы величиной 0,5-2,5 мм, в которых количество микроорганизмов варьирует в пределах 1-4·1012/1 гр сухих веществ (Raluznhnyl et al. 1996). С образованием гранул имеет место частичное блокирование поверхности особей микробной популяции, а следовательно, доступ субстрата к ферментам анаэробных бактерий консорциума, что естественно отражается на интенсивности метаболизма бактерий и естественно на выходе биогаза. К изложенному следует добавить, что накопление в биореакторе ЛЖК около 200 мг/л вызывает уплотнение гранул, сопровождаемое ухудшением условий доступа субстрата внутриклеточным ферментам, следствием которого является снижение выхода биогаза и степени очистки сточной воды. Содержание в биореакторе ЛЖК может достигать величины 600-1500 мг/л. Кроме того, образовавшиеся гранулы характеризуются высокой способностью к седиментации, что приводит к их выводу из зоны активной конверсии органических загрязнителей стоков в биогаз.
К изложенному следует добавить немаловажный факт, имеющий отношение к рассматриваемой теме. Сущность этого факта состоит во взаимосвязи роста физиолого-биохимической активности анаэробных бактерий консорциума с усилением ассимилирования ими питательных веществ среды, в том числе фосфорсодержащего субстрата, являющегося основным источником образования осадка - струвита, забивающего выходящий трубопровод из анаэробного биореактора. Таким образом, следствием усиления ассимилирования анаэробными бактериями фосфорсодержащих соединений является снижение степени осаждения струвита на выходящих трубопроводах анаэробного биореактора, увеличивая этим продолжительность его работы без капитального ремонта - освобождение от струвита является дорогостоящим мероприятием и продолжительным по времени (от иочистки жидкой фракции навоза и сточных вод ЖКХ свидетельствует о том, что процесс метанообразования практически сразу откликается на изменение физико-химического состояния сбраживаемой среды. Этот отклик анаэробных бактерий сообщества связан с химическим изменением состава организмов, поддерживающим их высокую физиолого-биохимическую активность при пиковых нагрузках на анаэробный биореактор и даже после кратковременных перерывов в подаче сточной воды в биореактор.
Согласно вышеприведенной технологической схеме получения биогаза по способу предлагаемого изобретения образовавшийся в анаэробном реакторе биогаз направляется в аппарат сушки и затем для обеспечения энергией животноводческой фермы или других производств. Предварительно очищенный в анаэробном биореакторе навозный сток направляется на окончательную очистку, осуществляемую использованием фильтров с разными фильтрующими элементами. Снова обращаем внимание на удаление из технологической цепи очистки стоков операции, связанной с аэробным процессом и вызываемыми им проблемами: высокими энергозатратами на аэрацию сточных вод; образованием вторичной экологической проблемы, обусловленной утилизацией вторичных отходов - аэробного активного ила. Согласно технологической схеме аэробный биореактор с активным аэробным илом заменяется фильтром, заполненным специальным фильтрующим элементом.
Итак, сначала предварительно очищенный сток воды из анаэробного биореактора направляется в фильтр с загрузкой из смеси отработанного порошка черной глины и шунгитового щебня фракцией 20-40 мм. В используемом фильтре толщина слоя смеси, расположенной на металлической или капроновой сетке, не менее 20 см. Чем толще слой, тем качественнее очистка. Расположение фильтрующего материала на сетке позволяет быстро заменять отработанную смесь на новую. Отметим, что основой фильтрующей смеси компонентов является шунгит, представляющий собой природный композит Зажогинского месторождения Республики Карелия. Этот природный композит состоит из аморфной силикатной матрицы, заполненной высокодисперсными кристаллическими частицами алюмосиликатов со средним размером 1,0 мкм. В минеральном составе шунгита содержится в среднем 70% углерода и 30% золы, в составе которой находится 40-50% оксида кремния и 12-25% оксида алюминия. В остальной части минеральной золы содержатся более 20 окислов макро- и микроэлементов, среди которых TiO2 составляет 0,2%, Аl2O3 до 4%, FeO (2,5%), MgO (1,2%), K2O (1-6%), Na2O (1-5%), S (1%). Количество углерода в шунгите зависит от его месторождения. Основу шунгитового углерода представляет многослойная фуллереновая глобула диаметром 10-30 нм. Фуллерены представляют собой новый особой формы углерод, содержащийся в шунгите до 0,001 мас.%. Фуллерены характеризуются высокой активностью в окислительно-восстановительных процессах, а также обладают адсорбционными, каталитическими свойствами и бактерицидным действием.
Доказано, что уникальные свойства для питьевого водоснабжения: каталитические, сорбционные и бактерицидные свойства шунгиту придают фуллерены. Фуллерены находятся в воде в виде молекулярно-коллоидного раствора, оказывая на организм человека и животных многоплановое целебное действие, в том числе мощное длительное антиоксидантное действие.
Благодаря обладанию шунгитом каталитических свойств он разрушает разного типа органические вещества до элементарных оксидов (CO2, H2O). На сегодняшний день установлены следующие органические вещества, разрушаемые шунгитом: фенолы, жирные высокомолекулярные кислоты, спирты, вещества лигноуглеводного комплекса, древесные и торфяные гидролизаты, водорастворимые смолы гидролиза, гуминовые вещества, а также ряд газов. При этом шунгит осаждает (на 70-90%) из воды нерастворимые соли (карбонаты, оксилаты и др.). К изложенному следует добавить литературные сведения, указывающие о разрушении шунгитом нефтепродуктов и его способность нейтрализовать цветность воды.
Важно отметить, что шунгит, разрушая в воде органические вещества, одновременно корректирует ее состав, насыщая полезными микроэлементами.
Шунгит обладает качествами, необходимыми для хорошего фильтрующего элемента вследствие высокой механической прочности, электропроводности, химической стойкости, мс, но в то же время ему свойственны каталитические и бактерицидные свойства. Шунгит имеет суммарную пористость 5-10% и значительную внутреннюю поверхность 10-30 м2/г. насыпную плотность около 1,1 г/см3. Изучение физических, химических и биологических свойств шунгита показало, что он вполне пригоден для очистки воды от различных промышленных загрязнителей, а также бытовых стоков. Кроме того, он подвержен многократной регенерации. Доказана возможность использования дробленного шунгита в качестве фильтрующего материла различного типа пропускных систем как на начальной стадии очистки, так и на конечной. Шунгит рекомендован Центром Госсанэпиднадзора Республики Карелия в качестве фильтрующего и сорбирующего материала (гигиеническое заключение №10. КЦ. 31.216. П. 00064. 02.99 от 04.02.99).
Таким образом, прохождение частично загрязненной воды через шунгитовый фильтр обусловливает ее осветление и разложение газов, придающих воде специфические запахи.
Следует отметить и такой немаловажный факт, как структурирование шунгитом очищенной сточной воды. Структурированную воду считают регулятором обмена веществ у биосистем, т.е. регулятором физиолого-биохимической активности клеток.
Другим компонентом фильтрующей смеси 1-го фильтра является порошок черной глины, основа которой каолинит. Высокая удельная поверхность и деформируемость кристаллической структуры каолинита являются основными факторами, определяющими характер образования коагуляционных дисперсий и деформационных процессов, протекающих в них. Обилие сколов кристаллической решетки каолинита и не компенсированных зарядов придает этому виду глины абсорбционные свойства, обусловившие использование отработанного ранее порошка глины в составе фильтра для очистки стоков после метанового брожения и получения технологической воды. Поэтому порошок глины после 3-кратного использования для получения биологически активной воды, разбавленной жидкой фракцией навоза, приводит к ее структурированию и обогащению формиатами биогенных металлов. Отработанный порошок глины сушится на воздухе для последующего использования в качестве фильтрующего материала.
Твердые частицы сброженного стока осаждаются на фильтре, осадок отмывается в шламосборнике технологической водой. Освобожденный от осадка фильтрационный элемент снова используется для очистки стока. Полученный осадок на воздухе подсушивается и представляет собой высокоэффективное, экологически чистое органическое удобрение с влажностью 80%, включающее цельные бактерии, их мембраны; продукты лизиса бактерий, а также метаболиты анаэробных бактерий сообщества, метаногены, содержащие витамин B12, а также частицы растительных организмов, в том числе частично разрушенные гемицеллюлоза и лигнин. Последующее обогащение этого удобрения предшественниками активных центров окислительно-восстановительных и других внутриклеточных ферментов, используемых в качестве микроудобрения, превращает органическое удобрение в высокоурожайное минерально-органическое удобрение, составляющие которого повышают физиолого-биохимическую активность микроорганизмов при корневой системе. Важно то, что данное органоминеральное удобрение способно формировать в растительном организме полноценный в функциональном отношении фотосинтетический аппарат, вся деятельность которого неразрывно связана с общим метаболизмом растения. Согласно полевым испытаниям данного типа микроудобрения позволяют получать повышенные урожаи сельхозпродуктов (на 20-30%) при сокращении продолжительности его созревания на 15-20 суток. При этом урожай сельхозпродуктов характеризуется не только высокими питательными, вкусовыми и товарными качествами, но и повышенной биологической ценностью, что весьма важно для функционально регулирующей медицины. Таким образом, применение нового органоминерального удобрения является важной составной частью организации эффективной системы сбалансированного питания растений полным комплексом элементов, необходимым при использовании интенсивных технологий возделывания сельскохозяйственных культур.
Важно отметить, что предварительно очищенный в анаэробном биореакторе сток после прохождения через фильтрующую смесь 1-го фильтра приобретает свойства технологической структурированной воды, используемой в оборотном водоснабжении.
Согласно Сан Пин 2.1.4.559-96 шунгит можно использовать для доочистки пищевых жидкостей и воды центрального водоснабжения. Отсюда технологическая вода, выходящая из 1-го фильтра, направляется на рециркуляцию обратно в биореактор и может быть объектом для превращения ее в физиологически полноценную питьевую воду. Это достигается тем, что полученная технологическая вода освобождается от растворенных в воде органических соединений, не трансформированных в 1-ом фильтре. Это достигается путем фильтрации сяэлементом - щебнем шунгита с размером фракции от 20-40 мм и высотой загрузки от 20 до 50 см. (Гигиеническое заключение №121-5/873-6 от 30.10.81 Минздрава СССР).
После прохождения 2-го фильтра с щебнем шунгита технологическая вода доочищается от растворенных органических соединений, приобретая качества физиологически полноценной питьевой воды без специфического запаха, свойственного животноводческим навозным стокам.
Обобщая изложенный материал по модернизированной технологии очистки навозных стоков и стоков ЖКХ, можно придти к выводу, что очистку этих стоков по предложенной технологической схеме можно осуществить с помощью анаэробного биореактора из железобетона, футерованного изнутри полимерным покрытием из полиэтилена низкого давления, что снижает образование струвита на поверхности биореактора. Применение железобетонного анаэробного биореактора вместо анаэробного биореактора из дорогостоящей легированной стали снижает в 3-5 раз затраты на приобретение анаэробного биореактора.
Наблюдаемое существенное увеличение материального обмена между анаэробным бактериальным сообществом и окружающей средой имеет определенные методологические преимущества перед бактериями, не подвергавшимися воздействию указанных БАВ. Высокая степень сокращения ХПК жидкой фракции навоза (до 78%) указывает на то, что одна анаэробная ступень очистки обеспечивает получение очищенной воды, соответствующей нормам нормативной документации рыбохохозяйственных водоемов. В связи с этим отпадает необходимость доочистки сброженного стока с использованием аэробного активного ила. Устранение в технологии доочистки стока с помощью аэробной операции предотвращает 1) возникновение второй экологической проблемы, связанной с утилизацией излишков биомассы активного аэробного ила, 2) снижает энергозатраты на аэрацию активного аэробного ила, 3) устраняет необходимость использования металлоемкого и дорогостоящего аэробного биореактора.
Применение анаэробного биореактора из железобетона и удаление из технологической схемы аэробной очистки стоков и аэробного биореактора - экономически выгодное использование метанового брожения очистки навозных стоков, получения биогаза - источника энергии и экологически чистой воды как технологического назначения, так и физиологически полноценной питьевой воды.
Claims (1)
- Способ очистки фракции навозного стока и сточной воды ЖКХ с использованием метанового брожения, осуществляемого биоценозом анаэробных бактерий, включающий:
1) кавитационную обработку жидкой фракции навоза или сточной воды;
2) отдельное приготовление структурированной и биологически активной воды, получаемой растворением в водопроводной или технологической воде предварительно обезвоженной смеси порошка черной или голубой глины с 10% муравьиной кислотой при соотношении объемов глины и раствора кислоты 1:1,5-2,0, в которую вносится силикат натрия в количестве 20 мг/дм3 для получения формиата кремния;
3) разбавление в анаэробном биореакторе структурированной и биологически активной воды в 10-30 раз кавитационно обработанной жидкой фракцией навоза или сточной водой;
4) приготовление раствора биологически активных веществ (БАВ) - водорастворимых формиатов биогенных металлов: сукцинат цинка 0,00045 г/л (по цинку), смешанолигандное соединение магния с никотинамидом и глицином в дозе 0,49 г/л (по магнию), аквакомплекс марганца с пантотеновой кислотой и цистеином в количестве 0,25 г/л (по марганцу), сукцинат железа в дозе 0,0010 г/л (по железу) и аквааминный комплекс кобальта с глицином с концентрацией 0,014 г/л (по кобальту);
5) заполнение биореактора раствором БАВ в объеме 0,1% от общего объема сбраживаемой среды с тщательным перемешиванием;
6) внесение посевного материала - консорциума анаэробных бактерий в биореактор в количестве 30% от объема сбраживаемой среды для осуществления метанового брожения;
7) ведение метанового брожения в мезофильном режиме с ежесуточной заменой 25% сброженной среды на свежую с добавлением раствора БАВ в объеме до 0,1% от объема сбраживаемой массы, полная загрузка биореактора и выход на режим с получением уменьшения ХПК на 78% от исходной величины и с повышенным содержанием метана (свыше 75%) в вырабатываемом биогазе;
8) сушку выработанного биогаза;
9) получение возвратной технологической воды фильтрацией сбраживаемой жидкости через первый биологический фильтр, заполненный смесью фильтрующих элементов, включающих обработанный порошок черной глины и щебня шунгита;
10) направление первого биологического фильтра с осевшими твердыми частицами в шламосборник для освобождения от осадка, направляемого для приготовления экологически чистого органического удобрения;
11) направление просочившейся через первый биологический фильтр технологической воды на рециркуляцию обратно в биореактор или на последующую фильтрацию через второй фильтр, содержащий шунгитовый щебень с размером фракции от 20-40 мм и высотой загрузки от 20-50 см, с получением физиологически полноценной питьевой воды.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2012113103/10A RU2513691C2 (ru) | 2012-04-04 | 2012-04-04 | Способ очистки фракции навозного стока преприятий апк, сточной воды жкх и водоканалов с использованием метанового брожения |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2012113103/10A RU2513691C2 (ru) | 2012-04-04 | 2012-04-04 | Способ очистки фракции навозного стока преприятий апк, сточной воды жкх и водоканалов с использованием метанового брожения |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2012113103A RU2012113103A (ru) | 2013-10-10 |
RU2513691C2 true RU2513691C2 (ru) | 2014-04-20 |
Family
ID=49302707
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2012113103/10A RU2513691C2 (ru) | 2012-04-04 | 2012-04-04 | Способ очистки фракции навозного стока преприятий апк, сточной воды жкх и водоканалов с использованием метанового брожения |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2513691C2 (ru) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107473548A (zh) * | 2017-07-30 | 2017-12-15 | 谈玉靓 | 高效清洁的畜牧粪便处理方法 |
CN107512821A (zh) * | 2017-07-30 | 2017-12-26 | 谈玉靓 | 节约资源畜牧粪便处理方法 |
RU2644013C2 (ru) * | 2014-05-19 | 2018-02-07 | Владимир Викторович Голубев | Способ получения экологически чистых минералоорганических удобрений при метановом брожении на биогазовых станциях |
RU2726514C1 (ru) * | 2019-11-11 | 2020-07-14 | Григорий Алексеевич Кудряшов | Способ очистки сточных вод и переработки осадка в органические удобрения |
US12351496B2 (en) * | 2021-06-11 | 2025-07-08 | The Governors Of The University Of Alberta | Microbial assisted phosphorous recovery under anaerobic condition |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108298724A (zh) * | 2018-02-09 | 2018-07-20 | 深圳市明德环科生态科技有限公司 | 一种粪便污水处理方法及系统 |
CN114671581B (zh) * | 2022-03-23 | 2023-08-25 | 中国海洋大学 | 一种通过em菌开发污泥内碳源实现污泥资源化利用的方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2115657C1 (ru) * | 1996-02-01 | 1998-07-20 | Юрий Иванович Шишков | Аквахелат, способ получения аквахелата, способ модулирования характеристики культуры клеток, культуры ткани, одноклеточного организма или многоклеточного организма и транспортная система |
RU2266683C1 (ru) * | 2004-04-16 | 2005-12-27 | Шишков Юрий Иванович | Способ увеличения биологической ценности продуктов питания |
LT5612B (lt) * | 2008-02-14 | 2009-11-25 | Ooo "Maks K", , | Maisto pramonės technologijų ekologizavimo būdas ir sistema jam įgyvendinti |
-
2012
- 2012-04-04 RU RU2012113103/10A patent/RU2513691C2/ru not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2115657C1 (ru) * | 1996-02-01 | 1998-07-20 | Юрий Иванович Шишков | Аквахелат, способ получения аквахелата, способ модулирования характеристики культуры клеток, культуры ткани, одноклеточного организма или многоклеточного организма и транспортная система |
RU2266683C1 (ru) * | 2004-04-16 | 2005-12-27 | Шишков Юрий Иванович | Способ увеличения биологической ценности продуктов питания |
LT5612B (lt) * | 2008-02-14 | 2009-11-25 | Ooo "Maks K", , | Maisto pramonės technologijų ekologizavimo būdas ir sistema jam įgyvendinti |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2644013C2 (ru) * | 2014-05-19 | 2018-02-07 | Владимир Викторович Голубев | Способ получения экологически чистых минералоорганических удобрений при метановом брожении на биогазовых станциях |
CN107473548A (zh) * | 2017-07-30 | 2017-12-15 | 谈玉靓 | 高效清洁的畜牧粪便处理方法 |
CN107512821A (zh) * | 2017-07-30 | 2017-12-26 | 谈玉靓 | 节约资源畜牧粪便处理方法 |
RU2726514C1 (ru) * | 2019-11-11 | 2020-07-14 | Григорий Алексеевич Кудряшов | Способ очистки сточных вод и переработки осадка в органические удобрения |
US12351496B2 (en) * | 2021-06-11 | 2025-07-08 | The Governors Of The University Of Alberta | Microbial assisted phosphorous recovery under anaerobic condition |
Also Published As
Publication number | Publication date |
---|---|
RU2012113103A (ru) | 2013-10-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Priya et al. | Heavy metal remediation from wastewater using microalgae: Recent advances and future trends | |
Tang et al. | Enhanced nitrogen and phosphorus removal from domestic wastewater via algae-assisted sequencing batch biofilm reactor | |
Pang et al. | Recycling of nutrients from dairy wastewater by extremophilic microalgae with high ammonia tolerance | |
Tang et al. | Effect of aeration rate on performance and stability of algal-bacterial symbiosis system to treat domestic wastewater in sequencing batch reactors | |
Verma et al. | Biogas production from plant biomass used for phytoremediation of industrial wastes | |
RU2513691C2 (ru) | Способ очистки фракции навозного стока преприятий апк, сточной воды жкх и водоканалов с использованием метанового брожения | |
Dogaris et al. | Prospects of integrating algae technologies into landfill leachate treatment | |
CN106396112B (zh) | 一种藻菌共生结合生态浮床技术净化高氨氮养猪沼液的复合系统 | |
Almaguer et al. | Combination of advanced oxidation processes and microalgae aiming at recalcitrant wastewater treatment and algal biomass production: a review | |
CN101885543A (zh) | 高效微生物菌体及酶制剂共同处理污水的方法 | |
Ramírez Mérida et al. | Application of microalgae in wastewater: opportunity for sustainable development | |
Xiao et al. | Insights into the removal of antibiotics from livestock and aquaculture wastewater by algae-bacteria symbiosis systems | |
Muys et al. | Dissolution rate and growth performance reveal struvite as a sustainable nutrient source to produce a diverse set of microbial protein | |
CN104355488A (zh) | 生活污水处理方法以及生活污水处理装置 | |
Yadav et al. | Sugar industry wastewater treatment: Current practices and advances | |
Luo et al. | Enhanced removal of humic acid from piggery digestate by combined microalgae and electric field | |
Abonyi et al. | Emerging and ecofriendly biological methods for agricultural wastewater treatment | |
CN102358674A (zh) | 一种具有污泥减量化功能的污水处理方法 | |
Singh et al. | Comprehensive assessment of microalgal-based treatment processes for dairy wastewater | |
Kundu et al. | Application of microalgae in wastewater treatment with special reference to emerging contaminants: a step towards sustainability | |
Navarro et al. | A combined process to treat lemon industry wastewater and produce biogas | |
RU2644013C2 (ru) | Способ получения экологически чистых минералоорганических удобрений при метановом брожении на биогазовых станциях | |
CN108727098A (zh) | 利用猪养殖废水制备肥料的方法 | |
CN204281502U (zh) | 污水处理装置 | |
CN103880184A (zh) | 一种无污泥生物球超净污水处理方法及系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20140410 |
|
NF4A | Reinstatement of patent |
Effective date: 20160720 |
|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20200405 |