RU2506971C1 - Способ подавления опухолевого роста в эксперименте - Google Patents

Способ подавления опухолевого роста в эксперименте Download PDF

Info

Publication number
RU2506971C1
RU2506971C1 RU2012140526/14A RU2012140526A RU2506971C1 RU 2506971 C1 RU2506971 C1 RU 2506971C1 RU 2012140526/14 A RU2012140526/14 A RU 2012140526/14A RU 2012140526 A RU2012140526 A RU 2012140526A RU 2506971 C1 RU2506971 C1 RU 2506971C1
Authority
RU
Russia
Prior art keywords
tumor
hyperthermia
methotrexate
nanoparticles
experiment
Prior art date
Application number
RU2012140526/14A
Other languages
English (en)
Inventor
Олег Иванович Кит
Ирина Александровна Горошинская
Полина Сергеевна Качесова
Павел Викторович Светицкий
Андрей Павлович Светицкий
Original Assignee
Федеральное государственное бюджетное учреждение "Ростовский научно-исследовательский онкологический институт" Министерства здравоохранения и социального развития Российской Федерации
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение "Ростовский научно-исследовательский онкологический институт" Министерства здравоохранения и социального развития Российской Федерации filed Critical Федеральное государственное бюджетное учреждение "Ростовский научно-исследовательский онкологический институт" Министерства здравоохранения и социального развития Российской Федерации
Priority to RU2012140526/14A priority Critical patent/RU2506971C1/ru
Application granted granted Critical
Publication of RU2506971C1 publication Critical patent/RU2506971C1/ru

Links

Landscapes

  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Изобретение относится к медицине, а именно к экспериментальным исследованиям в онкологии, и может быть использовано для оценки противоопухолевого действия наночастиц (НЧ) металлов. В перевиваемую лимфосаркому Плисса интратуморально вводят взвесь наночастиц железа в количестве 1,25 мг/кг. Затем проводят паратуморальное введение метотрексата в дозе 0,2 мг/кг. После этого осуществляют локальный нагрев опухоли до температуры 42-43°С электромагнитным излучателем УВЧ-диапазона с частотой 12,7 МГц в течение 10 минут. Всего проводят 5 таких сеансов с интервалом между воздействиями 48 часов. Затем определяют индекс эффективности, процент случаев полной регрессии и процент торможения роста лимфосаркомы Плисса. Способ обеспечивает усиление противоопухолевого действия термохимиотерапии без повышения токсичности действия на организм. 2 табл.

Description

Изобретение относится к медицине, а именно, к экспериментальным исследованиям в онкологии и может быть использовано для оценки противоопухолевого действия наночастиц (НЧ) металлов.
При прогрессировании опухолевого процесса и развитии химиорезистентности на фоне химиотерапевтического лечения традиционная противоопухолевая терапия оказывается малоэффективной.
Характерный для опухолевой ткани анаэробный тип метаболизма, а также морфологические особенности опухоли, повышают чувствительность опухолевых клеток к термическому воздействию. Благодаря этому гипертермия является эффективным фактором индукции апоптоза и повышения чувствительности опухолевых клеток к химио- и/или лучевому воздействию. В экспериментальных и клинических исследованиях показано, что локальная гипертермия улучшает непосредственные результаты химиотерапии опухолей различной локализации (Sumio N., Yoshinobu K., Takeshi M., Taro. S., Masahiko H. Use of methotrexate, vinblastine, adriamycin, and cisplatinin combination with radiation and hyperthermia as neoadjuvant therapy for bladder cancer // Cancer Chemotherapy and Pharmacology. 1992. V.30 (1). S.63-65; Hoshina H., Takagi R., Tsurumaki H., Nagashima K. Et al. Clinical result of thermochemoradiotherapy for advanced head and neck cancer // Japanese Journal of Cancer and Chemotherapy. 2001. V.28 (3). P.331-336).
Однако комбинированное применение гипертермии и химиотерапии может усиливать токсичность цитостатических препаратов, что снижает эффективность лечения.
Известен способ индукции гибели опухолевых клеток и задержки роста экспериментальных опухолей при комбинированном использовании метотрексата (20 мг/кг) и гипертермии (нагрев до 43°С) с различной длительностью экспозиции (60 или 90 мин). При этом наиболее эффективным оказалось воздействие в течение 90 минут: увеличилось время нахождения химиопрепарата в ткани опухоли, увеличилось время задержки роста опухоли и процент частичной регрессии (в 75-100% случаев). Авторы отмечают, что данная комбинация, несмотря на выраженный противоопухолевый эффект, одновременно обладает наибольшей токсичностью, что снижает возможность ее применения в клиникой практике (Schopman E.M., Van Bree С., Kipp J.В., Barendsen G.W. Enhancement of the effectiveness of methotrexate for the treatment of solid tumors by application of local hyperthermia // Int J. Hyperthermia. 1995. 11 (4). P.561-573).
Широкому применению термохимиотерапии препятствует и то, что технические средства гипертермии не обеспечивают гомогенный нагрев опухоли, что снижает эффективность лечения. Кроме того, в распространенных рецидивных химио-радиорезистентных опухолях нередко развиваются фиброз, склероз, некроз и т.п., что повышает их термотолерантность и снижает эффективность воздействия. В связи с этим активно развиваются различные варианты локальной магнитной гипертермии с использованием НЧ, в которых вводимый в пораженный участок магнитный материал нагревается извне с помощью электромагнитного излучения.
Известен способ разрушения злокачественных опухолей при использовании магнитных НЧ (Jordan A., Scholz R., Maier-Hauff K., Johannsen М., Wust P., Nabodny J., Schirra H., Schmidt H., Deger S., Loening S., Lanksch W., Felix R. Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia // J. Magnetism and Magnetic Materials. 2001. V.225. P.118-126). Разрушение клеток достигается путем введения в опухоль магнитных НЧ и их последующего термолиза в результате индукционного нагрева в переменном магнитном поле (в диапазоне частот 50-100 кГц). Однако данный способ требует использования мощных электромагнитов с токами в десятки кило-ампер на относительно высоких частотах. Кроме того, мощные переменные магнитные поля могут негативно влиять на мембранный транспорт и электрические процессы в клетках.
Известны способы нагревания опухоли с помощью НЧ оксидов железа и различных сплавов, НЧ коллоидного серебра, золота и т.д. (Якубовская Р.И., Панкратов А.А., Андреева Т.Н., Бенедиктова Ю.Б., Коган Б.Я., Бутенин А.В., Пучнова В.А., Фейзулова Р.А., Рудой В.М., Дементьева О.В., Карцева М.Е., Филипенко М.А., Чиссов В.И., Ворожцов Г.Н. Импульсная лазерная гипертермия с наночастицами в качестве термосенсибилизаторов - новый потенциальный метод противоопухолевой терапии // Российский онкологический журнал. 2010. №.6. С.32-36; Laurent S., Dutz S., Hafeli Urs O., Mahmoudi M. Magnetic fluid hyperthermia: Focus on superparamagnetic iron oxide nanoparticles // Advances in Colloid and Interface Science. 2011. N.166. P.8-23). Таким образом одной из проблем в области разработки наночастиц для проведения гипертермии является поиск нетоксичных, безопасных для живого организма наночастиц.
Известен также способ использования наночастиц меди, железа или цинка, приводящий к гибели опухолевых клеток линейных и свежевыделенных культур (Е.Ю. Златник, Г.И. Закора, Л.В. Передреева, И.А. Горошинская. Способ индукции антипролиферативного цитотоксического эффекта в опухолевых клетках линейных и свежевыделенных культур // Патент №2392668 RU, БИ №17 от 20.06.2010). В данном способе культуру клеток линии миеломы Х563 инкубируют с указанными наночастицами в течение 30 мин. Клетки костномозгового пунктата больных множественной миеломой инкубируют с указанными наночастицами в течение 45 мин при 37°С.Ткань рака легкого культивируют с указанными наночастицами в диффузионных камерах, подшитых в брюшную полость крыс, в течение 6 дней. Однако данный способ не позволяет оценить как самостоятельного, так и сочетанного с термохимиотерапией влияния НЧ металлов на рост опухоли и определить потенциальную токсичность данного воздействия на организм-опухоленоситель.
Техническим результатом представленного изобретения является усиление противоопухолевого действия термохимиотерапии с помощью наночастиц железа без повышения токсичности воздействия на организм.
Данный технический результат достигается за счет того, что в способе подавления опухолевого роста в эксперименте, включающем сочетание действия на опухоль металлических наночастиц, гипертермии и химиотерапии, согласно изобретению, в перевиваемую лимфосаркому Плисса интратуморально вводят взвесь наночастиц железа в количестве 1,25 мг/кг, затем паратуморально вводят метотрексат в дозе 0,2 мг/кг и осуществляют локальный нагрев опухоли (42-43°С) электромагнитным излучателем УВЧ-диапазона с частой 12,7 МГц в течение 10 минут. Проводят 5 сеансов с интервалом между воздействиями 48 часов, после чего определяют индекс эффективности, процент случаев полной регрессии опухоли и процент торможения роста лимфосаркомы Плисса и устанавливают, что индекс эффективности равен 7,2, регрессия опухоли наступает в 40% случаев, а торможение роста опухоли в 60% случаев.
Способ подавления опухолевого роста в эксперименте выполняется следующим образом.
Нелинейным крысам-самцам весом 220-250 г для индукции лимфосаркомы Плисса осуществляют инъекцию 25% взвеси опухолевых клеток в объеме 0,6 мл подкожно в область спины. На 7 день после перевивки (когда объем опухоли в среднем достигает 4,8±0,5 см3) животным первой опытной группы паратуморально вводят МТ в дозе 0,2 мг/кг, с последующим локальным нагревом опухоли (до 42-43°С) электромагнитным излучателем УВЧ-диапазона с частотой 12,7 МГц в течение 10 мин. Животным второй опытной группы перед проведением термохимиотерапии в качестве термосенсибилизатора интратуморально вводят взвесь наночастиц железа в количестве 1,25 мг/кг. Для приготовления взвеси порошок наночастиц металлического железа, покрытых оксидной пленкой, сферической формы (диаметр: 30-70 нм; удельная поверхность (S): 10-25 м2/г) разводят в физиологическом растворе в концентрации 1 мг/мл. Через 15 минут проводят сеанс термохимиотерапии, аналогично воздействию в первой опытной группе животных. Контролем служат животные-опухоленосители без воздействия. Всего проводят 5 сеансов термохимиотерапии с интервалом 48 часов. Животных выводят из эксперимента путем декапитации на 7 сутки после пятого воздействия.
Критериями оценки влияния термохимиотерапии в сочетании с введением НЧ железа на рост лимфосаркомы Плисса служат: масса опухоли (М), объем опухоли (V); процент торможения роста опухоли (ТРО%), индекс эффективности (ИЭ). Для оценки токсического действия проводимых воздействий используют интегральные биохимические показатели эндогенной интоксикации: коэффициент интоксикации (КИ) и индекс токсичности (ИТ).
Объем опухоли рассчитывают по формуле Шрека: V=(a×b×c)×π/6, где а, b, с - линейные размеры опухоли (см), V - объем опухоли (см3) (см. Эммануэль Н.Н. Кинетика экспериментальных опухолевых процессов. М.: Наука, 1977. 416 с.).
Процент торможения роста опухоли оценивают по среднему объему или средней массе опухоли (TPOv%, TPOm%) в опытных группах по сравнению с контролем:
TPOv%=[(Vк-Vo)/Vк]×100%, где Vк и vo - средний объем (см3) опухоли в контрольной и опытной группах в конце эксперимента.
ТРОm%=[(Мко)/Мк]×100%, где Мк и Мо - средняя масса (г) опухоли в контрольной и опытной группах в конце эксперимента.
Индекс эффективности рассчитывают как отношение среднего значения массы опухоли в контроле к среднему значению массы опухоли в опыте: ИЭ=Мко (см. Ларионов Л.Ф. Химиотерапия злокачественных опухолей. М.: Медгиз, 1962. С.30).
Коэффициент интоксикации (КИ), отражающий баланс между накоплением и связыванием токсических лигандов, рассчитывают по формуле: КИ=(МСМ254/ЭКА)·1000, где МСМ254 - содержание молекул средней массы в плазме крови; ЭКА - эффективная концентрация альбумина в плазме крови (см. Матвеев С.Б. и соавт. Критерии оценки эндогенной интоксикации при ожоговой травме // Клиническая и лабораторная диагностика. 2003. №10. С.52-53).
Индекс токсичности (ИТ), характеризующий в значительной степени вклад недостаточности функций печени в развитие эндогенной интоксикации рассчитывают по формуле: ИТ=ОКА/ЭКА-1, где ОКА - общая концентрация альбумина в плазме крови, ЭКА -эффективная концентрация альбумина в плазме крови (см. Альбумин сыворотки крови в клинической медицине / Под ред. Ю.А. Грызунова, Г.Е. Добрецова. М.: ИРИУС, 1994. T.1. С.13-28). Содержание молекул средней массы (МСМ), определяют спектрофотометрически с регистрацией при длине волны 254 нм по методу Н.И. Габриэлян, В.И. Липатовой, 1984 (Габриэлян Н.И., Липатова В.И. Опыт использования показателей средних молекул в крови для диагностики нефрологических заболеваний у детей // Лабораторное дело. 1984. №3. С.138-140). Общую концентрацию альбумина определяют унифицированным колориметрическим методом с бромкрезоловым зеленым, оценку эффективной концентрации альбумина проводят по методу С.А. Чегера в модификации И.А. Мельника, П.В. Барановского, 1985 (Мельник И.А., Барановский П.В., Нестеренко Л.И. Новый способ оценки транспортной функции сывороточного альбумина // Лабораторное дело. 1985. №4. С.202-204).
Результаты представлены в таблицах 1 и 2.
После окончания воздействий термохимиотерапии с метотрексатом у животных-опухоленосителей первой группы в 25% случаев наблюдается полная регрессия опухоли, либо значительное торможение роста (V ср менее 1/4 V ср в контрольной группе) - в 25% случаев. Как видно из таблицы 1, у животных первой опытной группы средние значения объема и веса опухоли на момент забоя составляют: V ср - 33,63 см3, М ср - 36,5 г. В то же время у животных контрольной группы показатели объема и веса опухоли имеют следующие значения: V ср - 60,0 см3, М ср - 65,7 г. Процент торможения роста опухоли в первой опытной группе составляет: по массе опухолевого узла (Tm%) - 44,32%, по объему опухоли (Tv%) - 43,36%. Индекс эффективности воздействия составляет - 1,8.
Выраженный противоопухолевый эффект термохимиотерапии с метотрексатом сопровождается возникновением токсических реакций, о чем свидетельствуют данные изученных интегральных показателей эндогенной интоксикации. Как видно из таблицы 2, средние значения КИ и ИТ не имеют достоверных отличий от значений в контроле.
Таблица 1
Влияние термохимиотерапии на рост перевиваемой опухоли крыс лимфосаркомы Плисса
Группа животных Масса опухоли (г) М±m Объем опухоли (см3) V±m Tm% Tv% ИЭ
Контрольная группа n=10 65,7±3,68 59,38±3,32 - - -
Первая группа: МТ + гипертермия n=8 36,58±8,5 р<0,05 33,63±8,15 р<0,05 44,32 43,36 1.8
Вторая группа: МТ+НЧ железа + Гипертермия n=8 9,11±3,05 р<0,02 7,86±2,3 р<0,02 86,13 86,76 7.2
Примечание: р - достоверность различий по сравнению со значением в контрольной группе.
Проведение термохимиотерапии с метотрексатом в сочетании с введением НЧ железа животным второй группы с лимфосаркомой Плисса приводит к полной регрессии опухоли в 40% случаев, в остальных 60% к значительному торможению роста опухоли. Из представленных в таблице №1 данных видно, что средний объем опухоли составляет - 7,86 см3, средняя масса - 9,11 г. Процент торможения роста опухоли по массе (Тm%) равен -86,13%, по объему (Tv%) - 86,76%. Индекс эффективности составляет 7,2.
Таблица 2
Изменение интегральных показателей эндогенной интоксикации при проведении термохимиотерапии
Группа животных КИ ИТ
Контрольная группа n=10 7,54±0,95 1,98±0,25
Первая группа: 7,62±1,52 1,91±0,52
МТ + гипертермия n=8 р>0,1 р>0,1
Вторая группа: 4,33±0,13 1,12±0,15
МТ+НЧ железа + гипертермия р<0,01 р<0,05
n=8 p1<0,05 p1<0,05
Примечание: р - достоверность различий по сравнению со значением в контрольной группе; p1 - достоверность различий по сравнению со значением в первой группе.
Изучение биохимических показателей эндогенной интоксикации в плазме крови крыс, получавших сеансы термохимиотерапии в комбинации с наночастицами металлического железа, свидетельствует о том, что происходит достоверное снижение значений КИ и ИТ по сравнению со значениями в первой группе на 43,2% и 41,4% соответственно.
Таким образом, интратуморальное введение НЧ металлического железа усиливает противоопухолевый эффект термохимиотерапии с метотрексатом. При этом наблюдается нормализация изученных показателей эндогенной интоксикации, что свидетельствует о меньшей токсичности применяемого способа воздействия.
Применение данного метода позволяет повысить противоопухолевую эффективность и снизить токсичность применяемой схемы термохимиотерапии за счет комбинированного воздействия на лимфосаркому Плисса метотрексата и УВЧ-гипертермией с использованием в качестве термосенсибилизатора НЧ металлического железа, которые усиливают цитотоксическое действие метотрексата и не усугубляют токсический эффект химиопрепарата.
Авторами в доступных источниках информации не было обнаружено сведений об известности предлагаемого способа. Таким образом, заявляемое изобретение соответствует критерию «новизна».
Исследованиями авторов установлено, что интратуморальное введение в перевиваемую лимфосаркому Плисса взвеси наночастиц железа в количестве 1,25 мг/кг, с последующим паратуморальным введением метотрексата в дозе 0,2 мг/кг и локальным нагревом опухоли (42-43°С) электромагнитным излучателем УВЧ-диапазона с частой 12,7 МГц в течение 10 минут, с проведением 5 таких сеансов с интервалом между воздействиями 48 часов, приводит к полной регрессии лимфосаркомы Плисса в 40% и к значительному торможению роста опухоли в 60% случаев, при этом индекс эффективности составляет 7,2. Таким образом, заявляемое изобретение соответствует критерию «изобретательский уровень».
Изобретение может быть использовано в здравоохранении при проведении экспериментальных исследований в области наноонкологии. Таким образом, изобретение соответствует критерию «промышленная применимость».

Claims (1)

  1. Способ подавления опухолевого роста в эксперименте, включающий сочетанное действие на опухоль металлических наночастиц и гипертермии, отличающийся тем, что в перевиваемую лимфосаркому Плисса интратуморально вводят взвесь наночастиц железа в количестве 1,25 мг/кг, затем паратуморально вводят метотрексат в дозе 0,2 мг/кг и осуществляют локальный нагрев опухоли 42-43°С электромагнитным излучателем УВЧ-диапазона с частой 12,7 МГц в течение 10 мин, проводят 5 таких сеансов с интервалом между воздействиями 48 ч.
RU2012140526/14A 2012-09-21 2012-09-21 Способ подавления опухолевого роста в эксперименте RU2506971C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012140526/14A RU2506971C1 (ru) 2012-09-21 2012-09-21 Способ подавления опухолевого роста в эксперименте

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012140526/14A RU2506971C1 (ru) 2012-09-21 2012-09-21 Способ подавления опухолевого роста в эксперименте

Publications (1)

Publication Number Publication Date
RU2506971C1 true RU2506971C1 (ru) 2014-02-20

Family

ID=50113189

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012140526/14A RU2506971C1 (ru) 2012-09-21 2012-09-21 Способ подавления опухолевого роста в эксперименте

Country Status (1)

Country Link
RU (1) RU2506971C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019104407A1 (en) 2017-11-30 2019-06-06 Dosta Anatoli D Method of local exposure to biological tissues, tissue-substitute applicator and use of porous polytetrafluoroethylene

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2382659C1 (ru) * 2008-10-28 2010-02-27 Государственное образовательное учреждение высшего профессионального образования "Саратовский государственный университет им. Н.Г. Чернышевского" Способ локального разрушения опухолей с помощью свч-нагрева магнитных наночастиц
RU2392668C1 (ru) * 2008-12-15 2010-06-20 Федеральное государственное учреждение "Ростовский научно-исследовательский онкологический институт Росмедтехнологий" Способ индукции антипролиферативного, цитотоксического эффекта в опухолевых клетках линейных и свежевыделенных культур
US7945335B2 (en) * 2005-11-17 2011-05-17 Intematix Corporation Remotely RF powered conformable thermal applicators
RU2425701C1 (ru) * 2009-11-24 2011-08-10 Российская Федерация, От Имени Которой Выступает Министерство Образования И Науки Российской Федерации Способ лечения опухолей лазерной гипертермией

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7945335B2 (en) * 2005-11-17 2011-05-17 Intematix Corporation Remotely RF powered conformable thermal applicators
RU2382659C1 (ru) * 2008-10-28 2010-02-27 Государственное образовательное учреждение высшего профессионального образования "Саратовский государственный университет им. Н.Г. Чернышевского" Способ локального разрушения опухолей с помощью свч-нагрева магнитных наночастиц
RU2392668C1 (ru) * 2008-12-15 2010-06-20 Федеральное государственное учреждение "Ростовский научно-исследовательский онкологический институт Росмедтехнологий" Способ индукции антипролиферативного, цитотоксического эффекта в опухолевых клетках линейных и свежевыделенных культур
RU2425701C1 (ru) * 2009-11-24 2011-08-10 Российская Федерация, От Имени Которой Выступает Министерство Образования И Науки Российской Федерации Способ лечения опухолей лазерной гипертермией

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
GOYA G.F. et al. Magnetic nanoparticles for cancer therapy, Current nanoscience, 2008, 4, 1-16. *
KOHLER N, Methotrexate-immobilized poly (ethylene glycol) magnetic nanoparticles for MR imaging and drug delivery Small. 2006 Jun; 2(6):785-92. *
KOHLER N, Methotrexate-immobilized poly (ethylene glycol) magnetic nanoparticles for MR imaging and drug delivery Small. 2006 Jun; 2(6):785-92. GOYA G.F. et al. Magnetic nanoparticles for cancer therapy, Current nanoscience, 2008, 4, 1-16. SCHOPMAN ЕМ, Enhancement of the effectiveness of methotrexate for the treatment of solid tumours by application of local hyperthermia Int J Hyperthermia. 1995 Jul-Aug; 11(4):561-73. *
SCHOPMAN ЕМ, Enhancement of the effectiveness of methotrexate for the treatment of solid tumours by application of local hyperthermia Int J Hyperthermia. 1995 Jul-Aug; 11(4):561-73. *
ЧИССОВ В.И. и др. Импульсная лазерная гипертермия с наночастицами в качестве термосенсибилизаторов - новый потенциальный метод противоопухолевой терапии. Российский онкологический журнал, 2010, - No. 6, с.32-36. *
ЧИССОВ В.И. и др. Импульсная лазерная гипертермия с наночастицами в качестве термосенсибилизаторов - новый потенциальный метод противоопухолевой терапии. Российский онкологический журнал, 2010, - № 6, с.32-36. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019104407A1 (en) 2017-11-30 2019-06-06 Dosta Anatoli D Method of local exposure to biological tissues, tissue-substitute applicator and use of porous polytetrafluoroethylene
US11266682B2 (en) 2017-11-30 2022-03-08 Anatoli D. Dosta Method of local exposure to biological tissues, tissue-substitute applicator and use of porous polytetrafluoroethylene

Similar Documents

Publication Publication Date Title
Lyu et al. Bimetallic nanodots for tri-modal CT/MRI/PA imaging and hypoxia-resistant thermoradiotherapy in the NIR-II biological windows
Park et al. Multifunctional hollow gold nanoparticles designed for triple combination therapy and CT imaging
Alphandery et al. Chains of magnetosomes extracted from AMB-1 magnetotactic bacteria for application in alternative magnetic field cancer therapy
Gao et al. Local hyperthermia in head and neck cancer: mechanism, application and advance
Habiba et al. Enhancing colorectal cancer radiation therapy efficacy using silver nanoprisms decorated with graphene as radiosensitizers
Li et al. Rapid synthesis of a Bi@ ZIF-8 composite nanomaterial as a near-infrared-II (NIR-II) photothermal agent for the low-temperature photothermal therapy of hepatocellular carcinoma
Khiavi et al. Enzyme-conjugated gold nanoparticles for combined enzyme and photothermal therapy of colon cancer cells
Liu et al. Acridine orange encapsulated mesoporous manganese dioxide nanoparticles to enhance radiotherapy
Wang et al. Application of photodynamic therapy in cancer: challenges and advancements
Fei et al. Bioactive metal-containing nanomaterials for ferroptotic cancer therapy
Qiao et al. Ferroptosis-based nano delivery systems targeted therapy for colorectal cancer: insights and future perspectives
Zhu et al. Doxorubicin-Fe (III)-Gossypol Infinite Coordination Polymer@ PDA: CuO2 composite nanoparticles for cost-effective programmed photothermal-chemodynamic-coordinated dual drug chemotherapy trimodal synergistic tumor therapy
Yao et al. Boosting chemodynamic therapy via a synergy of hypothermal ablation and oxidation resistance reduction
Zhang et al. Multifunctional magnetic nanoclusters can induce immunogenic cell death and suppress tumor recurrence and metastasis
Hu et al. Topology regulation of nanomedicine for autophagy-augmented ferroptosis and cancer immunotherapy
Xu et al. A versatile NiS2/FeS2 hybrid nanocrystal for synergistic cancer therapy by inducing ferroptosis and pyroptosis
Algethami et al. Radiation dose enhancement using Bi2S3 nanoparticles in cultured mouse PC3 prostate and B16 melanoma cells
Zhang et al. Mild photothermal treatment sensitized immune checkpoint blockade therapy based on ATP-exhausted nanoenzymes
Li et al. Multi-Enzyme Cascade-Triggered Nitric Oxide Release Nanoplatform Combined with Chemo Starvation-like Therapy for Multidrug-Resistant Cancers
RU2506971C1 (ru) Способ подавления опухолевого роста в эксперименте
Li et al. A novel H2O2 generator for tumor chemotherapy-enhanced CO gas therapy
Li et al. Cuprous oxide nanocomposites with photothermal (PTT) and chemical dynamics (CDT) effects induce cuproptosis in breast cancer using the strategy of increasing inflow and reducing outflow
Yao et al. Modulation of glucose metabolism through macrophage-membrane-coated metal-organic framework nanoparticles for triple-negative breast cancer therapy
Katifelis et al. In vitro effect of hyperthermic Ag and Au Fe₃O₄ nanoparticles in cancer cells
Wang et al. Ultrasound-enhanced nano catalyst with ferroptosis-apoptosis combined anticancer strategy for metastatic uveal melanoma

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20150922