RU2506199C1 - Крыло гиперзвукового летательного аппарата в условиях его аэродинамического нагрева - Google Patents

Крыло гиперзвукового летательного аппарата в условиях его аэродинамического нагрева Download PDF

Info

Publication number
RU2506199C1
RU2506199C1 RU2012125730/11A RU2012125730A RU2506199C1 RU 2506199 C1 RU2506199 C1 RU 2506199C1 RU 2012125730/11 A RU2012125730/11 A RU 2012125730/11A RU 2012125730 A RU2012125730 A RU 2012125730A RU 2506199 C1 RU2506199 C1 RU 2506199C1
Authority
RU
Russia
Prior art keywords
anode
cathode
auxiliary
wing
layer
Prior art date
Application number
RU2012125730/11A
Other languages
English (en)
Other versions
RU2012125730A (ru
Inventor
Владимир Андреевич Керножицкий
Алексей Васильевич Колычев
Антон Гарриевич Захаров
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Балтийский государственный технический университет "ВОЕНМЕХ" им. Д.Ф. Устинова (БГТУ "ВОЕНМЕХ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Балтийский государственный технический университет "ВОЕНМЕХ" им. Д.Ф. Устинова (БГТУ "ВОЕНМЕХ") filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Балтийский государственный технический университет "ВОЕНМЕХ" им. Д.Ф. Устинова (БГТУ "ВОЕНМЕХ")
Priority to RU2012125730/11A priority Critical patent/RU2506199C1/ru
Publication of RU2012125730A publication Critical patent/RU2012125730A/ru
Application granted granted Critical
Publication of RU2506199C1 publication Critical patent/RU2506199C1/ru

Links

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

Изобретение относится к ракетно-космической и авиационной технике. Крыло гиперзвукового летательного аппарата (ЛА) содержит внешнюю оболочку, на внутренней поверхности которой размещен эмиссионный слой-катод, который через бортовой потребитель электроэнергии, токоввод катода и токовывод анода соединен с электропроводящим элементом-анодом, в герметизированные полости, образованные внешней оболочкой нагреваемой части крыла ЛА с эмиссионным слоем и анодом, а также анодом с эмиссионным слоем и вспомогательным анодом введены химические элементы - цезий, барий в парообразной фазе. На внутренней поверхности анода расположен термоэмиссионный слой-вспомогательный катод, а эквидистантно эмиссионному слою основного анода размещен вспомогательный анод, который через дополнительный токовывод, бортовой потребитель электроэнергии и токоввод катода электрически соединен с катодом, образованным внешней оболочкой крыла и нанесенным на ее внутреннюю поверхность эмиссионным слоем. Изобретение направлено на снижение температурно-напряженного состояния крыла. 2 з.п. ф-лы, 1 ил.

Description

Изобретение относится к авиационной и ракетно-космической технике, к тепловой защите частей корпусов летательных аппаратов (ЛА), совершающих полет со сверх- и гиперзвуковыми скоростями и предназначено для повышения надежности конструкции крыла и других частей корпуса в условиях их аэродинамического нагрева.
В настоящее время в авиационной и ракетно-космической технике известны различные активные и пассивные устройства, обеспечивающие надежность частей корпуса ЛА (крыльев, носовых частей и др.) при их аэродинамическом нагреве.
Элементы ЛА с пассивной тепловой защитой, обеспечивающей надежность ЛА, в настоящее время широко используются в составе многоразовых транспортных космических кораблях типа «Space Shuttle» и «Буран» и на спускаемых аппаратах космических кораблей типа «СОЮЗ» и др. Так, для «Space Shuttle» и «Буран» - это многослойные покрытия из металлокерамических плиток (Нейланд В.Я., Тумин A.M. / «Аэротермодинамика воздушно-космических самолетов. Конспект лекций». - г.Жуковский: ФАЛТ МФТИ, 1991 г., 201 с., с.131-137).
Такая тепловая защита имеет высокую стоимость, утяжеляет конструкцию ЛА и не обеспечивает требуемой надежности, что подтверждается авариями и происшествиями на «Space Shuttle», которые связаны с повреждениями тепловой защиты на старте. Также материалы такой тепловой защиты имеют низкие допустимые тепловые нагрузки, что приводит к увеличению габаритов крыльев и корпуса ЛА в ущерб минимизации аэродинамического сопротивления.
Известна тепловая защита ЛА при аэродинамическом нагреве (см. патент US №6663051 В2 от 16 декабря 2003 года). Она включает два защитных слоя: внутренний слой, выполненный из огнеупорного материала, и внешний газово-доступный слой, выделяющийся при нагреве с последующим разложением и коксованием. Тем самым создается слой тепловой защиты при аэродинамическом нагреве. Использование данной системы сопровождается изменением формы ГЛА, а время ее функционирования определяется толщиной внешнего газово-доступного слоя.
Ближайшим из аналогов по технической сущности к заявленному изобретению является патент РФ на изобретение №2430857 МПК В64С 1/38 от 1.12.2009 на «КРЫЛО ГИПЕРЗВУКОВОГО ЛЕТАТЕЛЬНОГО АППАРАТА В УСЛОВИЯХ ЕГО АЭРОДИНАМИЧЕСКОГО НАГРЕВА».
Крыло гиперзвукового летательного аппарата в условиях его аэродинамического нагрева включает в себя эмиссионный слой, нанесенный на внутреннюю поверхность внешней оболочки, которая вместе с эмиссионным слоем образует катод и параллельно (эквидистантно) от нее расположенный внутри крыла элемент (анод), воспринимающий электроны эмиссии и электрически соединенный через бортовой потребитель электроэнергии с внешней оболочкой (катодом).
Данный аналог работает следующим образом. При полете ГЛА с большими скоростями происходит нагрев передней кромки оболочки крыла ГЛА и эмиссионного слоя, нанесенного на ее внутреннюю поверхность. При этом данный эмиссионный слой начинает излучать и эмиттировать электроны. Электроны забирают с собой и переносят на анод значительную часть тепла аэродинамического нагрева оболочки. Пересекая межэлектродный зазор, электроны осаждаются на аноде, который через электроизолирующий слой дополнительно охлаждается бортовой системой с помощью охлаждающего элемента. Тем самым поддерживается необходимый перепад температур между катодом - многослойным электродом, образованным оболочкой и эмиссионным слоем, и анодом. Одновременно поступающие в герметизированную полость химические элементы уменьшают работу выхода электронов из покрытия и нейтрализуют объемный заряд, препятствующий этому. В результате чего через токовывод анода, осаждающиеся на нем электроны через бортовой автономный потребитель электроэнергии, совершая на нем полезную работу, вновь через токоввод возвращаются к нагретой оболочке крыла. Таким образом, элементы конструкции (в данном случае оболочка крыла) за счет эмиссии электронов с внутренней поверхности внешней оболочки работают при более низких температурах в составе ГЛА. Тем самым реализуется схема электронного охлаждения, снижающая тепловые нагрузки на крыло. При этом повышается энергетическая эффективность ГЛА ввиду генерации в процессе электронного охлаждения значительных количеств электрической энергии для обеспечения функционирования бортовых спецсистем. Однако для снижения температурно-напряженного состояния частей корпуса ГЛА (в данном случае крыла) и повышения на этой основе их надежности в настоящее время применяется достаточно сложная гидравлическая бортовая система терморегулирования с каналами циркуляции охлаждающего продукта, имеющая значительную массу и потребляющая значительную часть бортовых запасов энергии, что приводит к увеличению массогабаритных характеристик крыла и ГЛА в целом.
В тоже время для обеспечения полетов некоторых типов ГЛА, особенно с высокими скоростями, требуются крылья тонких профилей.
Технической задачей заявляемого изобретения, вытекающей из современного уровня развития науки и техники, является: снижение массогабаритных характеристик и упрощение конструкции крыла и ГЛА в целом, повышение его надежности и уменьшение энергопотребления, поскольку часть бортовой энергии затрачивается на обеспечение функционирования жидкостной системы охлаждения.
Указанная задача решается за счет того, что в заявляемом изобретении вместо громоздкой бортовой системы терморегулирования с каналами циркуляции охлаждающего продукта на внутреннюю по отношению к внешней оболочке поверхности анода наносится эмиссионный слой из материала с высокой эмиссией электронов (например, оксидированный никель), а на расстоянии 0,1-1 мм от него размещен вспомогательный анод. Данный эмиссионный слой, нагреваясь и выполняя функцию катода, обеспечивает примерно то же значение тока эмиссии, но при более низких температурах, а значит и его электронное охлаждение (см. Эмиссионная электроника. / Н.Н.Коваль [и др.]; ред. Ю.С.Протасов. - М.: Изд-во МГТУ им. Н.Э.Баумана, 2009. - 595 с., например на стр.197). Таким образом происходит электронное охлаждение анода. От основного анода параллельно (эквидистантно) на некотором расстоянии располагается вспомогательный анод, воспринимающий электроны, эмиттируемые с внутренней поверхности основного анода. Далее электроны через элементы бортового потребителя электрической энергии, совершая на нем полезную работу, снова направляются к эмиссионному слою катода (эмиссионному слою внутренней поверхности основного анода). Таким образом реализуется схема «тандем» электронного охлаждения крыла.
Основным техническим результатом, достигаемым при осуществлении заявляемого изобретения, обусловливающим его пригодность для использования по назначению, является повышение надежности, уменьшение массогабаритных характеристик крыла и получение дополнительной энергии на борту ГЛА. Указанный технический результат достигается за счет технического эффекта, заключающегося в целенаправленном изменении свойств крыла ГЛА, которое состоит в следующем:
- На внутреннюю поверхность основного анода нанесен дополнительный термоэмиссионный слой с температурой эмиссии ниже температуры эмиссии эмиссионного слоя, нанесенного на внутренние поверхности оболочки крыла, например из Ni-Ba сплава.
- Со стороны вспомогательного эмиссионного слоя эквидистантно этому слою с зазором 0.1-1 мм расположен вспомогательный анод, который через электроизоляцию укреплен на силовом кронштейне, установленном внутри оболочки крыла с помощью электроизолирующих прокладок, а сам вспомогательный анод через дополнительный токовывод, бортовой потребитель электроэнергии и дополнительный токоввод соединен с основным анодом.
- Введены несколько последовательно размещенных вспомогательных анодов с эмиссионными слоями, температура эмиссии каждого из которых ниже температуры предыдущего дополнительного анода. В этом случае основной анод выполняет функцию анода по отношению к вспомогательному катоду, воспринимающему горячие электроны, эмиттируемые нагретым основным анодом.
При этом охлаждение не только внешних частей ГЛА происходит не только за счет эмиссии электронов, не только с нагретых внешних частей ГЛА, которые выполняют функции катода по отношению к основному аноду, но и с внутренних (например, основного анода, который выполняет функцию катода по отношению к вспомогательному аноду).
Тем самым снижается или вовсе исключается необходимость использовать бортовую систему терморегулирования с каналами циркуляции охлаждающего продукта. За счет этого решения значительно упрощается конструкция электронно-охлаждаемого крыла, снижаются его массогабаритные характеристики, в частности толщина крыла, а следовательно, повышается его надежность, а также уменьшается энергопотребление, затрачиваемое на функционирование системы терморегулирования с каналами циркуляции охлаждающего продукта. Подобное конструктивное решение можно также использовать в носовой части и других защищаемых от аэродинамического нагрева элементов конструкции ГЛА. Кроме того, существует возможность аналогичным образом охлаждать и вспомогательный анод (аноды), размещая и устанавливая их последовательно, до достижения минимально допустимых перепадов температур между соответствующими катодами и анодами, обеспечивая тем самым устойчивое охлаждение внешней оболочки крыла в течение заданного времени. То есть основной анод, нагреваясь, выполняет функции катода по отношению к первому вспомогательному аноду, который сам, нагреваясь, излучает электроны на второй вспомогательный анод и т.д.
Пример использования описываемого изобретения.
При полете гиперзвукового летательного аппарата в некоторый момент времени температура участка передней кромки достигает температур 1600-2000 К и при этом достигается равенство подводимых и отводимых тепловых потоков:
qаэродин=qАТТЗ,
qаэродин - тепловой поток к внешней поверхности стенки при аэродинамическом нагреве,
qАТТЗ - тепловой поток с внутренней поверхности нагреваемой оболочки передней кромки ГЛА за счет процессов термоэлектронной эмиссии и излучения.
При этом тепловые потоки, характерные для реализации процесса термоэлектронной эмиссии
Figure 00000001
с учетом тепловых потоков излучением qизл, во внешнюю среду и на анод примерно равны (Ушаков Б.А., Никитин В.Д., Емельянов И.Я. Основы термоэмиссионного преобразования энергии. М.: Атомиздат, 1974 г., 288 с., например, с.30):
Figure 00000002
,
при том, что
Figure 00000003
(Ушаков Б.А., Никитин В.Д., Емельянов И.Я. Основы термоэмиссионного преобразования энергии. М,: Атомиздат, 1974 г., 288 с., например, с.30). Тепло, которое идет на нагрев анода qанод (Ушаков Б.А., Никитин В.Д., Емельянов И.Я. Основы термоэмиссионного преобразования энергии. М.: Атомиздат, 1974 г., 288 с., например, с.30), состоит из излучения с внутренней поверхности внешней оболочки (эмиссионного слоя) qизл и тепла, воспринимаемого анодом при восприятии электронов эмиссии
Figure 00000004
:
Figure 00000005
,
где
Figure 00000006
(Ушаков Б.А., Никитин В.Д., Емельянов И.Я. Основы термоэмиссионного преобразования энергии. М.: Атомиздат, 1974 г., 288 с., например, с.30).
При подборе материала эмиссионного слоя основного анода необходимо определить необходимое значение плотности тока эмиссии для поддержания требуемой температуры основного анода, то есть:
Figure 00000007
, где
Figure 00000008
- тепловые потоки эмиссионного слоя основного анода.
Значит, для поддержания примерно постоянной величины температуры основного анода с учетом малого значения работы выхода эмиссионного слоя основного анода необходимо значение тока эмиссии с эмиссионного слоя основного анода
Figure 00000009
Figure 00000010
,
где jкатод - плотность тока эмиссии с катода.
Если воспользоваться графиками, приведенными в литературе (см. Эмиссионная электроника. / Н.Н.Коваль [и др.]; ред. Ю.С.Протасов. - М.: Изд-во МГТУ им. Н.Э.Баумана, 2009. - 595 с, например на стр.197), то при токе эмиссии с катода, равном 20 А/см2, и температуре основного анода порядка 1000 К (≈700°С) подойдет материал для эмиссионного слоя, наносимого с обратной стороны основного анода, из Ni-Ba сплава или оксидный катод.
Дело в том, что существуют материалы, которые имеют низкую работу выхода, что позволяет получать высокую плотность тока эмиссии, обеспечивают более высокую степень электронного охлаждения. Например, материал Ni-Ba позволяет получить плотность тока эмиссии около 50 А/м2 при температуре около 800°С. При такой температуре основного анода обеспечивается функционирование описываемого изобретения.
На чертеже представлено заявленное крыло ГЛА в разрезе.
Данное крыло имеет в своем составе внешнюю оболочку 1 нагреваемой части корпуса ГЛА, воспринимающей динамические и тепловые нагрузки. Эмиссионный слой 2 нанесен на внутреннюю поверхность оболочки 1. Оболочка 1 и эмиссионный слой 2 образуют многослойный электрод - катод, а находящийся с зазором δ=0.1-1 мм от него токопроводящий элемент 3 - анод предназначен для поглощения электронов эмиссии. Для отвода тепла от анода 3 и тепла, излучаемого катодом, на внутреннюю по отношению к многослойному катоду поверхность анода 3 нанесен эмиссионный слой 4, например из оксидированного никеля (см. Эмиссионная электроника. / Н.Н.Коваль [и др.]; ред. Ю.С.Протасов. - М.: Изд-во МГТУ им. Н. Э. Баумана, 2009. - 595 с., например на стр.197). На расстоянии от эмиссионного слоя 4 расположен вспомогательный анод 5, который воспринимает электроны, эмиттируемые с анода 3. Вспомогательный анод 5 расположен эквидистантно эмиссионному слою 4 через электроизоляцию 6 на кронштейне 7. Электроизоляция 6 служит для предотвращения утечек тока с анода. Емкость 8 служит для хранения и введения в парообразном состоянии элементов (цезий, барий, кислород, водород и др.) в межэлектродные герметизированные и вакуумированные полости 9 и 10, между анодом 3 и катодом, образованные оболочкой 1 и эмиссионным слоем 2, а также эмиссионным слоем 4 и вспомогательным анодом 5. Через эту емкость 8 осуществляется ввод паров цезия и других химических элементов типа бария, кислорода, водорода. Дистанциаторы 11, выполненные из электроизолирующего материала, например, керамики, предназначены для фиксации и поддержания заданного расстояния δ между катодом -многослойным электродом, образованным оболочкой 1 и эмиссионным слоем 2, и анодом 3, а также эмиссионным слоем 4 и вспомогательным анодом 5 и для герметизации полостей 9 и 10. Токовывод 12 анода 3 и токовывод 13 вспомогательного анода 5 предназначены для обеспечения прохождения электронов к бортовым системам - потребителям 14 электрической энергии. Совершив полезную работу, электроны возвращаются на катод, образованный оболочкой 1 и эмиссионным слоем 2 через токоввод 15. Таким образом, обеспечивается электронное охлаждение основного анода 3 с установлением на данной основе постоянной циркуляции носителей тепла - электронов, обеспечивая постоянный отвод тепла от нагреваемой в полете оболочки крыла. Силовой кронштейн 7 предназначен для крепления элементов, участвующих в отводе тепла от нагреваемой части 1 (оболочки крыла). Кронштейн 7 установлен внутри оболочки 1 крыла и соединен с ней через электроизолирующие прокладки 16. В герметизированную полость 9 и 10 нагреваемой части крыла и основного анода из емкости 8 под давлением до 20 мм рт.ст. введены химические элементы (цезий, барий и др.) преимущественно в парообразной фазе. Вспомогательный анод 5 через электроизолирующий слой 6 укреплен на кронштейне 7. Для обеспечения независимости работы контуров охлаждения и вырабатываемой ими электроэнергии между эмиссионным слоем 4 основного анода 3 и основным анодом 3 располагают электроизоляционный слой 18 и дополнительный токоввод 17 эмиссионного слоя 4.
Заявленное крыло работает следующим образом. При полете ГЛА с большими скоростями происходит нагрев оболочки 1 крыла ГЛА и эмиссионного слоя 2. При этом эмиссионный слой 2 начинает излучать и эмиттировать электроны. Электроны забирают с собой и переносят на анод 3 значительную часть тепла аэродинамического нагрева оболочки за счет этого происходит электронное охлаждение катода, образованного оболочкой 1 и нанесенным на нее эмиссионным слоем 2. Пересекая вследствие термоэмиссии межэлектродный зазор 8, электроны осаждаются на аноде 3, на внутреннюю по отношению к катоду поверхность которого нанесен эмиссионный слой 4, например, из полупроводникового материала, обладающего более низкой температурой эмиссии при его нагреве. Эмиссионный слой 4 при разогреве анода 3 также начинает испускать электроны, обеспечивая тем самым электронное охлаждение анода 3, наряду с охлаждением излучением. Электроны из эмиссионного слоя 4 пресекают второй промежуток S и осаждаются на вспомогательном аноде 5, отдавая при этом часть тепловой энергии. Вспомогательный анод 5 при этом установлен через электроизоляцию 6 на кронштейне 7. Тепловая энергия, полученная вспомогательным анодом 5, за счет осаждения электронов эмиссии с эмиссионного слоя 4 рассеивается в крыле за счет теплопроводности и излучения на вспомогательном аноде 5 и кронштейне 7. В крыле может быть установлено несколько вспомогательных анодов (с эмиссионным слоем типа 4 и вспомогательного анода типа 5) для обеспечения постоянной разности температур между соответствующими этими электродами. Тем самым поддерживается необходимый перепад температур между катодом - многослойным электродом, образованным оболочкой 1 и эмиссионным слоем 2, и анодом 3, а также эмиссионным слоем 4 и вспомогательным анодом 5. Для поддержания постоянной величины межэлектродных расстояний в полостях 9 и 10 устанавливаются дистанциаторы 11. Одновременно поступающие из источника 8 в герметизированные полости 9 и 10 химические элементы уменьшают работу выхода электронов из эмиссионных слоев 2 и 4, а также нейтрализуют объемный заряд, препятствующий термоэлектронной эмиссии. В результате чего через токовывод 12 анода 3 и токовывод 13 вспомогательного анода 5 осаждающиеся на них электроны через бортовой автономный потребитель 14 электроэнергии и токоввод 15 катода вновь возвращаются к нагретой оболочке 1 крыла. Кроме того, для электронов, осаждающихся на вспомогательном аноде 5, может быть установлен отдельный бортовой потребитель электрической энергии. Одновременно находящиеся в герметизированных полостях 9 и 10 крыла в парообразном состоянии элементы (цезий, барий, кислород, водород и др.), осаждаясь на эмиссионном слое 2 основного катода и эмиссионном слое 4 основного анода, снижают работу выхода электронов с него и способствуют их переходу на анод 3 и вспомогательный анод 5 соответственно. Это приводит к увеличению силы тока через бортовой потребитель 14 электроэнергии, а также способствует выработке электрической энергии из-за поддержания необходимой разности температур между соответствующими электродами 1 и 3, 4 и 5 за счет электронного охлаждения анода 3 и других вспомогательных анодов, например, вспомогательного анода 5 и других, если вспомогательных анодов несколько.
В результате чего, в электрической цепи, образованной анодом 3 и вспомогательным анодом 5, токовыводами 12 и 13, бортовым потребителем 14, токовводом 15 и многослойным катодом, образованным оболочкой 1 и эмиссионным слоем 2, начинает протекать ток обеспечивающий как охлаждение аэродинамически нагреваемой оболочки 1 и анода 3, так и получение на борту дополнительной электрической мощности. При этом исключается из конструкции крыла элемент бортовой системы терморегулирования с каналами циркуляции охлаждающего продукта. Это снижает массогабаритные характеристики конструкции крыла, приводит к повышению его надежности, упрощает эксплуатацию ГЛА в целом. Кроме того, повышается КПД преобразования тепловой энергии аэродинамического нагрева в электрическую энергию.
После совершения работы под нагрузкой в бортовом потребителе 14 электроны возвращаются к многослойному катоду, образованному оболочкой 1 и эмиссионным слоем 2, а также (или) основным анодом 3 эмиссионным слоем 4, через токоввод 13 и 15.
Технический эффект, получаемый в результате использования заявляемого изобретения, отражающий более высокий уровень развития науки и техники, заключается в том, что снижение температурно-напряженного состояния частей крыла и повышение на этой основе его надежности при аэродинамическом нагреве за счет эмиссии электронов с внутренней поверхности нагреваемых частей крыла, которые воспринимаются анодом 3 - элементом с более низкой температурой, соединенным с нагреваемой частью крыла через бортовой потребитель электрической энергии, происходит без использования сложного и массивного элемента бортовой системы терморегулирования с каналами циркуляции охлаждающего продукта, за счет использования электронного охлаждения с внутренней по отношению к внешней оболочке поверхности электропроводящего элемента, воспринимающего электроны эмиссии с внутренней поверхности нагреваемой в полете внешней оболочки 1. Одновременно с этим происходит прирост количества электрической энергии, которая является частью возвращаемой энергии топлива, ранее затраченной на преодоление силы лобового сопротивления, приводящей в полете к нагреву частей ЛА, за счет преобразования в электричество тепловой энергии электронного нагрева электропроводящего элемента, воспринимающего электроны эмиссии с внутренней поверхности, нагреваемой в полете внешней оболочки 1.
Другими словами, в заявленном изобретении введен термоэмиссионный контур охлаждения основного анода 3, включающий термоэмиссионный слой 4, нанесенный на внутреннюю поверхность этого анода 3, а на расстоянии от него δ эквидистантно расположен вспомогательный анод 5, воспринимающий электроны, эмиттированные термоэмиссионным слоем 4 основного анода 3, нанесенным на внутреннюю поверхность основного анода. Вспомогательный анод 5 через электроизоляцию 6 укреплен на кронштейне 7, который в свою очередь через электроизолирующие прокладки 16 зафиксирован внутри крыла.
Таким образом, обеспечивается снижение температурно-напряженного состояния и упрощение конструкции крыла, снижение его массы и ГЛА в целом, повышение его надежности и уменьшение энергопотребления, поскольку вводимая система дополнительного охлаждения сама является источником дополнительной электроэнергии на борту ГЛА.

Claims (3)

1. Крыло гиперзвукового летательного аппарата (ЛА) в условиях его аэродинамического нагрева, содержащее размещенный на его внутренней поверхности термоэмиссионный слой-катод, который через бортовой потребитель электроэнергии, токоввод катода и токовывод анода соединен с электропроводящим элементом-основным анодом, расположенным с зазором δ=0,1-1 мм от катода, в герметизированные полости, образованные внешней оболочкой нагреваемой части крыла ЛА с эмиссионным слоем-катодом и основным анодом, под давлением до 20 мм, рт.ст. введены химические элементы - цезий, барий преимущественно в парообразной фазе, отличающееся тем, что на внутренней поверхности основного анода расположен дополнительный термоэмиссионный слой-вспомогательный катод, а с зазором δ=0,1-1 мм эквидистантно термоэмиссионному слою вспомогательному катоду основного анода размещен вспомогательный анод, который через дополнительный токовывод, бортовой потребитель электроэнергии и токоввод вспомогательного катода электрически соединен с вспомогательным катодом, образованным внешней оболочкой крыла и нанесенным на ее внутреннюю поверхность эмиссионным слоем-катодом, причем вспомогательный анод через электроизоляционный элемент установлен на кронштейне, закрепленном через электроизолирующие прокладки внутри крыла.
2. Устройство по п.1, отличающееся тем, что в его состав введены несколько вспомогательных анодов таким образом, что каждый последующий вспомогательный анод с зазором δ=0,1-1 мм размещен эквидистантно от предыдущего вспомогательного анода, выступающего по отношению к нему в роли катода, и электрически через токовыводы, бортовой потребитель электроэнергии и токоввод соединены с основным катодом.
3. Устройство по п.1, отличающееся тем, что термоэмиссионный слой-вспомогательный катод основного анода нанесен на основной анод через электроизоляционный элемент и электрически через токовывод вспомогательного анода, бортовой потребитель электроэнергии и дополнительный токоввод эмиссионного слоя-вспомогательного катода основного анода соединен со вспомогательным анодом.
RU2012125730/11A 2012-06-19 2012-06-19 Крыло гиперзвукового летательного аппарата в условиях его аэродинамического нагрева RU2506199C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012125730/11A RU2506199C1 (ru) 2012-06-19 2012-06-19 Крыло гиперзвукового летательного аппарата в условиях его аэродинамического нагрева

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012125730/11A RU2506199C1 (ru) 2012-06-19 2012-06-19 Крыло гиперзвукового летательного аппарата в условиях его аэродинамического нагрева

Publications (2)

Publication Number Publication Date
RU2012125730A RU2012125730A (ru) 2013-12-27
RU2506199C1 true RU2506199C1 (ru) 2014-02-10

Family

ID=49785886

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012125730/11A RU2506199C1 (ru) 2012-06-19 2012-06-19 Крыло гиперзвукового летательного аппарата в условиях его аэродинамического нагрева

Country Status (1)

Country Link
RU (1) RU2506199C1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2613190C1 (ru) * 2015-12-04 2017-03-15 Акционерное общество "Военно-промышленная корпорация "Научно-производственное объединение машиностроения" Передняя кромка летательного аппарата в условиях ее аэродинамического нагрева
RU2628546C1 (ru) * 2016-04-04 2017-08-18 Федеральное государственное бюджетное образовательное учреждение высшего образования Балтийский государственный технический университет "ВОЕНМЕХ" им. Д.Ф. Устинова (БГТУ "ВОЕНМЕХ") Способ уменьшения величины изгиба ствола
RU2677741C1 (ru) * 2018-02-19 2019-01-21 Федеральное государственное бюджетное образовательное учреждение высшего образования "Петербургский государственный университет путей сообщения Императора Александра I" Летательный аппарат
RU2749147C1 (ru) * 2020-04-03 2021-06-07 Федеральное государственное бюджетное образовательное учреждение высшего образования Балтийский государственный технический университет "ВОЕНМЕХ" им. Д.Ф. Устинова (БГТУ "ВОЕНМЕХ") Охлаждаемая лопатка газовой турбины

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU1822505C (ru) * 1989-11-28 1993-06-15 П. М. Ерофеев Термоэмиссионный преобразователь
US6497390B1 (en) * 1999-09-23 2002-12-24 Astrium Gmbh Thermal protection system especially for space vehicles
RU2404087C1 (ru) * 2009-11-03 2010-11-20 Государственное образовательное учреждение высшего профессионального образования Балтийский государственный технический университет "ВОЕНМЕХ" им. Д.Ф. Устинова (БГТУ "ВОЕНМЕХ") Термоэмиссионный способ тепловой защиты частей летательных аппаратов при их аэродинамическом нагреве
RU2430857C2 (ru) * 2009-12-01 2011-10-10 Государственное образовательное учреждение высшего профессионального образования Балтийский государственный технический университет "ВОЕНМЕХ" им. Д.Ф. Устинова (БГТУ "ВОЕНМЕХ") Крыло гиперзвукового летательного аппарата в условиях его аэродинамического нагрева

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU1822505C (ru) * 1989-11-28 1993-06-15 П. М. Ерофеев Термоэмиссионный преобразователь
US6497390B1 (en) * 1999-09-23 2002-12-24 Astrium Gmbh Thermal protection system especially for space vehicles
RU2404087C1 (ru) * 2009-11-03 2010-11-20 Государственное образовательное учреждение высшего профессионального образования Балтийский государственный технический университет "ВОЕНМЕХ" им. Д.Ф. Устинова (БГТУ "ВОЕНМЕХ") Термоэмиссионный способ тепловой защиты частей летательных аппаратов при их аэродинамическом нагреве
RU2430857C2 (ru) * 2009-12-01 2011-10-10 Государственное образовательное учреждение высшего профессионального образования Балтийский государственный технический университет "ВОЕНМЕХ" им. Д.Ф. Устинова (БГТУ "ВОЕНМЕХ") Крыло гиперзвукового летательного аппарата в условиях его аэродинамического нагрева

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2613190C1 (ru) * 2015-12-04 2017-03-15 Акционерное общество "Военно-промышленная корпорация "Научно-производственное объединение машиностроения" Передняя кромка летательного аппарата в условиях ее аэродинамического нагрева
RU2628546C1 (ru) * 2016-04-04 2017-08-18 Федеральное государственное бюджетное образовательное учреждение высшего образования Балтийский государственный технический университет "ВОЕНМЕХ" им. Д.Ф. Устинова (БГТУ "ВОЕНМЕХ") Способ уменьшения величины изгиба ствола
RU2677741C1 (ru) * 2018-02-19 2019-01-21 Федеральное государственное бюджетное образовательное учреждение высшего образования "Петербургский государственный университет путей сообщения Императора Александра I" Летательный аппарат
RU2749147C1 (ru) * 2020-04-03 2021-06-07 Федеральное государственное бюджетное образовательное учреждение высшего образования Балтийский государственный технический университет "ВОЕНМЕХ" им. Д.Ф. Устинова (БГТУ "ВОЕНМЕХ") Охлаждаемая лопатка газовой турбины

Also Published As

Publication number Publication date
RU2012125730A (ru) 2013-12-27

Similar Documents

Publication Publication Date Title
RU2506199C1 (ru) Крыло гиперзвукового летательного аппарата в условиях его аэродинамического нагрева
US10854805B2 (en) Lightweight thermionic microengines for aerial vehicles
RU2430857C2 (ru) Крыло гиперзвукового летательного аппарата в условиях его аэродинамического нагрева
US8127555B2 (en) Flowpath heat exchanger for thermal management and power generation within a hypersonic vehicle
US11437662B1 (en) Battery assembly for use in an electric aircraft
RU2495788C2 (ru) Крыло гиперзвукового летательного аппарата в условиях его аэродинамического нагрева
JP2023553767A (ja) 熱シールド構造及びその製造方法
RU2572009C1 (ru) Крыло гиперзвукового летательного аппарата в условиях его аэродинамического нагрева
RU2404087C1 (ru) Термоэмиссионный способ тепловой защиты частей летательных аппаратов при их аэродинамическом нагреве
RU2613190C1 (ru) Передняя кромка летательного аппарата в условиях ее аэродинамического нагрева
US20230208321A1 (en) Thrust Production via Quantized Inertia
US9999164B2 (en) Cooling apparatus for cooling electronic device in aircraft
RU2583511C1 (ru) Термоэмиссионный способ тепловой защиты частей летательных аппаратов
RU95637U1 (ru) Крыло гиперзвукового летательного аппарата в условиях его аэродинамического нагрева
RU132050U1 (ru) Крыло гиперзвукового летательного аппарата в условиях его аэродинамического нагрева
JP6632114B2 (ja) 真空アーク推進機
CN109774981B (zh) 一种高超飞行器辅助火箭的热防护系统
RU2790996C1 (ru) Крыло сверхзвукового летательного аппарата
Stevens Solar array experiments on the Sphinx satellite
Oshio et al. Thermal analysis of lanthanum hexaboride hollow cathode with radiative carbon heater
US3157802A (en) Thermionic energy converter
US11814195B1 (en) Silicon oxide coated aluminized Kapton radiator coating for nano-satellite thermal management
RU2538768C1 (ru) Термоэмиссионый электрогенерирующий канал
US11851203B2 (en) Waste heat transfer system for aircraft fuel cell
RU2704106C1 (ru) Термоэмиссионный преобразователь для термоэмиссионной тепловой защиты кромки малого радиуса закругления крыла высокоскоростного летательного аппарата

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20170620