RU2509322C1 - Способ оценки комфортности рабочей зоны по параметрам микроклимата - Google Patents

Способ оценки комфортности рабочей зоны по параметрам микроклимата Download PDF

Info

Publication number
RU2509322C1
RU2509322C1 RU2012135109/28A RU2012135109A RU2509322C1 RU 2509322 C1 RU2509322 C1 RU 2509322C1 RU 2012135109/28 A RU2012135109/28 A RU 2012135109/28A RU 2012135109 A RU2012135109 A RU 2012135109A RU 2509322 C1 RU2509322 C1 RU 2509322C1
Authority
RU
Russia
Prior art keywords
air
working area
temperature
comfort
psychrometer
Prior art date
Application number
RU2012135109/28A
Other languages
English (en)
Inventor
Олег Савельевич Кочетов
Мария Олеговна Стареева
Мария Михайловна Стареева
Original Assignee
Олег Савельевич Кочетов
Мария Олеговна Стареева
Мария Михайловна Стареева
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Олег Савельевич Кочетов, Мария Олеговна Стареева, Мария Михайловна Стареева filed Critical Олег Савельевич Кочетов
Priority to RU2012135109/28A priority Critical patent/RU2509322C1/ru
Application granted granted Critical
Publication of RU2509322C1 publication Critical patent/RU2509322C1/ru

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

Изобретение относится к машиностроению, в частности к устройствам систем безопасности. Способ оценки комфортности рабочей зоны по параметрам микроклимата заключается в том, что сначала осуществляют замер температуры воздуха по психрометру. Затем замеряют влажность воздуха по стационарному психрометру и определяют скорость движения воздуха по анемометрам. Далее на основании полученных параметров - температуры воздуха в рабочей зоне, его влажности и скорости движения, а также температуры окружающих поверхностей в рабочей зоне - рассчитывают степень комфортности по следующей формуле: S=7,83-01t-0,0968t-0,0372Р+0,18v(37,8-t), где t- температура воздуха в рабочей зоне производственного помещения; t- температура окружающих поверхностей в рабочей зоне; v - скорость движения воздуха, м/с; Р - парциальное давление водяных паров, рассчитываемое по формуле: Р=0,01φ×Рнас, мм рт.ст., где φ - относительная влажность воздуха, %; Рнас - парциальное давление водяного пара в насыщенном состоянии. После чего оценивают комфортность параметров микроклимата по следующей шкале: 1 - очень жарко; 2 - слишком тепло; 3 - тепло, но приятно; 4 - чувство комфорта; 5 - прохладно, но приятно; 6 - холодно; 7 - очень холодно. При этом осуществляют замеры: температуры воздуха и его влажности по стационарному психрометру типа ВИТ-2, скорости движения воздуха по цифровому анемометру ATE-1034, а температуры окружающих поверхностей в рабочей зоне - с помощью контактного термометра с погружаемым зондом типа ТК5.01M. Техническим результатом является повышение эффективности, быстродействия и надежности срабатывания системы. 4 ил., 1 табл.

Description

Изобретение относится к машиностроению, в частности к устройствам систем безопасности.
Известно, что для исследования параметров микроклимата применяют методы с использованием термографов, психрометров и анемометров (см. Белов С.В. Учебник по безопасности жизнедеятельности. М.: Высшая школа, 2003 г.).
Наиболее близким техническим решением к заявленному объекту является способ определения параметров микроклимата по патенту РФ №2442934, F16L 3/04, (прототип), установка реализации которого содержит измерители температуры, влажности и скорости движения воздуха в рабочей зоне.
Недостатком известного решения является сравнительно невысокая надежность срабатывания и малое быстродействие приборов.
Технический результат - повышение эффективности, быстродействия и надежности срабатывания системы.
Это достигается тем, что способ оценки комфортности рабочей зоны по параметрам микроклимата, заключающийся в том, что сначала осуществляют замер температуры воздуха по термографу или психрометру, затем замеряют влажность воздуха по стационарному или аспирационному психрометрам, и определяют скорость движения воздуха по чашечному или крыльчатому анемометрам, отличается тем, что на основании полученных параметров - температуры воздуха в рабочей зоне, его влажности и скорости движения - рассчитывают степень комфортности по следующей формуле:
S=7,83-0,1tB-0,0968tO-0,0372P+0,18v(37,8-tB),
где tB - температура воздуха в рабочей зоне производственного помещения; tO - температура окружающих поверхностей в рабочей зоне; v - скорость движения воздуха, м/с;
Р - парциальное давление водяных паров, рассчитываемое по формуле:
P=0,01φ×Рнас, мм рт.ст.,
где φ - относительная влажность воздуха. %; Рнас - парциальное давление водяного пара в насыщенном состоянии, после чего оценивают комфортность параметров микроклимата по следующей шкале:
1 - очень жарко; 2 - слишком тепло; 3 - тепло, но приятно; 4 - чувство комфорта; 5 - прохладно, но приятно; 6 - холодно; 7 - очень холодно.
На фиг.1 изображен общий вид стационарного психрометра типа ВИТ-2, на фиг.2 -общий вид цифрового анемометра типа ATE-1034, на фиг.3 - общий вид контактного термометра с погружаемым зондом типа ТК5.01М, на фиг.4 - зависимость скорости воздуха от показателя комфортности.
Устройство для реализации способа оценки комфортности рабочей зоны по параметрам микроклимата содержит приборы по измерению температуры, влажности и скорости движения воздуха. В технике для измерения температуры воздуха, как правило, используют ртутные или спиртовые термометры, термоанемометры и аспирационные психрометры (при наличии источников теплового излучения).
Измерение относительной влажности воздуха
Относительная влажность воздуха измеряется психрометрами, например гигрометром-психрометром типа ВИТ-2.
Измерение относительной влажности воздуха основано на разнице показаний «сухого» и «увлажненного» термометров. После снятия показаний термометров по психрометрической таблице определяют относительную влажность воздуха.
Стационарный психрометр (фиг.1) состоит из двух одинаковых ртутных или спиртовых термометров с ценой деления не более 0,5°С, закрепленных на штативе. Ртутный (спиртовой) резервуар одного из термометров, называемый влажным (мокрым), обернут кусочком батиста, конец которого свернут жгутиком и опущен в сосуд с дистиллированной водой А для непрерывного поддержания ртутного (спиртового) резервуара во влажном состоянии.
Принцип действия психрометра заключается в следующем. С поверхности мокрой ткани Б происходит испарение воды, и, следовательно, влажный термометр теряет больше тепла, чем другой, так называемый сухой, и показания влажного термометра будут всегда ниже показаний сухого (tM<tc). Разность в показаниях сухого и мокрого термометров принято называть психрометрической разностью. Чем меньше влажность воздуха, тем интенсивнее испаряется вода с поверхности обернутого резервуара и тем больше снижается температура влажного термометра. По разности показаний сухого и влажного термометров можно судить о степени влажности воздуха. Когда воздух при данной температуре имеет максимальную влажность (φmax), испарения влаги не происходит, психрометрическая разность равна нулю, и оба термометра покажут одну и ту же температуру (tc=tM).
К самопишущим приборам для регистрации температуры и относительной влажности воздуха относятся термографы и гигрографы, которые выпускаются с суточным и недельным вращением барабана.
Измерение скорости движения воздуха
Скорость движения воздуха измеряют анемометрами и термоанемометрами.
Принцип действия анемометров обоих типов основан на том, что частота вращения крыльчатки тем больше, чем больше скорость движения воздуха. Вращение крыльчатки передается на счетный механизм. Разница в показаниях до и после измерения, деленная на время наблюдения, показывает число делений в 1 с. Специальный тарировочный паспорт, прилагаемый к каждому прибору, позволяет по вычисленной величине делений определить скорость движения воздуха.
Технические характеристики цифрового анемометра АТЕ-1034: измерение скорости воздушного потока: 0,2…25,0 м/с; разрешение: 0,01 м/с (0,2…5 м/с); 0,1 м/с (5,1…25 м/с); измерение температуры воздушного потока: диапазон: 0…50°С.
Измерение температуры tО окружающих поверхностей в рабочей зоне производят с помощью контактного термометра с погружаемым зондом типа ТК5.01 М, производитель Техно-Ас(Россия).
Технические характеристики:
Диапазон измеряемых температур: -40…+200°С
Относительная погрешность: ±0,5%+ед.мл.разр.
Цена единиц младшего разряда: 0,1°С
Рабочие условия эксплуатации: -20…+50°С
относительная влажность, %: не более 80% при Т=35°С
атмосферное давление; кПа: 86 106
Напряжение питания 1.5×2 В
Термометр контактный цифровой типа ТК-5.01М предназначен для измерения температуры жидких, сыпучих сред путем непосредственного контакта зонда с объектом измерения. В качестве термочувствительного элемента в зонде используются преобразователи термоэлектрические (ТП) с НСХ по ГОСТ Р 8.585.
Функциональные возможности термометра ТК 5.01 М:
измерение температуры с ценой ед. младшего разряда 0.1°С
индикация пониженного напряжения питания
подсветка индикатора
быстродействие
простота использования
Способ оценки комфортности рабочей зоны по параметрам микроклимата осуществляют следующим образом.
Обязательно соблюдают следующий порядок выполнения операций при определении параметров микроклимата:
1. Определить температуру воздуха с помощью термометра.
2. Определить относительную влажность воздуха с помощью психрометра типа ВИТ-2. Для чего необходимо: с помощью пипетки смочить водой кусочек батиста, закрепленный на резервуаре влажного термометра; через 4 мин снять показания по сухому и влажному термометрам; вычислить психрометрическую разность Δt=tc-tM;
по вычисленной психрометрической разности Δt с помощью психрометрической таблицы (табл.2.1) определить значение относительной влажности. Результаты измерений и расчетов занести в протокол.
3. Определить скорость движения воздуха, создаваемого осевым вентилятором (настольного типа), в рабочих точках (расположенных не менее 1 м от центра вентилятора) при помощи анемометра ATE-1034.
4. Определить температуру tО окружающих поверхностей в рабочей зоне с помощью контактного термометра с погружаемым зондом типа ТК5.01 М.
Пример выполнения предложенного способа
1. Построить зависимость скорости движения воздуха от показателя комфортности, если показания термометров по психрометру в ткацком цехе фабрики составили: сухого tC=-24°С, мокрого tM=19,5°С. Категория работ - IIб, показатель комфортности S=4. Принять температуру окружающих предметов равной температуре воздуха в цехе, т.е. t0=tB, которая в свою очередь определяется по показаниям сухого термометра, т.е. tB=tC (исходные данные для расчета по своему варианту принять из табл.2.4).
2. Сделать вывод, сравнивая полученные результаты с допустимыми нормами параметров микроклимата для теплого периода года с незначительным избытком явного тепла по ГОСТ 12.1.005-88, и, в случае несоответствия полученных результатов нормативным значениям, рассчитать показатель комфортности S для верхнего диапазона допустимых значений тех параметров микроклимата, которые не соответствуют допустимым значениям.
Разность в показаниях сухого и мокрого термометров принято называть психрометрической разностью (Δt=tc-tM); она служит для определения влажности, φ %, по табл.2.1, прилагаемой к психрометру.
В нашем случае Δt=tc-tM=24-19,5=4,5°С. Следовательно, относительная влажность воздуха в цехе составит φ=65%. Итак, для расчета получены следующие данные:
tB=24°С; φ=65%.
Теперь рассчитаем парциальное давление водяных паров по формуле
Р=0,01φ×Рнас, мм рт.ст.,
где Рнас - парциальное давление водяного пара в насыщенном состоянии, определяемое по показанию сухого термометра из табл.1.
Зависимость парциальных давлений водяных паров в насыщенном состоянии от температуры воздуха
Температура воздуха tB, °С Парциальное давление водяного
пара, Рнас, мм рт.ст.
Температура воздуха tB, °С Парциальное давление водяного
пара, Рнас, мм рт.ст.
10 9,209 21 18,650
11 9,844 22 19,827
12 10,518 23 21,068
13 11,231 24 22,377
14 11,987 25 23,756
15 12,788 26 25,209
16 13,634 27 26,739
17 14,530 28 28,349
18 15,477 29 30,043
19 16,477 30 31,824
20 17,533 31 33,695
Для нашего значения температуры tB=24°С парциальное давление водяного пара в насыщенном состоянии Рнас=22,38.
Тогда парциальное давление водяных паров для нашего случая определится так:
Р=0,01φ×Рнас=0,01×65×22,38=14,5 мм рт.ст.
Теперь определяем требуемую скорость движения воздуха в ткацком цехе, при которой показатель хорошего самочувствия был бы равен S=4:
v = S + 0,1 t B + 0,0968 t O + 0,0372 P 7,83 0,18 ( 37,8 t B ) = 4 + 0,1 × 24 + 0,0968 × 24 + 0,0372 × 14,5 7,83 0,18 ( 37,8 24 ) = 0,58 м / с
Figure 00000001
Теперь переходим к построению графика зависимости скорости движения воздуха от показателя комфортности для группы вариантов: I - 1,3,4,5,6; II - 7,8,9,10,11; III -2,12,13,14,15; IY - 16,17,18,19,20,21,22; Y - 23,24,25,26,27,28,29; YI - 30,31,32,33,34,35.
На фиг.4 в качестве примера приведена функциональная зависимость скорости движения воздуха от показателя комфортности и формула ее линейной аппроксимации. Вывод: 1) для рассматриваемого случая существующие параметры микроклимата в цехе (tB=24°С; φ=65%, v=0,58 м/с) соответствуют допустимым нормативным значениям (при tB-24°С и ниже: φ=75%, v=0,3…0,7 м/с).
В качестве примера рассмотрим случай, когда имеет место превышение рассчитанных параметров микроклимата, т.е. tB=24°С; φ=50%, v=1,73 м/с, а допустимыми по нормам значениями являются: при tB=24°С и ниже: φ=75%, v=0,3…0,7 м/с), т.е. рассчитаем показатель комфортности S для случая: tB=24°С, φ=50%, v=0,7 м/с. Парциальное давление водяных паров для нашего случая определится так:
Р=0,01φ×Рнас=0,01×50×22,38=11,2 мм рт.ст.
S=7,83-0,1tB-0,0968tO-0,0372Р+0,18v(37,8-tB)=7,83-0,1×24-0,0968×24-0,0372×11,2+0,18×0,7×(37,8-24)=4,4.
Показатель самочувствия может иметь следующие значения: 1 - очень жарко; 2 - слишком тепло; 3 - тепло, но приятно; 4 - чувство комфорта; 5 - прохладно, но приятно; 6 - холодно; 7 - очень холодно.
Показатель S может выражаться и дробным числом, что позволяет более точно оценить, какому ощущению (например, к 3 баллам - тепло или к 4 баллам - комфорт и т.д.) ближе те или иные состояния самочувствия человека. Для легких физических работ S=3; для работ средней тяжести S=4; для тяжелых физических работ S=5 баллам.
Приведенная зависимость позволяет решать в необходимых случаях и обратную задачу. Задаваясь необходимой степенью комфорта и оптимальными значениями температуры и влажности воздуха, можно вычислить необходимую скорость движения воздуха, которая для данных конкретных условий будет больше всего отвечать требованиям обеспечения комфорта.
Вывод: 2) данное значение показателя S=4,4 находится между S=4 (комфорт) и S=5 (прохладно, но приятно), т.е. допустимая скорость движения воздуха v=0,7 м/с более приемлема с гигиенической точки зрения.

Claims (1)

  1. Способ оценки комфортности рабочей зоны по параметрам микроклимата, заключающийся в том, что сначала осуществляют замер температуры воздуха по психрометру, затем замеряют влажность воздуха по стационарному психрометру и определяют скорость движения воздуха по анемометрам, затем на основании полученных параметров - температуры воздуха в рабочей зоне, его влажности и скорости движения, а также температуры окружающих поверхностей в рабочей зоне - рассчитывают степень комфортности по следующей формуле:
    S=7,83-0,1tB-0,0968tO-0,0372Р+0,18v(37,8-tB),
    где tB - температура воздуха в рабочей зоне производственного помещения; tO - температура окружающих поверхностей в рабочей зоне; v - скорость движения воздуха, м/с;
    Р - парциальное давление водяных паров, рассчитываемое по формуле:
    Р=0,01φ×Рнас, мм рт.ст.,
    где φ - относительная влажность воздуха, %; Рнас - парциальное давление водяного пара в насыщенном состоянии, после чего оценивают комфортность параметров микроклимата по следующей шкале: 1 - очень жарко; 2 - слишком тепло; 3 - тепло, но приятно; 4 - чувство комфорта; 5 - прохладно, но приятно; 6 - холодно; 7 - очень холодно; отличающийся тем, что при этом осуществляют замеры: температуры воздуха и его влажности по стационарному психрометру типа ВИТ-2, скорости движения воздуха по цифровому анемометру ATE-1034, а температуры окружающих поверхностей в рабочей зоне - с помощью контактного термометра с погружаемым зондом типа ТК5.01M.
RU2012135109/28A 2012-08-16 2012-08-16 Способ оценки комфортности рабочей зоны по параметрам микроклимата RU2509322C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012135109/28A RU2509322C1 (ru) 2012-08-16 2012-08-16 Способ оценки комфортности рабочей зоны по параметрам микроклимата

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012135109/28A RU2509322C1 (ru) 2012-08-16 2012-08-16 Способ оценки комфортности рабочей зоны по параметрам микроклимата

Publications (1)

Publication Number Publication Date
RU2509322C1 true RU2509322C1 (ru) 2014-03-10

Family

ID=50192198

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012135109/28A RU2509322C1 (ru) 2012-08-16 2012-08-16 Способ оценки комфортности рабочей зоны по параметрам микроклимата

Country Status (1)

Country Link
RU (1) RU2509322C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2636807C1 (ru) * 2016-06-29 2017-11-28 федеральное государственное бюджетное образовательное учреждение высшего образования "Ивановский государственный энергетический университет имени В.И. Ленина" (ИГЭУ) Способ оценки комфортности микроклимата в помещениях жилых, общественных и административных зданий

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6145751A (en) * 1999-01-12 2000-11-14 Siemens Building Technologies, Inc. Method and apparatus for determining a thermal setpoint in a HVAC system
RU2442934C2 (ru) * 2010-05-21 2012-02-20 Олег Савельевич Кочетов Способ оценки комфортности рабочей зоны по параметрам микроклимата

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6145751A (en) * 1999-01-12 2000-11-14 Siemens Building Technologies, Inc. Method and apparatus for determining a thermal setpoint in a HVAC system
RU2442934C2 (ru) * 2010-05-21 2012-02-20 Олег Савельевич Кочетов Способ оценки комфортности рабочей зоны по параметрам микроклимата

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
Инструкция по использованию Вит-1 и Вит-2 гигрометра, Руководство по эксплуатации, 24.06.2008. *
Инструкция по использованию Вит-1 и Вит-2 гигрометра, Руководство по эксплуатации, 24.06.2008. Обновление каталога "Электронщик", 28.02.2011, с.6-7, всего с.36. Руководство по эксплуатации, "Техноас", паспорт, 28.08.2009. *
Инструкция по использованию Вит-1 и Вит-2 гигрометра. Руководство по эксплуатации, 24.06.2008. Обновление каталога "Электронщик", 28.02.2011, с.6-7, всего с.36. Руководство по эксплуатации, "Техноас", паспорт, 28.08.2009. *
Инструкция по использованию Вит-1 и Вит-2 гигрометра.Руководство по эксплуатации, 24.06.2008. Обновление каталога "Электронщик", 28.02.2011, с.6-7, всего с.36. *
Обновление каталога "Электронщик", 28.02.2011, с.6-7, всего с.36. *
Руководство по эксплуатации, "Техноас", паспорт, 28.08.2009. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2636807C1 (ru) * 2016-06-29 2017-11-28 федеральное государственное бюджетное образовательное учреждение высшего образования "Ивановский государственный энергетический университет имени В.И. Ленина" (ИГЭУ) Способ оценки комфортности микроклимата в помещениях жилых, общественных и административных зданий

Similar Documents

Publication Publication Date Title
Liu et al. A modified Bowen ratio method to determine sensible and latent heat fluxes
CN102207512B (zh) 风向风速仪及风向风速装置
US20160169722A1 (en) Operating a thermal anemometer flow meter
CN103134834A (zh) 一种湿蒸汽干度测量装置及方法
Kliche et al. Sensor for gas analysis based on thermal conductivity, specific heat capacity and thermal diffusivity
Dario A method to obtain precise determinations of relative humidity using thin film capacitive sensors under normal or extreme humidity conditions
RU2509322C1 (ru) Способ оценки комфортности рабочей зоны по параметрам микроклимата
RU2442934C2 (ru) Способ оценки комфортности рабочей зоны по параметрам микроклимата
Foken et al. Temperature sensors
CN105157751A (zh) 基于湿度感应和温度感应的辅助晾衣方法
Žužek et al. Calibration of Air Thermometers in a Climatic Chamber and Liquid Baths
Green et al. Measurement of humidity
CN105167526A (zh) 基于湿度感应和温度感应的辅助晾衣系统
Lee et al. Psychrometer based on a contactless infrared thermometer with a predictive model for water evaporation
RU2594388C2 (ru) Способ определения коэффициента теплопроводности жидких теплоизоляционных покрытий
McCaughey et al. Evaluation of a Bowen ratio measurement system over forest and clear-cut sites at Petawawa, Ontario
CN205808560U (zh) 一种组合式温度测试装置
CN202501932U (zh) 一种压力式温度计
RU2472134C1 (ru) Способ многокритериальной оценки комфортности рабочей зоны производственных помещений
RU96666U1 (ru) Гигрометр
Chung et al. Comparing Kestrel 3000 handheld weather meter measurements of temperature and relative humidity against those of the WEKSLER Sling Psychrometer (Model# 315-1)
RU52187U1 (ru) Датчик аспирационного психрометра
Ahmed et al. NIS One-Temperature Dew-Point Generator Operating in the Range-50? C to 0? C
CN205593664U (zh) 一种用于新能源汽车的温控装置
SU67456A1 (ru) Анемометр