RU2503819C2 - Лопатка турбины, снабженная средством регулирования расхода охлаждающей текучей среды - Google Patents
Лопатка турбины, снабженная средством регулирования расхода охлаждающей текучей среды Download PDFInfo
- Publication number
- RU2503819C2 RU2503819C2 RU2011120432/06A RU2011120432A RU2503819C2 RU 2503819 C2 RU2503819 C2 RU 2503819C2 RU 2011120432/06 A RU2011120432/06 A RU 2011120432/06A RU 2011120432 A RU2011120432 A RU 2011120432A RU 2503819 C2 RU2503819 C2 RU 2503819C2
- Authority
- RU
- Russia
- Prior art keywords
- blade
- tail
- holes
- turbine blade
- turbine
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/30—Fixing blades to rotors; Blade roots ; Blade spacers
- F01D5/3007—Fixing blades to rotors; Blade roots ; Blade spacers of axial insertion type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/02—Blade-carrying members, e.g. rotors
- F01D5/08—Heating, heat-insulating or cooling means
- F01D5/081—Cooling fluid being directed on the side of the rotor disc or at the roots of the blades
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D23/00—Control of temperature
- G05D23/01—Control of temperature without auxiliary power
- G05D23/02—Control of temperature without auxiliary power with sensing element expanding and contracting in response to changes of temperature
- G05D23/024—Control of temperature without auxiliary power with sensing element expanding and contracting in response to changes of temperature the sensing element being of the rod type, tube type, or of a similar type
- G05D23/025—Control of temperature without auxiliary power with sensing element expanding and contracting in response to changes of temperature the sensing element being of the rod type, tube type, or of a similar type the sensing element being placed within a regulating fluid flow
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2250/00—Geometry
- F05D2250/10—Two-dimensional
- F05D2250/11—Two-dimensional triangular
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2300/00—Materials; Properties thereof
- F05D2300/50—Intrinsic material properties or characteristics
- F05D2300/502—Thermal properties
- F05D2300/5021—Expansivity
- F05D2300/50212—Expansivity dissimilar
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T50/00—Aeronautics or air transport
- Y02T50/60—Efficient propulsion technologies, e.g. for aircraft
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Fluid Mechanics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
Лопатка турбины охлаждается внутренним потоком охлаждающей текучей среды, поступающей через отверстия, расположенные внизу хвостовой части лопатки. Лопатка включает в себя регулирующую пластину, снабженную отверстиями, расположенными в соответствии с отверстиями внизу хвостовой части лопатки. Регулирующая пластина выполнена из материала, имеющего коэффициент расширения, отличающийся от коэффициента расширения материала, из которого выполнена хвостовая часть лопатки. Регулирующая пластина установлена внизу хвостовой части лопатки с продольным направлением и закреплена с сохранением возможности относительного перемещения между отверстиями в регулирующей пластине и отверстиями в хвостовой части лопатки так, что сечение потока текучей среды увеличивается вместе с температурой. Изобретение направлено на уменьшение расхода охлаждающего воздуха во время полета на крейсерском режиме посредством пассивного регулирования расхода. 2 н. и 10 з.п. ф-лы, 3 ил.
Description
Настоящее изобретение относится к лопатке турбины, охлаждаемой внутренним потоком охлаждающей текучей среды, такой как, например, воздух. В частности, настоящее изобретение относится к усовершенствованию, позволяющему осуществлять в автоматическом и пассивном режиме, т.е. без внешнего управления, регулирование расхода охлаждающей текучей среды в лопатках ротора, работающего в условиях высокого давления в турбореактивном двигателе самолета, с применением расхода охлаждающей текучей среды в зависимости от рабочей скорости турбореактивного двигателя самолета.
В турбореактивном двигателе самолета подвижные лопатки турбины, работающей в условиях высокого давления, находятся непосредственно за выходным отверстием камеры сгорания. Они подвергаются воздействию очень высоких температур. Таким образом, является необходимым их постоянное охлаждение. Обычным способом для этого является создание внутреннего потока охлаждающей текучей среды, как правило, воздуха, проистекающего из выходного отверстия компрессора высокого давления.
Следует напомнить, что такая турбина, работающая в условиях высокого давления, имеет диск, снабженный пазами, выполненными на его периферии, и в каждом из этих пазов расположена хвостовая часть лопатки. Таким образом, лопатка присоединена к диску при помощи соединения по форме, которое образовано между пазом и хвостовой частью лопатки.
В каждой лопатке имеются пустоты, в которые поступает охлаждающая текучая среда. Таким образом, воздух, идущий от компрессора высокого давления, поступает через несколько отверстий, образованных внизу хвостовой части лопатки, проходит через пустоты и уходит через многочисленные отверстия, распределенные по поверхности лопатки. Охлаждающий воздух, идущий от компрессора высокого давления, подается в пазы диска для того, чтобы он мог поступать в лопатки.
Принимая во внимание то, что охлаждающий воздух подается из потока, идущего через компрессор высокого давления, и что он не участвует в процессе сгорания в камере сгорания, является важным свести к минимуму его расход для того, чтобы повысить производительность турбореактивного двигателя и, таким образом, снизить его удельный расход топлива.
Настоящее изобретение является результатом следующего анализа.
Наивысшие температуры достигаются во время взлета и набора высоты. Таким образом, износ лопаток является наибольшим на этих стадиях.
Поэтому установленной практикой является то, что принимается в расчет наивысшая температура, достигаемая во время взлета, для того, чтобы был гарантирован предписанный срок действия лопатки. Такая температура обуславливает определенный расход охлаждающего воздуха.
Однако стадия полета с крейсерской скоростью является самой длительной, и во время этой стадии температура лопатки ниже приблизительно на 100° по Цельсию.
Поэтому, было бы предпочтительным снижать расход охлаждающего воздуха во время этой стадии, таким образом приводя к повышению температуры лопаток, т.е. к повышению, которое может быть обеспечено во время стадии полета с крейсерской скоростью. Тем не менее, новый расчетный расход охлаждающего воздуха, в данном случае, будет оставаться, практически, тем же самым при взлете и поэтому будет приводить к соответствующему повышению температуры в лопатках при взлете, таким образом значительно сокращая срок действия лопаток. Предполагается, что повышение температуры на 20 градусов при взлете и во время набора высоты будет сокращать срок действия лопаток приблизительно наполовину.
Основная мысль, на которой основывается настоящее изобретение, состоит в уменьшении расхода охлаждающего воздуха (относительно параметров, определенных в действующих правилах), но только во время полета на крейсерской скорости, и сделать это с помощью пассивного регулирования расхода, т.е. без внешнего управления, можно полностью путем использования разницы температур лопатки между ее температурой во время полета на крейсерской скорости и ее температурой при других скоростях двигателя, в особенности, во время взлета.
В частности, изобретением обеспечивается лопатка турбины, охлаждаемая внутренним потоком охлаждающей текучей среды, поступающей через отверстия, расположенные внизу хвостовой части лопатки, при этом лопатка отличается тем, что она включает в себя регулирующую пластину, снабженную отверстиями, расположенными в соответствии с отверстиями внизу хвостовой части лопатки, тем, что регулирующая пластина выполнена из материала, имеющего коэффициент расширения, отличающийся от коэффициента расширения материала, из которого выполнена хвостовая часть лопатки, и тем, что регулирующая пластина установлена внизу хвостовой части лопатки с продольным направлением и укреплена с сохранением возможности относительного перемещения между отверстиями в регулирующей пластине и отверстиями в хвостовой части лопатки так, что сечение потока текучей среды увеличивается вместе с температурой.
Лопатка, о которой идет речь, может быть подвижной лопаткой ротора турбины, в особенности, лопаткой ротора турбины, работающей в условиях высокого давления, в турбореактивном двигателе самолета.
В предпочтительном варианте осуществления изобретения регулирующая пластина выполнена из керамического материала, имеющего коэффициент расширения, который является небольшим по сравнению с коэффициентом расширения хвостовой части лопатки.
Известным образом в нижней части хвостовой части лопатки имеется металлическая калибровочная пластина с вышеуказанными отверстиями, выполненными в ней. Таким образом, эти отверстия частично совпадают с отверстиями в вышеуказанной регулирующей пластине. Металлическая пластина, например, может быть приварена внизу хвостовой части лопатки.
Предпочтительно, регулирующая пластина присоединена только одним из ее концов к хвостовой части лопатки, позволяя, таким образом, хвостовой части лопатки свободно расширяться относительно пластины.
В одном из вариантов осуществления пластина входит в зацепление с прямолинейной направляющей, прикрепленной к хвостовой части лопатки для того, чтобы предотвращать поворачивание пластины относительно хвостовой части лопатки.
Для того чтобы получить наибольшие преимущества от использования амплитуды изменений длины хвостовой части лопатки (т.е. калибровочной пластины), отверстия, расположенные внизу хвостовой части лопатки, могут иметь треугольную форму.
Согласно другому предпочтительному отличию отверстия в регулирующей пластине могут иметь квадратную или прямоугольную форму.
В настоящем изобретении также предлагается турбина, включающая в себя диск с лопатками, присоединенными к его периферии, при этом каждая лопатка соответствует приведенному выше определению.
Настоящее изобретение может быть лучше понято, и его другие преимущества будут более ясны в свете последующего описания, которое дается с приводимыми примерами и ссылками на сопроводительные чертежи, в которых:
Фиг.1 является трехмерным разделенным перспективным видом лопатки согласно настоящему изобретению вместе с частью диска ротора.
Фиг.2 является схематическим изображением снизу хвостовой части лопатки во время взлета.
Фиг.3 является местным, схематичным видом снизу хвостовой части лопатки, изображающим изменение уровня охлаждающего потока.
Здесь можно увидеть подвижную лопатку турбины, состоящую из части с аэродинамической поверхностью 12 и из хвостовой части 14. Часть с аэродинамической поверхностью отделена от хвостовой части платформой 15. Колесо турбины состоит из диска 17 и множества таких лопаток. По периферии диск 17 имеет пазы 19. Каждый паз имеет профиль, соответствующий профилю хвостовой части 14 лопатки так, чтобы каждая лопатка присоединялась к диску при помощи определенного соединения по форме между пазом и хвостовой частью лопатки. Платформы 15 воспроизводят внутренние стенки сечения для потока горячего газа, выбрасываемого из камеры сгорания турбореактивного двигателя. Такой тип расположения известен и не описывается более подробно. Также известно, что необходимо охлаждать лопатки, потому что турбина приводится в действие при использовании потока горячего газа. С этой целью каждая лопатка является полой и включает в себя полости 20, наполняемые через калибровочные отверстия 22, которые расположены внизу хвостовой части лопатки. Таким образом, внутренний поток охлаждающей текучей среды удерживается внутри каждой лопатки. Точнее говоря, воздух проистекает из компрессора высокого давления, который, в основном, служит для питания окислителя камеры сгорания. Этот воздух подводится по каналам к пазам 19 в диске 17 и далее поступает через отверстия 22, находящиеся внизу хвостовых частей лопаток, и протекает вдоль внутренних полостей 20 так, чтобы выходить через многочисленные отверстия, выполненные на аэродинамической поверхности 12 лопаток.
Для того чтобы калибровать расход охлаждающего воздуха, металлическая калибровочная пластина 25 прикрепляется, в основном, приваривается к внутренней поверхности хвостовой части 14 лопатки. Эта калибровочная пластина 25 имеет форму узкой прямоугольной шпонки, которая имеет определенное число отверстий, устанавливающих размер и форму отверстий 22 внизу хвостовой части лопатки. Коэффициенты расширения хвостовой части 14 лопатки и пластины 25 являются идентичными, так что они расширяются вместе в зависимости от температуры. В контексте настоящего изобретения, термическое расширение используется для изменения уровня потока охлаждающего воздуха.
В качестве дополнительной особенности предусмотрено то, что регулирующая пластина 27 выполнена из материала, имеющего коэффициент расширения, который отличается от коэффициента расширения материала, образовывающего хвостовую часть 14 лопатки и калибровочную пластину 25, при этом регулирующая пластина включает в себя отверстия 29, расположенные в точном соответствии с отверстиями 22 в калибровочной пластине. Регулирующая пластина 27, как правило, имеет форму узкой прямоугольной шпонки, сравнимой по форме с калибровочной пластиной.
Вышеуказанная регулирующая пластина 27 установлена внизу хвостовой части лопатки, в данном случае, с совпадением отверстий и в контакте с калибровочной пластиной 25, снабженной продольным направлением (образованным линейными направляющими 33), с использованием способа крепления, который позволяет сохранять возможность относительного перемещения между отверстиями 29 в регулирующей пластине и отверстиями 22 в хвостовой части лопатки (в данном случае, в калибровочной пластине), таким образом, чтобы размер сечения входного отверстия для охлаждающего потока увеличивался бы с увеличением температуры.
Точнее говоря, регулирующая пластина 27 выполнена из керамического или композитного материала, имеющего коэффициент расширения, который является очень небольшим по сравнению с коэффициентом расширения хвостовой части лопатки и калибровочной пластины, которые выполнены из металла.
Впускные отверстия 22, выполненные внизу хвостовой части лопатки, совпадают с отверстиями 29 в регулирующей пластине 27. Регулирующая пластина прикреплена только с одного из своих концов к вышеуказанной хвостовой части лопатки посредством крепежного элемента 31. Регулирующая пластина 27 удерживается в линейных направляющих 33, прикрепленных к хвостовой части 14 лопатки или к калибровочной пластине 25. Она прижимается к калибровочной пластине посредством центробежной силы.
Таким образом, при взлете подвижная лопатка 11, температура которой, естественно, повышается, расширяется до предельного значения. В хвостовой части 14 лопатки может быть заметно изменение совпадения между отверстиями 22 в калибровочной пластине и отверстиями 29 в регулирующей пластине 27, так как регулирующая пластина вообще почти не удлиняется. Как изображено на фиг.2, это относительное изменение приводит к образованию максимально доступного размера сечения входного отверстия для охлаждающего воздуха при взлете. Этого достаточно для калибровки размеров данного сечения так, чтобы температура при взлете достигала предельного значения, которое гарантирует предписанный срок службы лопатки. В отличие от этого, во время полета с крейсерской скоростью сжимание хвостовой части лопатки, которое является результатом снижения ее температуры, приводит к уменьшению размера сечения входного отверстия для охлаждающего воздуха (фиг.3) и, следовательно, к поступлению меньшего количества воздуха от компрессора. Это повышает эффективность всей работы турбореактивного двигателя во время полета на крейсерской скорости. Если уровень охлаждающего потока снижается только во время полета на крейсерской скорости, то срок действия лопатки укорачивается, но немного, порядка 15%. Это может быть компенсировано просто способом небольшого увеличения уровня охлаждающего потока во время стадий взлета и набора высоты. В качестве итога, предписанный срок службы лопаток сохраняется по мере увеличения эффективности работы турбореактивного двигателя, таким образом снижая его удельный расход топлива во время полета на крейсерской скорости.
Для того чтобы сделать изменение расхода охлаждающего потока наиболее оптимальным в зависимости от различия в расширении между хвостовой частью лопатки и регулирующей пластиной, отверстия в калибровочной дозирующей пластине имеют треугольную форму, и отверстия в регулирующей пластине имеют квадратную или прямоугольную форму.
В данном примере, каждое отверстие 22 внизу хвостовой части лопатки имеет площадь 3,5 квадратных миллиметра (мм2). К каждому из отверстий в калибровочной пластине обращено квадратное или прямоугольное отверстие 29 в регулирующей пластине. Край отверстия совпадает с поперечной стороной треугольника, когда хвостовая часть лопатки имеет температуру при взлете в 580°C.
После взлета хвостовая часть лопатки сжимается, таким образом частично закрывая треугольное отверстие в месте расположения его поперечного основания. Во время полета турбореактивного самолета с крейсерской скоростью температура хвостовой части лопатки опускается до 450°C. Хвостовая часть лопатки, как это видно по керамической пластине, сжимается на 0,025 миллиметров (мм). Это приводит к уменьшению сечения входного отверстия для охлаждающего потока на 2,8%. Уменьшение уровня охлаждающего потока, потребляемого двигающейся лопаткой при крейсерской скорости полета, является пропорциональным уменьшению площади сечения входного отверстия для охлаждающего потока.
Claims (12)
1. Лопатка турбины, охлаждаемая внутренним потоком охлаждающей текучей среды, поступающей через отверстия (22), расположенные внизу хвостовой части (14) лопатки, отличающаяся тем, что она включает в себя регулирующую пластину (27), снабженную отверстиями (29), расположенными в соответствии с отверстиями (22) внизу хвостовой части лопатки, при этом регулирующая пластина (27) выполнена из материала, имеющего коэффициент расширения, отличающийся от коэффициента расширения материала, из которого выполнена хвостовая часть лопатки, причем регулирующая пластина установлена внизу хвостовой части лопатки с продольным направлением и закреплена (31) с сохранением возможности относительного перемещения между отверстиями в регулирующей пластине и отверстиями в хвостовой части лопатки так, что сечение потока текучей среды увеличивается вместе с температурой.
2. Лопатка турбины по п.1, отличающаяся тем, что лопатка является подвижной лопаткой.
3. Лопатка турбины по п.1, отличающаяся тем, что регулирующая пластина (27) выполнена из материала, имеющего коэффициент расширения, который меньше коэффициента расширения материала, из которого выполнена хвостовая часть лопатки.
4. Лопатка турбины по п.1, отличающаяся тем, что регулирующая пластина (27) выполнена из керамического материала, имеющего коэффициент расширения, который является небольшим по сравнению с коэффициентом расширения хвостовой части лопатки.
5. Лопатка турбины по п.1, отличающаяся тем, что регулирующая пластина (27) выполнена из композитного материала, имеющего коэффициент расширения, который является небольшим по сравнению с коэффициентом расширения хвостовой части лопатки.
6. Лопатка турбины по п.1, отличающаяся тем, что хвостовая часть лопатки содержит у своего основания металлическую калибровочную пластину (25), имеющую вышеупомянутые отверстия (22), выполненные в ней в соответствии с отверстиями в регулирующей пластине (27).
7. Лопатка турбины по п.1, отличающаяся тем, что регулирующая пластина (27) закреплена (31) только одним из своих концов к лопатке турбины.
8. Лопатка турбины по п.7, отличающаяся тем, что пластина входит в зацепление с прямолинейной направляющей (33), прикрепленной к хвостовой части (14) лопатки или к калибровочной пластине (25).
9. Лопатка турбины по п.1, отличающаяся тем, что отверстия (22), расположенные внизу хвостовой части лопатки турбины, имеют треугольную форму.
10. Лопатка турбины по п.1, отличающаяся тем, что отверстия (29) в регулирующей пластине имеют квадратную или прямоугольную форму.
11. Турбина, включающая в себя диск (17) и лопатки (11), причем диск снабжен на своей периферии пазами (19), при этом в каждом пазу размещена хвостовая часть (14) лопатки турбины, при этом поток воздуха подводится по каналам к пазам, отличающаяся тем, что каждая лопатка (11) выполнена по п.1.
12. Турбина по п.11, отличающаяся тем, что она является турбиной турбореактивного самолета, работающей в условиях высокого давления.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0857154 | 2008-10-22 | ||
FR0857154A FR2937372B1 (fr) | 2008-10-22 | 2008-10-22 | Aube de turbine equipee de moyens de reglage de son debit de fluide de refroidissement |
PCT/FR2009/051975 WO2010046584A1 (fr) | 2008-10-22 | 2009-10-16 | Aube de turbine equipee de moyens de reglage de son debit de fluide de refroidissement. |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2011120432A RU2011120432A (ru) | 2012-11-27 |
RU2503819C2 true RU2503819C2 (ru) | 2014-01-10 |
Family
ID=40243863
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2011120432/06A RU2503819C2 (ru) | 2008-10-22 | 2009-10-16 | Лопатка турбины, снабженная средством регулирования расхода охлаждающей текучей среды |
Country Status (9)
Country | Link |
---|---|
US (1) | US9353634B2 (ru) |
EP (1) | EP2352906B1 (ru) |
JP (1) | JP5425919B2 (ru) |
CN (1) | CN102197193B (ru) |
BR (1) | BRPI0919590B1 (ru) |
CA (1) | CA2740512C (ru) |
FR (1) | FR2937372B1 (ru) |
RU (1) | RU2503819C2 (ru) |
WO (1) | WO2010046584A1 (ru) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT1394713B1 (it) * | 2009-06-04 | 2012-07-13 | Ansaldo Energia Spa | Pala di turbina |
DE102011121634B4 (de) | 2010-12-27 | 2019-08-14 | Ansaldo Energia Ip Uk Limited | Turbinenschaufel |
GB201113893D0 (en) * | 2011-08-12 | 2011-09-28 | Rolls Royce Plc | Oil mist separation in gas turbine engines |
FR2995342B1 (fr) | 2012-09-13 | 2018-03-16 | Safran Aircraft Engines | Aube refroidie de turbine haute pression |
EP2990597A1 (en) * | 2014-08-28 | 2016-03-02 | Siemens Aktiengesellschaft | Method for manufacturing a turbine assembly |
US20170234447A1 (en) * | 2016-02-12 | 2017-08-17 | United Technologies Corporation | Methods and systems for modulating airflow |
FR3052183B1 (fr) * | 2016-06-02 | 2020-03-06 | Safran Aircraft Engines | Aube de turbine comprenant une portion d'admission d'air de refroidissement incluant un element helicoidal pour faire tourbillonner l'air de refroidissement |
US10975703B2 (en) | 2016-10-27 | 2021-04-13 | Raytheon Technologies Corporation | Additively manufactured component for a gas powered turbine |
CN106761949A (zh) * | 2016-12-25 | 2017-05-31 | 东方电气集团东方汽轮机有限公司 | 一种空心叶片冷却介质节流孔板的配置结构及其装配方法 |
CN106679736A (zh) * | 2016-12-25 | 2017-05-17 | 东方电气集团东方汽轮机有限公司 | 一种确定空心叶片冷却介质流量的试验方法 |
CN106640215A (zh) * | 2016-12-25 | 2017-05-10 | 东方电气集团东方汽轮机有限公司 | 一种空心叶片冷却介质节流孔板的配置结构及其装配方法 |
CN106523038A (zh) * | 2016-12-25 | 2017-03-22 | 东方电气集团东方汽轮机有限公司 | 一种空心叶片冷却介质节流孔板的配置结构及其装配方法 |
WO2019102556A1 (ja) * | 2017-11-22 | 2019-05-31 | 東芝エネルギーシステムズ株式会社 | タービン翼およびタービン |
CN110925029A (zh) * | 2019-12-05 | 2020-03-27 | 中国航发四川燃气涡轮研究院 | 一种单晶涡轮转子叶片榫头堵盖装配结构及装配方法 |
US11492908B2 (en) * | 2020-01-22 | 2022-11-08 | General Electric Company | Turbine rotor blade root with hollow mount with lattice support structure by additive manufacture |
KR102355521B1 (ko) | 2020-08-19 | 2022-01-24 | 두산중공업 주식회사 | 압축기 블레이드의 조립구조와 이를 포함하는 가스 터빈 및 압축기 블레이드의 조립방법 |
JPWO2023140268A1 (ru) * | 2022-01-19 | 2023-07-27 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4807433A (en) * | 1983-05-05 | 1989-02-28 | General Electric Company | Turbine cooling air modulation |
US5054996A (en) * | 1990-07-27 | 1991-10-08 | General Electric Company | Thermal linear actuator for rotor air flow control in a gas turbine |
RU1718645C (ru) * | 1989-12-11 | 1995-12-27 | Научно-производственное предприятие "Труд" | Способ контроля состояния системы охлаждения турбины газотурбинного двигателя в процессе эксплуатации |
RU2208683C1 (ru) * | 2002-01-08 | 2003-07-20 | Ульяновский государственный технический университет | Охлаждаемая лопатка турбины |
RU2276732C2 (ru) * | 2004-01-16 | 2006-05-20 | Ульяновский государственный технический университет | Охлаждаемая лопатка турбины |
EP1936468A1 (en) * | 2006-12-22 | 2008-06-25 | Siemens Aktiengesellschaft | Bi-metallic elements for adjusting a cooling channel |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3814313A (en) * | 1968-10-28 | 1974-06-04 | Gen Motors Corp | Turbine cooling control valve |
FR2280791A1 (fr) * | 1974-07-31 | 1976-02-27 | Snecma | Perfectionnements au reglage du jeu entre les aubes et le stator d'une turbine |
US3966354A (en) * | 1974-12-19 | 1976-06-29 | General Electric Company | Thermal actuated valve for clearance control |
US4505640A (en) * | 1983-12-13 | 1985-03-19 | United Technologies Corporation | Seal means for a blade attachment slot of a rotor assembly |
US4626169A (en) * | 1983-12-13 | 1986-12-02 | United Technologies Corporation | Seal means for a blade attachment slot of a rotor assembly |
FR2600377B1 (fr) * | 1986-06-18 | 1988-09-02 | Snecma | Dispositif de controle des debits d'air de refroidissement d'une turbine de moteur |
FR2604750B1 (fr) * | 1986-10-01 | 1988-12-02 | Snecma | Turbomachine munie d'un dispositif de commande automatique des debits de ventilation de turbine |
US4820123A (en) * | 1988-04-25 | 1989-04-11 | United Technologies Corporation | Dirt removal means for air cooled blades |
GB2236147B (en) * | 1989-08-24 | 1993-05-12 | Rolls Royce Plc | Gas turbine engine with turbine tip clearance control device and method of operation |
US6059529A (en) * | 1998-03-16 | 2000-05-09 | Siemens Westinghouse Power Corporation | Turbine blade assembly with cooling air handling device |
US6186741B1 (en) * | 1999-07-22 | 2001-02-13 | General Electric Company | Airfoil component having internal cooling and method of cooling |
FR2823794B1 (fr) * | 2001-04-19 | 2003-07-11 | Snecma Moteurs | Aube rapportee et refroidie pour turbine |
US6933459B2 (en) * | 2003-02-03 | 2005-08-23 | General Electric Company | Methods and apparatus for fabricating a turbine engine blade |
AU2005229202B2 (en) * | 2004-03-30 | 2010-08-05 | General Electric Technology Gmbh | Device for supplying cooling air to a moving blade |
FR2898384B1 (fr) * | 2006-03-08 | 2011-09-16 | Snecma | Aube mobile de turbomachine a cavite commune d'alimentation en air de refroidissement |
US8591189B2 (en) * | 2006-11-20 | 2013-11-26 | General Electric Company | Bifeed serpentine cooled blade |
-
2008
- 2008-10-22 FR FR0857154A patent/FR2937372B1/fr not_active Expired - Fee Related
-
2009
- 2009-10-16 EP EP09760160A patent/EP2352906B1/fr active Active
- 2009-10-16 CN CN200980142018.2A patent/CN102197193B/zh active Active
- 2009-10-16 CA CA2740512A patent/CA2740512C/fr active Active
- 2009-10-16 BR BRPI0919590A patent/BRPI0919590B1/pt active IP Right Grant
- 2009-10-16 RU RU2011120432/06A patent/RU2503819C2/ru active
- 2009-10-16 WO PCT/FR2009/051975 patent/WO2010046584A1/fr active Application Filing
- 2009-10-16 JP JP2011532685A patent/JP5425919B2/ja active Active
- 2009-10-16 US US13/125,257 patent/US9353634B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4807433A (en) * | 1983-05-05 | 1989-02-28 | General Electric Company | Turbine cooling air modulation |
RU1718645C (ru) * | 1989-12-11 | 1995-12-27 | Научно-производственное предприятие "Труд" | Способ контроля состояния системы охлаждения турбины газотурбинного двигателя в процессе эксплуатации |
US5054996A (en) * | 1990-07-27 | 1991-10-08 | General Electric Company | Thermal linear actuator for rotor air flow control in a gas turbine |
RU2208683C1 (ru) * | 2002-01-08 | 2003-07-20 | Ульяновский государственный технический университет | Охлаждаемая лопатка турбины |
RU2276732C2 (ru) * | 2004-01-16 | 2006-05-20 | Ульяновский государственный технический университет | Охлаждаемая лопатка турбины |
EP1936468A1 (en) * | 2006-12-22 | 2008-06-25 | Siemens Aktiengesellschaft | Bi-metallic elements for adjusting a cooling channel |
Also Published As
Publication number | Publication date |
---|---|
FR2937372A1 (fr) | 2010-04-23 |
CA2740512A1 (fr) | 2010-04-29 |
CN102197193A (zh) | 2011-09-21 |
JP2012506512A (ja) | 2012-03-15 |
CA2740512C (fr) | 2016-11-15 |
US20110194944A1 (en) | 2011-08-11 |
BRPI0919590A2 (pt) | 2015-12-08 |
BRPI0919590B1 (pt) | 2020-05-05 |
RU2011120432A (ru) | 2012-11-27 |
EP2352906B1 (fr) | 2012-12-19 |
JP5425919B2 (ja) | 2014-02-26 |
FR2937372B1 (fr) | 2010-12-10 |
WO2010046584A1 (fr) | 2010-04-29 |
US9353634B2 (en) | 2016-05-31 |
CN102197193B (zh) | 2014-07-09 |
EP2352906A1 (fr) | 2011-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2503819C2 (ru) | Лопатка турбины, снабженная средством регулирования расхода охлаждающей текучей среды | |
US8262355B2 (en) | Cooled component | |
US6491496B2 (en) | Turbine airfoil with metering plates for refresher holes | |
US7753650B1 (en) | Thin turbine rotor blade with sinusoidal flow cooling channels | |
US8920111B2 (en) | Airfoil incorporating tapered cooling structures defining cooling passageways | |
US7431561B2 (en) | Method and apparatus for cooling gas turbine rotor blades | |
US7008179B2 (en) | Turbine blade frequency tuned pin bank | |
US8801377B1 (en) | Turbine blade with tip cooling and sealing | |
US7004720B2 (en) | Cooled turbine vane platform | |
JP4688758B2 (ja) | パターン冷却式タービン翼形部 | |
EP3034792B1 (en) | Aerofoil blade or vane | |
US8011881B1 (en) | Turbine vane with serpentine cooling | |
US10480329B2 (en) | Airfoil turn caps in gas turbine engines | |
US20140178207A1 (en) | Turbine blade | |
US20080050244A1 (en) | Turbine blade with split impingement rib | |
US8632298B1 (en) | Turbine vane with endwall cooling | |
US8511995B1 (en) | Turbine blade with platform cooling | |
US10443397B2 (en) | Impingement system for an airfoil | |
US20130142666A1 (en) | Turbine blade incorporating trailing edge cooling design | |
US20130251508A1 (en) | Dual-use of cooling air for turbine vane and method | |
CN101004143A (zh) | 冷却改进的涡轮机翼型件 | |
US10767491B2 (en) | Blade comprising a trailing edge having three distinct cooling regions | |
US8231330B1 (en) | Turbine blade with film cooling slots | |
US20150093252A1 (en) | Internally cooled airfoil | |
US20180045055A1 (en) | Impingement system for an airfoil |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PD4A | Correction of name of patent owner |