RU2499367C2 - Interference management employing fractional time reuse - Google Patents
Interference management employing fractional time reuse Download PDFInfo
- Publication number
- RU2499367C2 RU2499367C2 RU2010115756/07A RU2010115756A RU2499367C2 RU 2499367 C2 RU2499367 C2 RU 2499367C2 RU 2010115756/07 A RU2010115756/07 A RU 2010115756/07A RU 2010115756 A RU2010115756 A RU 2010115756A RU 2499367 C2 RU2499367 C2 RU 2499367C2
- Authority
- RU
- Russia
- Prior art keywords
- data channel
- access point
- time interval
- transmission
- identification
- Prior art date
Links
- 238000000034 method Methods 0.000 claims abstract description 43
- 230000005540 biological transmission Effects 0.000 claims description 190
- 238000011144 upstream manufacturing Methods 0.000 claims description 19
- 238000012546 transfer Methods 0.000 claims description 17
- 230000011664 signaling Effects 0.000 claims description 6
- 230000001174 ascending effect Effects 0.000 claims 2
- 238000012423 maintenance Methods 0.000 claims 1
- 238000004891 communication Methods 0.000 abstract description 11
- 230000000694 effects Effects 0.000 abstract description 3
- 239000000126 substance Substances 0.000 abstract 1
- 230000003595 spectral effect Effects 0.000 description 59
- 230000006870 function Effects 0.000 description 44
- 238000005516 engineering process Methods 0.000 description 32
- 238000005259 measurement Methods 0.000 description 24
- 238000001228 spectrum Methods 0.000 description 14
- 238000010586 diagram Methods 0.000 description 13
- 230000008569 process Effects 0.000 description 12
- 238000002955 isolation Methods 0.000 description 9
- 238000012545 processing Methods 0.000 description 9
- 230000002441 reversible effect Effects 0.000 description 9
- 230000000737 periodic effect Effects 0.000 description 8
- 238000007726 management method Methods 0.000 description 6
- 238000001914 filtration Methods 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- 230000010363 phase shift Effects 0.000 description 5
- 238000013459 approach Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 230000035945 sensitivity Effects 0.000 description 4
- 230000007480 spreading Effects 0.000 description 4
- 230000001360 synchronised effect Effects 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 101000741965 Homo sapiens Inactive tyrosine-protein kinase PRAG1 Proteins 0.000 description 2
- 102100038659 Inactive tyrosine-protein kinase PRAG1 Human genes 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 238000004590 computer program Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 230000002123 temporal effect Effects 0.000 description 2
- 241001247437 Cerbera odollam Species 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000010267 cellular communication Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Landscapes
- Mobile Radio Communication Systems (AREA)
Abstract
Description
По данной заявке заявлено преимущество и приоритет в соответствии с совместно принадлежащей предварительной заявкой на патент США №60/974428, поданной 21 сентября 2007 г. и которой назначен регистрационный номер патентного поверенного 071700P1; заявкой на предварительный патент США №60/974449, поданной 21 сентября 2007 г. и которой назначен регистрационный номер патентного поверенного 071700P2; заявкой на предварительный патент США №60/974794, поданной 24 сентября 2007 г. и которой назначен регистрационный номер патентного поверенного № 071700P3; и заявкой на предварительный патент США №60/977294, поданной 3 октября 2007 г. и которой назначен регистрационный номер патентного поверенного 071700P4, раскрытие каждой из которых приведено в данном описании в качестве ссылки.This application claims benefit and priority in accordance with the jointly owned provisional application for US patent No. 60/974428, filed September 21, 2007 and which assigned the patent attorney registration number 071700P1; U.S. Patent Application No. 60/974449, filed September 21, 2007, and to which patent attorney registration number 071700P2 has been assigned; US Provisional Patent Application No. 60/974794, filed September 24, 2007, and to which patent attorney registration number No. 071700P3 has been assigned; and US Provisional Patent Application No. 60/977294, filed October 3, 2007, and to which patent attorney registration number 071700P4 has been assigned, each of which is incorporated herein by reference.
Область техники, к которой относится изобретениеFIELD OF THE INVENTION
Данная заявка, в общем, относится к беспроводной передаче данных и, более конкретно, но не исключительно, к улучшению характеристик передачи данных.This application, in General, relates to wireless data transmission and, more specifically, but not exclusively, to improve the characteristics of data transmission.
Беспроводные системы передачи данных широко используются для обеспечения передачи различных типов данных (например, голоса, данных, мультимедийных услуг и т.д.) для множества пользователей. Поскольку потребность в высокоскоростной передаче данных и мультимедийных услугах быстро растет, возникла проблема, связанная с воплощением эффективных и надежных систем передачи данных с улучшенными характеристиками.Wireless data transmission systems are widely used to provide the transmission of various types of data (eg, voice, data, multimedia services, etc.) to many users. As the demand for high-speed data transmission and multimedia services is growing rapidly, a problem has arisen with the implementation of efficient and reliable data transmission systems with improved features.
В дополнение к обычным сетевым базовым станциям мобильной телефонной связи могут быть развернуты базовые станции с малой зоной охвата (например, установленные дома у пользователя), которые обеспечивают более надежную беспроводную зону обслуживания внутри помещения для мобильных устройств. Такие базовые станции с малой зоной обслуживания обычно известны как базовые станции точки доступа, домашние узлы B или фемтоячейки. Как правило, такие базовые станции с малой зоной обслуживания соединяют с Интернет и сетями операторов мобильной связи через маршрутизатор DSL (ЦАЛ, цифровая абонентская линия) или кабельный модем.In addition to conventional network mobile phone base stations, base stations with a small coverage area (for example, installed at the user's home) can be deployed to provide a more reliable wireless indoor coverage area for mobile devices. Such small-area base stations are commonly known as access point base stations, home nodes B, or femtocells. Typically, such base stations with a small service area are connected to the Internet and the networks of mobile operators via a DSL router (DSL, digital subscriber line) or cable modem.
Поскольку радиочастотная ("RF" (РЧ)) зона обслуживания базовых станций с малой зоной обслуживания может не быть оптимизирована оператором мобильной связи, и развертывание таких базовых станций может быть выполнено специально для требуемой цели, могут возникнуть проблемы с RF взаимными помехами. Кроме того, мягкая передача мобильных устройств может не поддерживаться для базовых станций с малой зоной охвата. Поэтому существует потребность в улучшенном управлении взаимными помехами для беспроводных сетей передачи данных.Since the radio frequency (“RF”) coverage area of base stations with a small coverage area may not be optimized by the mobile operator, and the deployment of such base stations may be performed specifically for the desired purpose, RF interference problems may occur. In addition, soft transfer of mobile devices may not be supported for base stations with a small coverage area. Therefore, there is a need for improved interference management for wireless data networks.
Сущность изобретенияSUMMARY OF THE INVENTION
Сущность примерных аспектов изобретения состоит в следующем. Следует понимать, что любая приведенная в данном описании ссылка на аспекты терминологии может относиться к одному или более аспектам изобретения.The essence of exemplary aspects of the invention is as follows. It should be understood that any reference in this description to aspects of the terminology may relate to one or more aspects of the invention.
Данное изобретение в некоторых аспектах относится к управлению взаимными помехами путем использования технологий фракционного повторного использования. Например, в некоторых аспектах фракционное повторное использование может включать использование участка набора назначенных чередований гибридного автоматического запроса на повторную передачу данных ("HARQ" (ГАЗП)) для трафика восходящего или нисходящего каналов передачи данных. В некоторых аспектах фракционное повторное использование может включать в себя использование участка временного интервала, выделенного трафика восходящего или нисходящего каналов передачи данных. В некоторых аспектах фракционное повторное использование может включать в себя использование участка частотного спектра, выделенного для трафика восходящего или нисходящего каналов передачи данных. В некоторых аспектах фракционное повторное использование может включать в себя использование участка набора кодов расширения (например, SF16), выделенных для трафика восходящего или нисходящего каналов передачи данных. В некоторых аспектах такие участки могут быть определены и назначены таким образом, чтобы соседние узлы использовали неперекрывающиеся ресурсы. В некоторых аспектах определение и назначение таких участков может быть основано на обратной связи, относящейся к взаимным помехам.This invention in some aspects relates to mutual interference control using fractional reuse technologies. For example, in some aspects, fractional reuse may include using a portion of a set of assigned interlaces of a hybrid automatic data retransmission request (“HARQ”) for uplink or downlink traffic. In some aspects, fractional reuse may include the use of a portion of a time slot allocated to uplink or downlink traffic. In some aspects, fractional reuse may include utilizing a portion of the frequency spectrum allocated for uplink or downlink traffic. In some aspects, fractional reuse may include using a portion of a set of spreading codes (e.g., SF16) allocated for uplink or downlink traffic. In some aspects, such sites can be defined and assigned so that neighboring nodes use non-overlapping resources. In some aspects, the definition and purpose of such sites may be based on feedback related to mutual interference.
Данное изобретение в некоторых аспектах относится к управлению взаимными помехами путем использования технологий, относящихся к управлению мощностью. Например, в некоторых аспектах мощностью передачи терминала доступа можно управлять для уменьшения взаимных помех в неассоциированной точке доступа. В некоторых аспектах управляют коэффициентом шума или ослаблением при приеме в точке доступа на основе силы принимаемого сигнала, ассоциированного с сигналами из одного или более терминалов доступа.The present invention, in some aspects, relates to interference control by using technologies related to power control. For example, in some aspects, the transmit power of the access terminal may be controlled to reduce interference in an unassociated access point. In some aspects, the noise figure or attenuation upon reception at the access point is controlled based on the strength of the received signal associated with signals from one or more access terminals.
Данное изобретение в некоторых аспектах относится к управлению взаимными помехами путем использования профиля мощности передачи и/или профиля ослабления. Например, мощность передачи по нисходящему каналу или продление приемника в восходящем канале можно динамически регулировать в узле, как функцию времени. В данном описании различные узлы могут использовать разные фазы профиля, для уменьшения взаимных помех между узлами. В некоторых аспектах профиль может быть определен на основе обратной связи, относящейся к взаимным помехам.The present invention in some aspects relates to mutual interference control by using a transmit power profile and / or an attenuation profile. For example, downlink transmit power or uplink receiver extension can be dynamically adjusted at a node as a function of time. In this description, different nodes can use different phases of the profile to reduce mutual interference between nodes. In some aspects, the profile may be determined based on feedback related to mutual interference.
Краткое описание чертежейBrief Description of the Drawings
Эти и другие примерные аспекты изобретения будут описаны в подробном описании изобретения и приложенной формуле изобретения, которые следуют ниже, и на приложенных чертежах, на которых:These and other exemplary aspects of the invention will be described in the detailed description of the invention and the attached claims that follow, and in the attached drawings, in which:
на фиг.1 показана упрощенная блок-схема нескольких примерных аспектов системы передачи данных;figure 1 shows a simplified block diagram of several exemplary aspects of a data transmission system;
на фиг.2 показана упрощенная блок-схема, иллюстрирующая несколько примерных аспектов компонентов в примерной системе передачи данных;2 is a simplified block diagram illustrating several exemplary aspects of components in an exemplary data transmission system;
на фиг.3 показана блок-схема последовательности нескольких примерных аспектов операций, которые могут быть выполнены для управления взаимными помехами;figure 3 shows a block diagram of a sequence of several exemplary aspects of the operations that can be performed to control mutual interference;
на фиг.4 показана блок-схема последовательности нескольких примерных аспектов операций, которые могут быть выполнены для управления взаимными помехами, применяя фракционное повторное использование на основе чередования HARQ;FIG. 4 is a flowchart of several exemplary aspects of operations that can be performed to control mutual interference using fractional reuse based on HARQ interlace;
на фиг.5 показана блок-схема последовательности нескольких примерных аспектов операций, которые могут быть выполнены для управления взаимными помехами путем использования профиля мощности передачи;5 is a flowchart of several exemplary aspects of operations that can be performed to control mutual interference by using a transmit power profile;
на фиг.6 показана упрощенная схема, иллюстрирующая несколько аспектов примерного профиля мощности передачи;6 is a simplified diagram illustrating several aspects of an exemplary transmission power profile;
на фиг.7 показана блок-схема последовательности нескольких примерных аспектов операций, которые могут быть выполнены для управления взаимными помехами путем использования профиля ослабления приема;Fig. 7 is a flowchart of several exemplary aspects of operations that can be performed to control interference by using a reception attenuation profile;
на фиг.8 показана упрощенная схема, иллюстрирующая несколько аспектов примерного профиля ослабления приема;Fig. 8 is a simplified diagram illustrating several aspects of an exemplary reception attenuation profile;
на фиг.9 и 10 показаны блок-схемы последовательности нескольких примерных аспектов операций, которые могут быть выполнены для управления взаимными помехами путем применения фракционного повторного использования на основе временного интервала;Figures 9 and 10 show flow charts of several exemplary aspects of operations that can be performed to control mutual interference by applying fractional reuse based on a time interval;
на фиг.11 и 12 показаны блок-схемы последовательности нескольких примерных аспектов операций, которые могут быть выполнены для управления взаимными помехами путем применения фракционного повторного использования на основе частотного спектра;11 and 12 are flowcharts of several exemplary aspects of operations that can be performed to control interference by applying fractional reuse based on the frequency spectrum;
фиг.13 и 14 показаны блок-схемы последовательности нескольких примерных аспектов операций, которые могут быть выполнены для управления взаимными помехами путем применения расширяющего фракционного повторного использования на основе кода расширения;13 and 14 are flowcharts of several exemplary aspects of operations that can be performed to control mutual interference by applying spreading fractional reuse based on the spreading code;
на фиг.15 показана блок-схема последовательности нескольких примерных аспектов операций, которые могут быть выполнены для управления взаимными помехами путем использования управления мощностью передачи;on Fig shows a block diagram of a sequence of several exemplary aspects of the operations that can be performed to control interference by using transmission power control;
на фиг.16 показана упрощенная схема, иллюстрирующая несколько аспектов примерной функции управления мощностью;16 is a simplified diagram illustrating several aspects of an exemplary power control function;
на фиг.17 показана блок-схема последовательности нескольких примерных аспектов операций, которые могут быть выполнены для управления взаимными помехами путем динамического регулирования коэффициента ослабления;on Fig shows a block diagram of a sequence of several exemplary aspects of the operations that can be performed to control mutual interference by dynamically adjusting the attenuation coefficient;
на фиг.18 показана упрощенная схема системы беспроводной передачи данных;on Fig shows a simplified diagram of a wireless data transmission system;
на фиг.19 показана упрощенная схема системы беспроводной передачи данных, включающей в себя фемтоузлы;on Fig shows a simplified diagram of a wireless data transmission system including femtocells;
на фиг.20 показана упрощенная схема, иллюстрирующая зоны обслуживания для беспроводной передачи данных;20 is a simplified diagram illustrating service areas for wireless data transmission;
на фиг.21 показана упрощенная блок-схема нескольких примерных аспектов компонентов передачи данных; и21 is a simplified block diagram of several exemplary aspects of data transmission components; and
на фиг.22-30 показаны упрощенные блок-схемы нескольких примерных аспектов устройств, выполненных с возможностью управления взаимными помехами, в соответствии с настоящим описанием.on Fig-30 shows a simplified block diagram of several exemplary aspects of devices made with the possibility of managing mutual interference, in accordance with the present description.
В соответствии с обычной практикой различные элементы, иллюстрируемые на чертежах, могут быть вычерчены не в масштабе. В соответствии с этим размеры различных элементов могут быть произвольно увеличены или уменьшены для ясности представления. Кроме того, некоторые из чертежей могут быть упрощены для ясности представления. Таким образом, чертежи могут не представлять все компоненты данного устройства (например, устройства) или способа. И, в конечном итоге, одинаковые номера ссылочных позиций могут использоваться для обозначения одинаковых элементов во всем описании и на чертежах.In accordance with ordinary practice, the various elements illustrated in the drawings may not be drawn to scale. Accordingly, the sizes of the various elements can be arbitrarily increased or decreased for clarity of presentation. In addition, some of the drawings may be simplified for clarity of presentation. Thus, the drawings may not represent all components of a given device (eg, device) or method. And, ultimately, the same reference numerals can be used to refer to the same elements throughout the description and drawings.
Подробное описание изобретенияDETAILED DESCRIPTION OF THE INVENTION
Различные аспекты изобретения описаны ниже. Должно быть понятно, что приведенное описание может быть воплощено в широком разнообразии форм, и что любая конкретная структура, функция или обе они, раскрытые в данном описании, могут быть просто представительными. На основе приведенного описания для специалиста в данной области техники должно быть понятно, что раскрытые в данном описании аспекты могут быть воплощены независимо от любых других аспектов и, что два или более из этих аспектов могут быть скомбинированы различным образом. Например, может быть воплощено устройство, или способ может быть выполнен на практике, используя любое количество представленных в данном описании аспектов. Кроме того, такое устройство может быть воплощено, или такой способ может быть выполнен на практике, используя другую структуру, функции или структуру и функции, в дополнение к или помимо одного или более из представленных в данном описании аспектов. Кроме того, аспект может содержать, по меньшей мере, один элемент пункта формулы изобретения.Various aspects of the invention are described below. It should be understood that the foregoing description may be embodied in a wide variety of forms, and that any particular structure, function, or both, disclosed herein may be simply representative. Based on the above description, it will be understood by one skilled in the art that the aspects disclosed herein may be embodied independently of any other aspects and that two or more of these aspects may be combined in various ways. For example, a device may be implemented, or the method may be practiced using any number of the aspects described herein. In addition, such a device may be implemented, or such a method may be practiced using another structure, function, or structure and functions, in addition to or in addition to one or more of the aspects described herein. In addition, an aspect may comprise at least one element of a claim.
На фиг.1 показан примерный аспект системы 100 передачи данных, где распределенные узлы (например, точки 102, 104 и 106 доступа) обеспечивают возможность соединения по беспроводному каналу передачи данных с другими узлами (например, терминалами 108, 110 и 112 доступа), которые могут быть установлены в или могут перемещаться через ассоциированную географическую область. В некоторых аспектах точки 102, 104 и 106 доступа могут связываться с одним или более сетевыми узлами (например, централизованным сетевым контроллером, таким как сетевой узел 114), чтобы способствовать возможности соединения с глобальной вычислительной сетью.1 shows an exemplary aspect of a
Точка доступа, такая как точка доступа 104, может быть ограничена таким образом, что только некоторые терминалы доступа (например, терминал 110 доступа) будут иметь разрешение на доступ к точке доступа, или точка доступа может быть ограничена некоторым другим способом. В таком случае точка с ограниченным доступом и/или ассоциированные с ней терминалы доступа (например, терминал 110 доступа) может создавать помехи для других узлов в системе 100, таких как, например, точка с неограниченным доступом (например, макроточка 102 доступа), и их ассоциированными терминалами доступа (например, терминал 108 доступа), другая точка с ограниченным доступом (например, точка 106 доступа), или ее ассоциированные терминалы доступа (например, терминал 112 доступа). Например, ближайшая точка доступа для данного терминала доступа может не представлять обслуживающие точки доступа для этого терминала доступа. Следовательно, передача через эти терминалы доступа может создавать помеху для приема в терминале доступа. Как описано в данном описании, фракционное повторное использование, управление мощностью и другие технологии можно использовать для уменьшения взаимных помех.An access point, such as
Примерные операции системы, такой как система 100, будут подробно рассмотрены ниже со ссылкой на блок-схему последовательности операций, показанную на фиг.2. Для удобства, операции, показанные на фиг.2 (или любые другие операции, раскрытые или описанные в данном описании), могут быть описаны, как выполняемые определенными компонентами (например, компонентами системы 100 и/или компонентами системы 300, которые показаны на фиг.3). Следует, однако, понимать, что эти операции могут быть выполнены другими типами компонентов и могут быть выполнены с использованием другого количества компонентов. Также следует понимать, что одна или более из операций, описанных в данном описании, может не использоваться в данном варианте выполнения.Exemplary system operations, such as
С целью иллюстрации, различные аспекты изобретения будут описаны в контексте сетевого узла, точки доступа и терминала доступа, которые связываются друг с другом. Однако, следует понимать, что приведенное описание может быть применено к другим типам устройств или устройств, которые могут быть названы с использованием другой терминологии.For the purpose of illustration, various aspects of the invention will be described in the context of a network node, access point, and access terminal that communicate with each other. However, it should be understood that the above description may be applied to other types of devices or devices that may be named using different terminology.
На фиг.3 показано несколько примерных компонентов, которые могут быть внедрены в сетевой узел 114 (например, контроллер радиосети), точку 104 доступа и терминал 110 доступа, в соответствии с приведенным описанием. Следует понимать, что компоненты, иллюстрируемые для одного из этих узлов, также, могут быть внедрены в другие узлы в системе 100.Figure 3 shows several exemplary components that can be implemented in a network node 114 (for example, a radio network controller), an
Сетевой узел 114, точка 104 доступа и терминал 110 доступа включают в себя приемопередатчики 302, 304 и 306, соответственно, предназначенные для обмена данными друг с другом и с другими узлами. Приемопередатчик 302 включает в себя передатчик 308, предназначенный для передачи сигналов, и приемник 310, предназначенный для приема сигналов. Приемопередатчик 304 включает в себя передатчик 312, предназначенный для передачи сигналов, и приемник 314, предназначенный для приема сигналов. Приемопередатчик 306 включает в себя передатчик 316, предназначенный для передачи сигналов, и приемник 318, предназначенный для приема сигналов.
В типичном варианте выполнения точка 104 доступа связывается с терминалом 110 доступа через один или более каналов беспроводной связи, и точка доступа 104 связывается с сетевым узлом 114 через канал обратной связи. Следует понимать, что беспроводные или небеспроводные каналы передачи данных можно использовать между этими или другими узлами в различных вариантах выполнения. Следовательно, приемопередатчики 302, 304 и 306 могут включать в себя беспроводные и/или небеспроводные компоненты передачи данных.In a typical embodiment, the
Сетевой узел 114, точка 104 доступа и терминал 110 доступа также включают в себя различные другие компоненты, которые можно использовать совместно с управлением взаимными помехами, как описано в данном описании. Например, сетевой узел 114, точка 104 доступа и терминал 110 доступа могут включать в себя контроллеры 320, 322 и 324 взаимных помех, соответственно, предназначенные для уменьшения взаимных помех и для предоставления других связанных с этим функций, как описано в данном описании. Контроллер 320, 322 и 324 взаимных помех может включать в себя один или более компонентов, предназначенных для выполнения различных типов управления взаимными помехами. Сетевой узел 114, точка 104 доступа и терминал 110 доступа могут включать в себя контроллеры 326, 328 и 330 передачи данных, соответственно, для управления обменом данными с другими узлами и для предоставления других связанных с этим функций, как описано в данном описании. Сетевой узел 114, точка 104 доступа и терминал 110 доступа могут включать в себя контроллеры 332, 334 и 336 согласования по времени, соответственно, для управления обменом данными с другими узлами и для предоставления других связанных с этим функций, как описано в данном описании. Другие компоненты, представленные на фиг.3, будут описаны в следующем описании.
С целью иллюстрации, контроллеры 320 и 322 взаимных помех представлены, как включающие в себя несколько компонентов контроллера. На практике, однако, данный вариант выполнения может не использовать все эти компоненты. Здесь компонент 338 или 340 контроллера HARQ может обеспечить функцию, относящуюся к операциям чередования HARQ, как описано в данном описании. Компонент 342 или 344 контроллера профиля может обеспечивать функцию, относящуюся к профилю мощности передачи, или к операциям ослаблении при приеме, как описано в данном описании. Компонент 346 или 348 контроллера временного интервала может обеспечить функцию, относящуюся к операциям участка временного интервала, как описано в данном описании. Компонент 350 или 352 контроллера спектральной маски может обеспечивать функцию, относящуюся к операциям спектральной маски, как описано в данном описании. Компонент 354 или 356 контроллера кода расширения может обеспечивать функцию, относящуюся к операциям кода расширения, как описано в данном описании. Компонент 358 или 360 контроллера мощности передачи может обеспечивать функцию, относящуюся к операциям мощности передачи, как описано в данном описании. Компонент 362 или 364 контроллера коэффициента ослабления может обеспечивать функцию, относящуюся к операциям коэффициента ослабления, как описано в данном описании.For the purpose of illustration,
На фиг.2 показано, как сетевой узел 114, точка 104 доступа и терминал 110 доступа могут взаимодействовать друг с другом для обеспечения управления взаимными помехами (например, уменьшения взаимных помех). В некоторых аспектах эти операции могут использоваться в восходящем канале передачи данных и/или в нисходящем канале передачи данных для уменьшения взаимных помех. Обычно одна или более технологий, описанных со ссылкой на фиг.2, может использоваться в более конкретных вариантах выполнения, которые описаны ниже со ссылкой на фиг.4-18. Следовательно, с целью ясности представления, описание более конкретных вариантов выполнения может снова не содержать подробное описание этих технологий.FIG. 2 shows how a
Как представлено блоком 202, сетевой узел 114 (например, контроллер 320 взаимных помех), в случае необходимости, определяет один или более параметров управления взаимными помехами для точки 104 доступа и/или терминала 110 доступа. Такие параметры могут принимать различные формы. Например, в некоторых вариантах выполнения сетевой узел 114 может определять параметры фракционного повторного использования для уменьшения взаимных помех в восходящем и/или нисходящем канале передачи данных. Как отмечено в данном описании, такое фракционное повторное использование может включать использование одного или более перемежений HARQ, выкалывание, частотный спектр или коды расширения. В некоторых вариантах выполнения сетевой узел 114 может определять другие типы информации управления взаимными помехами, такие как, например, параметры мощности передачи и параметры ослаблении при приеме. Примеры таких параметров будут более подробно описаны ниже со ссылкой на фиг.4-18.As represented by
В некоторых аспектах определения параметров взаимных помех может включать в себя определение, как выделять один или более ресурсов. Например, операции блока 402 могут включать в себя определение, как выделенный ресурс (например, частотный спектр и т.д.) может быть разделен для фракционного повторного использования. Кроме того, определение параметров фракционного повторного использования может включать в себя определение, в какой мере выделенный ресурс (например, какое количество чередований HARQ и т.д.) может использовать любой одной из набора точек доступа (например, точек с ограниченным доступом). Определение параметров фракционного повторного использования также может подразумевать определение того, в какой степени эти ресурсы могут использоваться набором точек доступа (например, точек с ограниченным доступом).In some aspects, determining the interference parameters may include determining how to allocate one or more resources. For example, the operations of
В некоторых аспектах сетевой узел 114 может определять параметры на основе принятой информации, которая означает, возможны ли взаимные помехи в восходящем или нисходящем каналах передачи данных и, если они существуют, степень таких взаимных помех. Такую информацию можно принимать из различных узлов в системе (например, точек доступа и/или терминалов доступа) и различными способами (например, через канал обратной связи, через каналы радиопередачи и тому подобное).In some aspects, the
Например, в некоторых случаях одна или более точек доступа (например, точка 104 доступа) может отслеживать восходящий и/или нисходящий каналы передачи данных и передавать показатель взаимных помех, детектируемых по восходящему и/или нисходящему каналу передачи данных в сетевой узел 114 (например, периодически или по запросу). В качестве примера предыдущего случая, точка 104 доступа может рассчитывать силу сигналов по сигналам, которые она принимает из расположенных рядом терминалов доступа, которые не ассоциированы с (например, которые не отслеживаются) точкой 104 доступа (например, терминалы 108 и 112 доступа) и передает это в виде отчета в сетевой узел 114.For example, in some cases, one or more access points (eg, access point 104) may monitor the upstream and / or downlink data channels and transmit an indication of interference detected by the upstream and / or downlink data channel to the network node 114 (for example, periodically or upon request). As an example of the previous case, the
В некоторых случаях, каждая из точек доступа в системе может генерировать показатели нагрузки, когда они сталкиваются с относительно большой нагрузкой. Такие показатели могут принимать форму, например, бита занятости в 1×EV-DO, относительный предоставляемый канал ("RGCH" (ОПКН)) в 3GPP (Проект партнерства 3-го поколения), или некоторую другую соответствующую форму. В обычном сценарии точка доступа может передавать эту информацию в свой ассоциированный терминал доступа через нисходящий канал передачи данных. Однако такая информация также может быть передана в сетевой узел 114 (например, через канал обратной связи).In some cases, each of the access points in the system can generate load indicators when they encounter a relatively large load. Such metrics may take the form of, for example, a 1 × EV-DO employment bit, relative provided channel (“RGCH” (JCH)) in 3GPP (3rd Generation Partnership Project), or some other appropriate form. In a typical scenario, the access point may transmit this information to its associated access terminal via a downlink data channel. However, such information can also be transmitted to network node 114 (for example, through a feedback channel).
В некоторых случаях, один или более терминалов доступа (например, терминал 110 доступа) могут отслеживать сигналы в нисходящем канале передачи данных и предоставлять информацию на основе этого отслеживания. Терминал 110 доступа может передавать такую информацию в точку 104 доступа (например, которая может передавать далее информацию в сетевой узел 114), или в сетевой узел 114 (через точку 104 доступа). Другие терминалы доступа в системе могут передавать информацию в сетевой узел 114 аналогичным образом.In some cases, one or more access terminals (eg, access terminal 110) may monitor downlink signals and provide information based on this tracking.
В некоторых случаях, терминал 110 доступа может генерировать отчеты о результатах измерения (например, на периодической основе). В некоторых аспектах такой отчет о результатах измерения может означать, из каких точек доступа терминал 110 доступа принимает сигналы, показатели силы принимаемых сигналов, ассоциированные с сигналами из каждой точки доступа (например, Ec/Io), потери в канале передачи для каждой из точек доступа, или некоторые другие соответствующие типы информации. В некоторых случаях отчет об измерениях может включать в себя информацию, относящуюся к любым показателям нагрузки, которые принимает терминал 110 доступа через нисходящий канал передачи данных.In some cases, the
Сетевой узел 114 затем может использовать информацию из одного или более отчетов об измерениях для определения, находится ли точка 104 доступа и/или терминал 110 доступа относительно близко к другому узлу (например, другой точке доступа или терминалу доступа). Кроме того, сетевой узел 114 может использовать эту информацию, для определения, оказывает ли любой из этих узлов взаимные помехи любому другому из этих узлов. Например, сетевой узел 114 может определять силу принимаемого сигнала в узле на основе мощности передачи узла, который передает сигналы, и потерь на пути передачи между этими узлами.The
В некоторых случаях терминал 110 доступа может генерировать информацию, которая означает отношение сигнал/шум (например, отношение сигнала и взаимных помех к шумам, SINR (ОСПШ)) в нисходящем канале передачи. Такая информация может содержать, например, показатель качества канала ("CQI" (ПКК)), показатель управления скоростью передачи данных ("DRC" (УСД)) или некоторую другую соответствующую информацию. В некоторых случаях, такая информация может быть передана в точку 104 доступа, и точка 104 доступа может передавать далее эту информацию в сетевой узел 114 для использования при операциях управления взаимными помехами. В некоторых аспектах сетевой узел 114 может использовать такую информацию для определения, присутствуют ли взаимные помехи в нисходящем канале передачи данных, или для определения, повышается ли, или уменьшается уровень взаимных помех в нисходящем канале передачи данных.In some cases, the
Как будет более подробно описано ниже, в некоторых случаях информацию, относящуюся к взаимным помехам, можно использовать для определения, как применять фракционное повторное использование для уменьшения взаимных помех. В качестве одного примера, CQI или другую соответствующую информацию можно принимать на основе каждого чередования HARQ, в результате чего можно определять, какие чередования HARQ ассоциированы с самым низким уровнем взаимных помех. Аналогичную технологию можно применять для других технологий фракционного повторного использования.As will be described in more detail below, in some cases, information related to mutual interference can be used to determine how to use fractional reuse to reduce mutual interference. As one example, CQI or other relevant information can be received based on each HARQ interlace, whereby it can be determined which HARQ interlaces are associated with the lowest level of mutual interference. A similar technology can be applied to other fractional reuse technologies.
Следует понимать, что сетевой узел 114 может определять параметры различными другими способами. Например, в некоторых случаях сетевой узел 114 может случайно выбирать один или более параметров.It should be understood that the
Как представлено блоком 204, сетевой узел 114 (например, контроллер 326 передачи данных) передает определенные параметры управления взаимными помехами в точку 104 доступа. Как будет описано ниже, в некоторых случаях точка 104 доступа использует эти параметры и в некоторых случаях точка 104 доступа передает далее эти параметры в терминал 110 доступа.As represented by
В некоторых случаях сетевой узел 114 может управлять взаимными помехами в системе путем определения параметров управления взаимными помехами, используемыми двумя или более узлами (например, точками доступа и/или терминалами доступа) в системе. Например, в случае схемы фракционного повторного использования, сетевой узел 114 может передавать разные (например, взаимно исключающие) параметры управления взаимными помехами в соседние точки доступа (например, в точки доступа, которые расположены достаточно близко друг к другу так, что они потенциально могут создавать взаимные помехи). В конкретном примере, сетевой узел 114 может назначать первое чередование HARQ точке доступа 104 и назначать второе чередование HARQ точке 106 доступа. Таким образом, передача данных в одной точке с ограниченным доступом может, по существу, не оказывать взаимные помехи с передачей данных в другой ограниченной точке доступа. Аналогичные технологии можно использовать для других схем фракционного повторного использования и для терминалов доступа в системе.In some cases, the
Как представлено блоком 206, точка 104 доступа (например, контроллер 322 взаимных помех) определяет параметры управления взаимными помехами, которые она может использовать, или может передать в терминал 110 доступа. В случаях, когда сетевой узел 114 определяет параметры управления взаимными помехами для точки 104 доступа, такая операция определения может просто включать себя прием указанных параметров и/или извлечение указанных параметров (например, из памяти данных).As represented by
В некоторых случаях точка 104 доступа самостоятельно определяет параметры управления взаимными помехами. Эти параметры могут быть аналогичны параметрам, описанным выше со ссылкой на блок 202. Кроме того, в некоторых случаях эти параметры могут быть определены аналогичным образом, как описано выше в блоке 202. Например, точка 104 доступа может принимать информацию (например, отчеты об измерениях, CQI, DRC) из терминала 110 доступа. Кроме того, точка 104 доступа может отслеживать восходящий канал передачи данных и/или нисходящий канал передачи данных, для определения взаимных помех для такого канала передачи данных. Точка 104 доступа также может случайным образом выбирать параметр.In some cases, the
В некоторых случаях, точка 104 доступа может взаимодействовать с одной или более другими точками доступа для определения параметра управления взаимными помехами. Например, в некоторых случаях точка 104 доступа может связываться с точкой 106 доступа для определения, какие параметры используются точкой 106 доступа (и, таким образом, выбирает другие параметры), или может согласовывать использование других (например, взаимоисключающих) параметров. В некоторых случаях, точка 104 доступа может определять, может ли она создавать помеху другому узлу (например, на основе обратной связи CQI, которая означает, что другой узел использует ресурс) и, если это так, определять свои параметры управления взаимными помехами, для уменьшения таких потенциальных взаимных помех.In some cases, the
Как представлено блоком 208, точка 104 доступа (например, контроллер 328 передачи данных) может передавать параметры управления взаимными помехами или другую взаимосвязанную информацию в терминал 110 доступа. Например, в некоторых случаях эта информация может означать, как следует применять фракционное повторное использование (например, какие чередования HARQ требуется использовать, какую спектральную маску требуется использовать и т.д.) по восходящему или нисходящему каналу передачи данных между точкой 104 доступа и терминалом 110 доступа. В некоторых случаях эта информация может относиться к управлению мощностью (например, определяет мощность передачи по восходящему каналу передачи данных).As represented by
Как представлено блоками 210 и 212, точка 104 доступа может, таким образом, передавать в терминал 110 доступа по нисходящему каналу передачи данных, или терминал 110 доступа может передавать в точку 104 доступа по восходящему каналу передачи данных. Здесь точка 104 доступа может использовать свои параметры управления взаимными помехами для передачи по нисходящему каналу передачи данных и/или для приема по восходящему каналу передачи данных. Аналогично, терминал 110 доступа может учитывать эти параметры управления взаимными помехами при приеме по нисходящему каналу передачи данных или передачи по восходящему каналу передачи данных.As represented by
В некоторых вариантах выполнения терминал 110 доступа (например, контроллер 306 взаимных помех) может определять один или более параметров управления взаимными помехами. Такой параметр может использоваться терминалом 110 доступа и/или может быть передан (например, с помощью контроллера 330 передачи данных) в точку 104 доступа (например, для использования во время операций с восходящим каналом передачи данных).In some embodiments, an access terminal 110 (eg, a mutual interference controller 306) may determine one or more mutual interference control parameters. Such a parameter may be used by the
Операции, относящиеся к использованию схемы фракционного повторного использования, в которой применяется чередование HARQ, по восходящему каналу передачи данных или по нисходящему каналу передачи данных будут более подробно описаны ниже со ссылкой на фиг.4. В некоторых аспектах система 100 может использовать временное мультиплексирование с разделением времени, в результате чего информация может быть передана в одном или более определенных временных интервалах. Такие временные интервалы могут принимать различные формы, и/или они могут быть названы с использованием различной терминологии. В качестве примера, в различных вариантах выполнения временной интервал может относиться к или может называться как фрейм, подфрейм, интервал, интервал времени передачи ("TTI" (ИВП)), чередование HARQ и так далее. В качестве примера, заданное количество временных интервалов (например, TTI) 1-16 можно отслеживать и использовать для передачи по нисходящему каналу передачи данных. Аналогичную схему можно использовать для передачи данных по восходящему каналу передачи данных.Operations related to using a fractional reuse scheme that employs HARQ interlacing over an uplink or downlink will be described in more detail below with reference to FIG. 4. In some aspects,
На основе уровней трафика и ассоциированных взаимных помех в отслеживаемых и временных интервалах, и на основе применения одной или более описанных в данном описании схем, передача по восходящему или нисходящему каналу передачи данных может быть ограничена определенным количеством N интервалов, где, например, N=8, которое меньше, чем общее количество интервалов М, где М равняется, например, 16. В некоторых аспектах такая схема фракционного повторного использования может использовать чередование HARQ.Based on the traffic levels and associated interference in the monitored and time intervals, and based on the application of one or more of the schemes described herein, uplink or downlink transmission may be limited to a certain number of N intervals, where, for example, N = 8 which is less than the total number of intervals M, where M is, for example, 16. In some aspects, such a fractional reuse scheme may use HARQ interleaving.
В обычной системе 1xEV-DO каждому процессу HARQ может быть назначен, например, каждый четвертый подфрейм, таким образом, что повторные передачи HARQ исходной передачи в подфрейме "n" выполняют в интервалах (n+4), (n+8), (n+12) и т.д. В качестве конкретного примера, чередованию 1 HARQ могут быть назначены подфреймы 1, 5, 9 и так далее. В случае, если передача исходных данных для чередования 1 HARQ во время подфрейма 1 будет неудачной, отрицательный сигнал подтверждения ("NACK") может быть передан по взаимодополняющему каналу передачи данных (например, восходящему каналу передачи данных, в случае передачи по нисходящему каналу HARQ). Данные могут быть затем повторно переданы во время подфрейма 5 того же чередования 1 HARQ и после успешной передачи принимают сигнал подтверждения ("ACK") (например, через восходящий канал передачи данных). Аналогичные операции могут быть выполнены, используя другие процессы HARQ в других чередованиях 2, 3 и 4 HARQ.In a conventional 1xEV-DO system, every fourth subframe can be assigned to each HARQ process, for example, so that HARQ retransmissions of the original transmission in subframe "n" are performed in the intervals (n + 4), (n + 8), (n +12) etc. As a specific example, HARQ alternation 1 may be assigned subframes 1, 5, 9, and so on. In the event that the initial data transmission for HARQ alternation 1 during subframe 1 fails, a negative acknowledgment signal ("NACK") may be transmitted on a complementary data transmission channel (for example, an upstream data transmission channel, in the case of transmission on the HARQ downlink) . The data can then be retransmitted during subframe 5 of the same HARQ interlace 1 and, after successful transmission, receive an acknowledgment signal ("ACK") (eg, via an uplink data channel). Similar operations can be performed using other HARQ processes in other HARQ sequences 2, 3, and 4.
В некоторых аспектах схема фракционного повторного использования может использовать чередование HARQ для конфигурирования соседних узлов (например, точек доступа и/или терминалов доступа), для передачи в разные моменты времени. Например, первая точка доступа может передавать во время чередований 1 и 2 HARQ, в то время как вторая точка доступа передает во время чередований 3 и 4 HARQ. В результате, можно уменьшить взаимные помехи, которые в противном случае, могли бы возникнуть между узлами.In some aspects, the fractional reuse scheme may use HARQ interlacing to configure neighboring nodes (e.g., access points and / or access terminals), for transmission at different points in time. For example, the first access point may transmit during HARQ interlaces 1 and 2, while the second access point may transmit HARQ during interlaces 3 and 4. As a result, it is possible to reduce mutual interference, which otherwise could occur between nodes.
Как представлено блоком 402 на фиг.4, сетевой узел 114 (например, компонент 338 системы управления HARQ контроллера 320 взаимных помех) определяет, какое количество чередований HARQ можно использовать в каждой точке доступа (например, в наборе точек с ограниченным доступом). Например, определенное количество "N" чередований HARQ меньшее, чем общее количество "M" чередований HARQ, ассоциированное для этого набора, может быть определено на основе обратной связи, относящейся к взаимным помехам, из одной или более точек доступа и/или терминалов доступа в системе (например, как описано выше со ссылкой на фиг.2). Таким образом, в любой момент времени, количество N нисходящих (или восходящих) чередований HARQ из общего количества М чередований HARQ может быть определено на основе активности в нисходящем канале передачи данных (или в восходящем канале передачи данных) в соседних узлах по М чередованиям HARQ.As represented by
N может быть фиксированным значением или может быть определено динамически. В случае, когда М=4, N может быть установлено динамически между минимальным значением Nmin, которое больше нуля, и максимальным значением Nmax, которое меньше 4. В некоторых случаях значение N может быть определено случайным образом. Как правило, однако, значение N может быть выбрано в попытке более эффективно уменьшить взаимные помехи между узлами в системе. Определение значения N может быть основано на основе различных критериев.N may be a fixed value or may be determined dynamically. In the case where M = 4, N can be set dynamically between the minimum value Nmin, which is greater than zero, and the maximum value Nmax, which is less than 4. In some cases, the value N can be determined randomly. Typically, however, the value of N can be selected in an attempt to more effectively reduce mutual interference between nodes in the system. The determination of the value of N may be based on various criteria.
Например, один критерий может относиться к тому, как используются точки доступа в системе (например, общее количество точек доступа, плотность точек доступа в пределах заданной области, относительная близость точек доступа и так далее). Здесь, если существует большое количество узлов, которые расположены близко друг к другу, можно использовать меньшее значение N таким образом, чтобы соседние узлы менее вероятно могли использовать одни и те же чередования HARQ. И, наоборот, если имеется малое количество узлов в системе, большее значение N может быть определено для улучшения характеристик передачи данных (например, пропускной способности).For example, one criterion may relate to how access points are used in the system (for example, the total number of access points, the density of access points within a given area, the relative proximity of access points, and so on). Here, if there are a large number of nodes that are close to each other, you can use a smaller value of N so that neighboring nodes are less likely to use the same HARQ interlaces. Conversely, if there is a small number of nodes in the system, a larger N value can be determined to improve data transfer characteristics (for example, throughput).
Другой критерий может относиться к трафику (например, объем трафика, типы трафика, требования к качеству обслуживания трафика), обрабатываемому точками доступа. Например, некоторые типы трафика могут быть в большей степени чувствительными к взаимным помехам, чем другие типы трафиков. В таком случае можно использовать меньшее значение N. Кроме того, некоторые типы трафика могут устанавливать более строгие требования к пропускной способности (но имеют меньшую чувствительность к взаимным помехам), в результате чего может использоваться большее значение N.Another criterion may relate to traffic (for example, the amount of traffic, types of traffic, traffic quality requirements) processed by access points. For example, some types of traffic may be more sensitive to mutual interference than other types of traffic. In this case, you can use a lower value of N. In addition, some types of traffic can establish more stringent bandwidth requirements (but have a lower sensitivity to mutual interference), resulting in a higher value of N.
В некоторых случаях сетевой узел 114 может определять значение N на основе принятой информации, относящейся к взаимным помехам (например, как описано со ссылкой на фиг.2). Например, количество точек доступа слышимых заданным терминалом доступа, и относительная близость точек доступа к терминалу доступа могут быть определены на основе отчетов об измерениях, принимаемых из терминала доступа. Таким образом, сетевой узел 114 может определять, может ли создавать взаимные помехи передача в данной ячейке (например, ограниченной точкой доступа или ее ассоциированными терминалами доступа) для соседних ячеек и соответствующим образом определять число N.In some cases, the
Сетевой узел 114 также может определять число N на основе информации о взаимных помехах, принимаемой из одной или более точек доступа (например, как описано со ссылкой на фиг.2). Например, если значение взаимных помех велико, может быть определено более низкое значение N. Таким образом, количество чередований HARQ, используемых заданной точкой доступа, может быть уменьшено, в результате чего уменьшается вероятность взаимных помех для каждого набора из N чередований HARQ из общего количества М чередований HARQ.
Как представлено блоком 404, в некоторых случаях сетевой узел 114 может определять определенные чередования HARQ, которые должны использоваться конкретными точками доступа. Например, сетевой узел 114 может определять величину взаимных помех, которая может быть видна для каждого из М чередований HARQ для заданной точки доступа, и назначать чередования HARQ, имеющие более низкое значение взаимных помех для этой точки доступа. В конкретном примере, сетевой узел 114 может определять, что передача данных по нисходящему каналу передачи данных точкой доступа 106 по двум чередованиям HARQ (например, чередованиям 3 и 4), которые она использует, могут создавать помеху для приема в терминалах доступа, ассоциированных с точкой 104 доступа. Это может быть определено, например, на основе информации, относящейся к взаимным помехам по нисходящему каналу передачи данных, которую сетевой узел может запрашивать, как описано в данном описании. Сетевой узел 114 может затем назначать чередования 1 и 2 HARQ, для использования точкой 104 доступа.As represented by
Как отмечено выше, определение взаимных помех для каждого чередования HARQ может быть основано на сигналах, принимаемых сетевым узлом 114. Например, вероятность взаимных помех между узлами может быть определена на основе одного или более отчетов об измерениях, принятых из одного или более терминалов доступа, как описано в данном описании. Кроме того, для нисходящего канала передачи данных, терминалы доступа в системе могут генерировать показатель качества канала ("CQI") или информацию об управлении скоростью передачи данных ("DRC"), для каждого чередования HARQ (например, для каждого TTI в 3GPP) и передавать эту информацию далее в сетевой узел 114. Также, для нисходящего канала передачи данных, терминал доступа может отслеживать нисходящий канал и предоставлять информацию, относящуюся к взаимным помехам, для каждого чередования HARQ (например, для каждого TTI). Аналогично, для восходящего канала передачи данных терминал доступа может отслеживать восходящий канал передачи данных и предоставлять информацию, относящуюся к взаимным помехам, на основе каждого чередования HARQ (например, для каждого TTI). В некоторых случаях (например, обратная связь DRC в 3GPP2), обратная связь из терминала доступа может не обеспечивать разрешение для каждого чередования HARQ. В таком случае можно использовать обратную связь ACK/NACK или некоторые другие типы обратной связи для идентификации требуемого набора чередований HARQ. В другом примере, скорость передачи данных по нисходящему каналу передачи можно регулировать для заданного чередования HARQ, для определения скорости передачи данных, при которой терминал доступа может успешно декодировать данные (например, с заданной точностью). На основе наилучшей скорости передачи данных, определенной для каждого чередования HARQ, может быть сделано предположение, какое чередование HARQ будет обеспечивать наилучшую рабочую характеристику для данной точки доступа. В качестве альтернативы, может использоваться централизованная схема выбора чередования HARQ (например, в случае, когда сетевой узел сети назначает чередование HARQ для соседних узлов, как описано в данном описании).As noted above, the determination of mutual interference for each HARQ interlace can be based on the signals received by the
В некоторых аспектах назначение определенных чередований HARQ сетевым узлом 114 может зависеть от того, синхронизирован ли соответствующий трафик по восходящему или нисходящему каналам передачи данных. Такая синхронизация может быть достигнута, например, используя такие регулировки, как Tau-DPCH (Тау-ВФК) (где DPCH относится к выделенному физическому каналу), или некоторой другой соответствующей схеме синхронизации.In some aspects, the assignment of certain HARQ interlaces to the
В некоторых аспектах сетевой узел 114 может назначать последовательные чередования HARQ для заданных точек доступа. Таким образом, в случае, когда трафик по восходящему или нисходящему каналу передачи данных различных узлов не синхронизирован, по меньшей мере, участок выделенных чередований HARQ может не подвергаться воздействию взаимных помех. В качестве примера, если чередования 1-4 HARQ назначены для первой точки доступа, и чередования 5-8 HARQ назначены для второй точки доступа, эти точки доступа не будут подвергаться взаимным помехам из другой точки доступа, по меньшей мере, по трем чередованиям HARQ, даже если временная последовательность работы точек доступа не будет синхронизирована.In some aspects, the
Как представлено блоком 406, сетевой узел 114 затем передает параметры чередования HARQ, которые он определил, в одну или более точек доступа. Например, сетевой узел 114 может передавать назначение, специфичное для узла, в каждую точку доступа, или сетевой узел 114 может передавать общее назначение во все точки доступа из набора точек доступа.As represented by
Как представлено блоком 408, точка 104 доступа (например, компонент 340 управления HARQ контроллера 322 взаимных помех) определяет чередование HARQ, которое он будет использовать для передачи данных по восходящему или нисходящему каналам передачи данных. Здесь точка 104 доступа принимает значение N сетевого узла 114. В случае, когда сетевой узел 114 назначает чередования HARQ, которые должны использоваться точкой 104 доступа, точка 104 доступа может просто использовать эти чередования HARQ. В некоторых случаях, точка 104 доступа может случайно выбирать параметр.As represented by
Если чередования HARQ не будут назначены сетевым узлом 114 или выбраны случайно, точка 104 доступа может определять, какое из N чередований HARQ использовать, на основе соответствующих критериев. Первоначально, такое определение, таким образом, основано на (например, ограничено) значении N. В некоторых случаях точка 104 доступа может определять или адаптировать N (например, на основе критериев, описанных выше).If the HARQ interlaces are not assigned by the
В некоторых случаях точка 104 доступа может выбирать чередования HARQ, ассоциированные с самым низким уровнем помех. Здесь точка 104 доступа может определять, какое из чередований HARQ следует использовать, аналогично тому, как описано выше. Например, точка 104 доступа может принимать информацию (например, отчеты об измерениях, CQI, DRC) из терминала 110 доступа. Кроме того, точка 104 доступа может отслеживать восходящий и/или нисходящий каналы передачи данных для определения уровня взаимных помех по такому каналу передачи данных. Например, когда точка 104 доступа находится в состоянии ожидания, она может отслеживать взаимные помехи (нагрузку) по восходящему каналу передачи данных, происходящие из источников, находящихся за пределами ячейки. Таким образом, точка 104 доступа может выбирать чередования HARQ, которые обеспечивают минимальную взаимную помеху от источников, находящихся за пределами ячейки.In some cases,
В некоторых случаях, точка 104 доступа может взаимодействовать с одной или более другими точками доступа для определения чередований HARQ, которые она будет использовать. Например, точка 104 доступа и точка 106 доступа могут согласовывать использование разных (например, взаимоисключающих) чередований HARQ.In some cases, the
Как представлено блоком 410, точка 104 доступа может определять смещение по времени для использования передачи по нисходящему или восходящему каналам передачи данных. Например, точка 104 доступа может постоянно отслеживать канал передачи данных в течение определенного периода времени для приблизительного определения, когда соседний узел начинает и заканчивает свои передачи. Таким образом, точка 104 доступа может определять (например, выполнять оценку) временных характеристик временных интервалов соседнего узла. Точка доступа может затем синхронизировать временные характеристики временных интервалов своих восходящего или нисходящего каналов передачи данных по этому времени. В некоторых аспектах это может подразумевать определение параметра Tau-DPCH.As represented by
В некоторых случаях (например, 3GPP), точки доступа могут синхронизировать свои временные характеристики (например, временные характеристики HS-PDSCH), используя выравнивание по времени своих P-CCPCH (П-ОФКУ, первичные общие физические каналы управления). Такая синхронизация может быть достигнута, например, путем использования компонентов GPS (ГСН, глобальная система навигации) в каждой точке доступа, сигналов синхронизации по времени между точками доступа (которые могут быть относительно эффективными для соседних точек доступа, например, находящихся на расстоянии десятков метров друг от друга), или некоторой другой технологии.In some cases (eg, 3GPP), access points can synchronize their temporal characteristics (eg, the temporal characteristics of HS-PDSCH) using the time alignment of their P-CCPCH (P-OFCU, primary common physical control channels). Such synchronization can be achieved, for example, by using GPS components (GPS, global navigation system) at each access point, time synchronization signals between access points (which can be relatively effective for neighboring access points, for example, tens of meters apart from a friend), or some other technology.
В некоторых случаях (например, в HSDPA (ВСППН, высокоскоростной пакетной передачи в нисходящем канале)), уровень служебных данных может быть относительно большим и не ортогональным к трафику. Здесь можно использовать передачу или прием с перерывами (DTX или DRX), в результате чего служебные данные не будут переданы во время периода DTX/DRX. В таких случаях передача для CCPCH и EHICH может быть учтена, и терминалы доступа могут быть сконфигурированы с учетом низких значений измерения Ec/Io в CPICH, которые они могут видеть из точек доступа, использующих DTX/DRX.In some cases (for example, in HSDPA (HSDPA, High Speed Downlink Packet)), the overhead level may be relatively large and not orthogonal to the traffic. Here you can use intermittent transmission or reception (DTX or DRX), as a result of which overhead data will not be transmitted during the DTX / DRX period. In such cases, the transmission for the CCPCH and EHICH can be accounted for, and the access terminals can be configured taking into account the low Ec / Io measurements in the CPICH, which they can see from access points using DTX / DRX.
Как представлено блоком 412, точка 104 доступа может передавать сообщение в ассоциированный терминал доступа, для информирования терминала доступа, какие чередования HARQ требуется использовать для восходящего или нисходящего каналов передачи данных. В некоторых вариантах выполнения точка 104 доступа может использовать E-AGCH (улучшенный абсолютный предоставляемый канал), или некоторой другой аналогичный механизм, для передачи назначений чередований HARQ в свои ассоциированные терминалы доступа. Например, точка 104 доступа может устанавливать Xags=1 для указания, какие TTI (ИПТ, идентификация передающего терминала) должен использовать терминал доступа. Кроме того, точка 104 доступа может передавать показатель смещения по времени (например, Tau-DPCH), определенный в блоке 410, в терминал доступа. Таким образом, точка доступа может планировать передачу данных (по восходящему или нисходящему каналам передачи данных) для лучших N чередований HARQ среди доступных М чередований HARQ (блок 414).As represented by block 412, the
Параметры чередований HARQ (например, N и конкретные чередования HARQ, используемые данным узлом), описанные выше, могут быть отрегулированы с течением времени. Например, информация, описанная выше, может собираться периодически и параметры могут быть отрегулированы соответствующим образом (например, используя гистерезис и/или медленную фильтрацию, если это требуется). Таким образом, чередования HARQ могут использоваться с учетом текущих условий взаимных помех в системе.The parameters of the HARQ interlaces (for example, N and the specific HARQ interlaces used by this node) described above can be adjusted over time. For example, the information described above can be collected periodically and the parameters can be adjusted accordingly (for example, using hysteresis and / or slow filtering, if necessary). Thus, HARQ interlaces can be used in view of the current interference conditions in the system.
В некоторых вариантах выполнения чередования HARQ могут быть выделены иерархическим образом. Например, если ни одна из точек доступа не будет развернута в области обслуживания точки макродоступа, полный набор чередований HARQ (например, 8) может быть выделен для точки макродоступа. В случае точек с ограниченным доступом, которые развернуты в зоне обслуживания точки макродоступа, однако, одна часть чередований HARQ (например, 5) может быть выделена для зоны охвата макродоступа, и другая часть чередований HARQ (например, 3) может быть выделена для точек с ограниченным доступом. Чередования HARQ, выделенные для точек с ограниченным доступом, могут быть затем назначены ограниченным точкам доступа (например, N=1), как описано выше. Количество чередований HARQ, выделяемых таким образом, может быть определено (например, фиксированным образом или динамически отрегулировано) на основе различных критериев, как описано в данном описании (например, использование точек с ограниченным доступом, трафик, взаимные помехи и т.д.). Например, по мере того, как количество точек с ограниченным доступом в системе или количество трафика в точках с ограниченным доступом увеличивается, количество чередований HARQ, выделяемых для этих точек доступа, может увеличиваться.In some embodiments, performing HARQ interlaces can be allocated in a hierarchical manner. For example, if no access points are deployed in the service area of the macro access point, a complete set of HARQ interlaces (for example, 8) can be allocated for the macro access point. In the case of restricted access points that are deployed in the service area of the macro access point, however, one part of the HARQ interlaces (e.g. 5) can be allocated to the macro access area, and another part of the HARQ interlaces (e.g. 3) can be allocated for points with limited access. HARQ interlaces allocated to restricted access points can then be assigned to restricted access points (eg, N = 1), as described above. The number of HARQ interlaces allocated in this way can be determined (for example, fixed or dynamically adjusted) based on various criteria, as described in this description (for example, the use of points with limited access, traffic, interference, etc.). For example, as the number of points of limited access in the system or the amount of traffic in points of limited access increases, the number of HARQ interlaces allocated to these access points may increase.
Рассмотрим теперь фиг.5 и 6, на которых будут более подробно описаны операции, относящиеся к использованию схемы для изменения мощности передачи (например, мощности передачи по нисходящему каналу передачи данных), в течение времени, для уменьшения взаимных помех. В некоторых аспектах такие схемы включают в себя определение профиля мощности передачи, такого как профиль 602, показанный на фиг.6, который определяет различные уровни мощности с течением времени. Такой профиль может принимать различные формы и может быть определен различными способами. Например, в некоторых случаях профиль может содержать набор значений, которые определяют мощность передачи для разных точек времени. В некоторых случаях профиль может быть определен с помощью уравнения (например, синусоидальная форма колебаний). В некоторых аспектах профиль может быть периодическим. Как показано на фиг.6, максимальное значение (MAX), минимальное значение (MIN) и период 604 могут быть определены для профиля.We now consider FIGS. 5 and 6, which will describe in more detail the operations related to using the circuit to change the transmit power (for example, the transmit power of the downlink data channel) over time, to reduce mutual interference. In some aspects, such schemes include determining a transmit power profile, such as the
Профиль мощности передачи можно использовать для управления мощностью передачи различными путями. Например, в некоторых случаях профиль мощности передачи используют для управления общей мощностью передачи. В некоторых вариантах выполнения каналы для передачи служебных данных (например, CPICH и т.д.) и выделенные каналы могут работать с постоянной мощностью. Остаток мощности в соответствии с профилем мощности передачи может быть затем разделен между другими каналами (например, HS-SCCH и HS-PDSCH). В некоторых вариантах выполнения каналы передачи служебных данных могут быть масштабированы.The transmit power profile can be used to control the transmit power in various ways. For example, in some cases, the transmit power profile is used to control the total transmit power. In some embodiments, channels for transmitting overhead data (e.g., CPICH, etc.) and dedicated channels may operate with constant power. The remaining power according to the transmission power profile can then be divided between other channels (e.g., HS-SCCH and HS-PDSCH). In some embodiments, overhead channels can be scaled.
Как описано более подробно ниже, в некоторых аспектах фракционное повторное использование на основе мощности передачи может быть достигнуто путем использования профиля мощности передачи. Например, соседние точки доступа могут использовать один и тот же профиль (или аналогичный профиль), но могут выполнять это на основе разных фаз профиля. Например, первая точка доступа может выполнять передачу в соответствии с профилем, показанным на фиг.6, в то время как вторая точка доступа может выполнять передачу, используя тот же профиль, сдвинутый на 180 градусов. Таким образом, когда первая точка доступа передает с максимальной мощностью, вторая точка доступа может передавать с минимальной мощностью.As described in more detail below, in some aspects, fractional reuse based on transmission power can be achieved by using a transmission power profile. For example, neighboring access points can use the same profile (or a similar profile), but can do this based on different phases of the profile. For example, the first access point can transmit in accordance with the profile shown in FIG. 6, while the second access point can transmit using the same profile shifted 180 degrees. Thus, when the first access point transmits with maximum power, the second access point can transmit with minimum power.
Как представлено блоком 502 на фиг.5, сетевой узел 114 (например, компонент 342 управления профилем контроллера 320 взаимных помех) определяет (например, указывает), информацию о профиле мощности передачи, который должен использоваться для беспроводной передачи данных (например, по нисходящему каналу передачи). Такая информация может включать в себя, например, такие параметры, как профиль мощности передачи, исходные минимальные и максимальные значения, и исходное значение периода.As represented by
В некоторых случаях один или более из этих параметров могут быть определены заранее или могут определяться случайно. Однако, как правило, эти параметры выбирают в попытке более эффективно уменьшить взаимные помехи между узлами в системе. Определение этой информации может быть основано на различных критериях, таких как, например, один или более отчетов об измерениях из одного или более терминалов доступа, один или более отчетов от одной или более точек доступа в отношении CQI, переданных с отчетом одним или более ассоциированными терминалами доступа, количество активных терминалов доступа, и средний трафик по нисходящему каналу передачи данных в каждой точке доступа (например, в каждой ячейке).In some cases, one or more of these parameters may be predetermined or may be determined randomly. However, as a rule, these parameters are chosen in an attempt to more effectively reduce mutual interference between nodes in the system. The definition of this information may be based on various criteria, such as, for example, one or more measurement reports from one or more access terminals, one or more reports from one or more access points in relation to CQIs transmitted by the report by one or more associated terminals access, the number of active access terminals, and average traffic on the downlink data channel at each access point (for example, in each cell).
В качестве конкретного примера, определение параметра профиля мощности передачи может быть основано на том, как точки доступа развернуты в системе (например, общее количество точек доступа, плотность точек доступа в пределах заданной области, относительная близость точек доступа и так далее). Здесь, если существует большое количество узлов, которые расположены близко друг к другу, параметры могут быть определены таким образом, что соседние узлы будут менее вероятно передавать с большой мощностью одновременно. В качестве примера, профиль мощности передачи может быть сформирован таким образом, что заданная точка доступа может передавать приблизительно с максимальной мощностью в течение относительно короткого периода времени. Таким образом, профиль мощности передачи может обеспечить адекватную изолированность, когда большое количество фазовых значений (например, 60 градусов, 120 градусов и т.д.) используется различными узлами в системе совместно с профилем мощности передачи. И, наоборот, если существует малое количество узлов в системе, могут быть определены параметры для улучшения характеристик передачи данных (например, пропускной способности). В качестве примера, профиль мощности передачи может быть сформирован таким образом, что данная точка доступа может передавать приблизительно с максимальной мощностью в течение более длительного периода времени.As a specific example, the determination of the transmission power profile parameter can be based on how access points are deployed in the system (for example, the total number of access points, the density of access points within a given area, the relative proximity of access points, and so on). Here, if there are a large number of nodes that are close to each other, the parameters can be determined so that neighboring nodes are less likely to transmit with high power at the same time. As an example, a transmit power profile can be formed such that a given access point can transmit with approximately maximum power for a relatively short period of time. Thus, the transmission power profile can provide adequate isolation when a large number of phase values (e.g. 60 degrees, 120 degrees, etc.) are used by various nodes in the system in conjunction with the transmission power profile. Conversely, if there are a small number of nodes in the system, parameters can be defined to improve data transfer characteristics (for example, throughput). By way of example, a transmit power profile can be configured such that a given access point can transmit at approximately maximum power over a longer period of time.
Разные уровни изолированности между соседними точками доступа (например, ячейками) также могут быть достигнуты путем регулирования величин минимального и максимального параметров. Например, большее отношение максимального к минимальному обеспечивает лучшую изолированность за счет более длительных периодов времени, когда терминал доступа передает с более низким уровнем мощности.Different levels of isolation between adjacent access points (e.g. cells) can also be achieved by adjusting the minimum and maximum parameters. For example, a greater maximum to minimum ratio provides better isolation due to longer periods of time when the access terminal transmits at a lower power level.
Параметр профиля мощности передачи может быть определен на основе трафика (например, нагрузки трафика, типов трафика, требований качества к услугам трафика), обрабатываемого точками доступа. Например, некоторые типы трафика могут быть более чувствительными к взаимным помехам, чем другие типы трафика. В таком случае можно использовать параметр (например, профиль мощности передачи или отношение максимальной к минимальной величине), который обеспечивает более высокую изолированность (например, как описано выше). Кроме того, некоторые типы трафика могут иметь более строгие требования к пропускной способности (но меньшую чувствительность к уровню взаимных помех), в результате чего можно использовать профиль мощности передачи, который обеспечивает большее количество передач с более высокими уровнями мощности, (например, как описано выше).The transmit power profile parameter can be determined based on traffic (e.g., traffic load, traffic types, traffic service quality requirements) processed by access points. For example, some types of traffic may be more sensitive to mutual interference than other types of traffic. In this case, you can use a parameter (for example, the transmission power profile or the ratio of the maximum to the minimum value), which provides higher isolation (for example, as described above). In addition, some types of traffic may have more stringent bandwidth requirements (but less sensitivity to interference), resulting in the use of a transmission power profile that provides more transmissions with higher power levels (for example, as described above )
В некоторых случаях сетевой узел 114 может определять параметры профиля мощности передачи на основе принятой информации, относящейся к взаимным помехам (например, обратная связь из одной или более точек доступа и/или терминалов доступа в системе, как описано выше со ссылкой на фиг.2). Например, количество точек доступа, слышимых данным терминалом доступа, и относительная близость этих точек доступа к терминалу доступа могут быть определены на основе отчетов о результатах измерений, принятых из терминала доступа. Таким образом, сетевой узел 114 может определять, могут ли передачи в данной ячейке (например, ассоциированной с точкой с ограниченным доступом) оказывать помеху для соседней ячейки и регулировать параметры профиля мощности соответствующим образом. Сетевой узел 114 также может определять параметры, на основе информации о взаимных помехах, принятой из одной или более точек доступа (например, как описано со ссылкой на фиг.2).In some cases, the
В некоторых вариантах выполнения параметр периода может быть определен на основе компромисса между любой из чувствительности к задержке данных приложения (например, VoIP, передача голоса по Интернет) и фильтрацией/задержкой CQI/DRC (например, задержкой от момента измерения SINR до момента времени, когда результат становится эффективным в планировщике трафика для точки доступа). Например, если ячейки обрабатывают большие объемы трафика VoIP, период может быть установлен так, чтобы он соответствовал периодичности пакетов VoIP. В некоторых случаях, период в диапазоне 50-100 мс может быть соответствующим. В некоторых вариантах выполнения параметр периода может быть определен на основе количества обслуживаемых терминалов доступа.In some embodiments, the period parameter can be determined based on a trade-off between any of the sensitivity to application data delay (e.g., VoIP, voice over Internet) and CQI / DRC filtering / delay (e.g., the delay from the moment the SINR is measured to the time the result becomes effective in the traffic scheduler for the access point). For example, if the cells handle large volumes of VoIP traffic, the period can be set to match the frequency of VoIP packets. In some cases, a period in the range of 50-100 ms may be appropriate. In some embodiments, a period parameter may be determined based on the number of access terminals served.
Как представлено блоком 504, в некоторых случаях сетевой узел 114 может определять специфичное значение смещения фазы, которое требуется использовать в определенных точках доступа. Например, сетевой узел 114 может определять величину взаимных помех, которую можно видеть в заданной точке доступа, когда она использует разные значения смещения фазы (например, на основе отчетов CQI, принятых для каждого TTI). Смещение фазы, ассоциированное с самым низким уровнем помех в этой точке доступа, затем может быть назначено для этой точки доступа.As represented by
Сетевой узел 114 также может назначать значения смещения фазы для соседних узлов таким образом, чтобы уменьшить взаимные помехи между узлами. В качестве конкретного примера, сетевой узел 114 может определять, что передача по нисходящему каналу точкой 106 доступа может оказывать помехи для приема в терминале доступа, ассоциированном с точкой доступа 104. Это может быть определено, например, на основе информации, относящейся к взаимным помехам в нисходящем канале передачи данных, которую сетевой узел 114 может запрашивать, как описано в данном описании. Сетевой узел 114 может затем назначать разные (например, со смещением фазы на 180 градусов) значения смещения фазы для точек 104 и 106 доступа.
Как представлено блоком 506, сетевой узел 114 затем передает информацию о профиле мощности, которую он определил для одной или более точек доступа. Здесь сетевой узел 114 может передавать назначение, специфичное для узла в каждой точке доступа, или сетевой узел 114 может передавать общее назначение во все точки доступа в наборе точек доступа.As represented by
Как представлено блоками 508 и 510, точка 104 доступа (например, компонент 344 управления профилем контроллера 322 взаимных помех) определяет параметры профиля мощности передачи, которые она будет использовать для передачи данных по нисходящему каналу. В случае, когда сетевой узел 114 назначил все параметры профиля мощности передачи, которые должны использоваться точкой 104 доступа, точка 104 доступа может просто использовать эти параметры. В некоторых случаях, точка 104 доступа может случайным образом выбирать параметр (например, смещение фазы).As represented by
Если все параметры не будут назначены сетевым узлом 114 или выбраны случайно, точка 104 доступа может определить, какие параметры следует использовать, на основе соответствующих критериев. В типичном случае точка доступа может воплощать алгоритм отслеживания для динамического определения значения смещения фазы, для использования совместно с профилем мощности передачи, минимумом, максимумом и параметрами периода точки 104 доступа, принимаемыми из сетевого узла 114.If all parameters are not assigned by the
В некоторых случаях точка 104 доступа может выбирать значение смещения фазы, которое ассоциировано с наименьшими взаимными помехами. Здесь точка 104 доступа может определять, какое значение смещения фазы требуется использовать, аналогично тому, как описано выше. Например, в блоке 508 точка 104 доступа может принимать информацию (например, отчеты об измерениях, CQT, DRC) из терминала 110 доступа, и/или точка 104 доступа может отслеживать канал передачи данных для определения взаимных помех в канале передачи данных. В качестве примера, в последнем случае, когда точка 104 доступа находится в нерабочем состоянии, она может отслеживать взаимные помехи (нагрузку), поступающие из-за пределов ячейки по нисходящему каналу передачи данных. Таким образом, точка 104 доступа может выбирать значение смещения фазы, которое обеспечивает минимальный уровень взаимных помех, поступающих из источников, расположенных за пределами ячейки в блоке 510.In some cases, the
В некоторых случаях, точка 104 доступа может взаимодействовать с одной или более другими точками доступа, для определения значения смещения фазы. Например, точка 104 доступа и точка 106 доступа могут согласовывать использование различных (например, не в фазе) значений смещения фазы. В таком случае операции блока 508 могут не выполняться.In some cases, the
Как представлено блоком 512, точка доступа выполняет передачу по нисходящему каналу передачи данных на основе текущего профиля мощности передачи. Таким образом, мощность передачи может изменяться с течением времени так, чтобы можно было уменьшить взаимные помехи с соседними узлами.As represented by
Параметры профиля мощности передачи (например, максимум, минимум и параметры периода, определенные сетевым узлом 114), описанные выше, можно регулировать с течением времени. Например, информацию, описанную выше, можно собирать на периодической основе, и параметры могут быть отрегулированы в соответствии с этим (например, с гистерезисом и/или медленным фильтрацией, если это требуется). Таким образом, мощностью передачи терминалов доступа в системе можно управлять так, чтобы учитывать различные условия взаимных помех в системе. Например, если взаимные помехи увеличиваются в определенном узле (например, как определено по отчету CQI), параметры максимальной мощности могут быть уменьшены. В упрощенном случае maximum_i устанавливают равным minimum_i для каждой точки point_i доступа. Сетевой узел 114 может затем попытаться установить эти значения так, чтобы обеспечить такое же (или, по существу, такое же) среднее CQI в каждой ячейке, которое может быть достигнуто, используя измерение Ec_i, j/Io в каждом терминале доступа terminal_i из каждой точки доступа point_i.The transmission power profile parameters (e.g., maximum, minimum, and period parameters determined by network node 114) described above can be adjusted over time. For example, the information described above can be collected on a periodic basis, and the parameters can be adjusted in accordance with this (for example, with hysteresis and / or slow filtering, if necessary). Thus, the transmit power of the access terminals in the system can be controlled to take into account various conditions of mutual interference in the system. For example, if mutual interference increases at a particular node (for example, as determined by the CQI report), the maximum power parameters may be reduced. In the simplified case, maximum_i is set to minimum_i for each access point_i.
Рассмотрим теперь фиг, 7 и 8, здесь будут подробно описаны операции, относящиеся к использованию схемы для изменения ослабления при приеме (например, ослабления в восходящем канале передачи данных) с течением времени для уменьшения взаимных помех. В некоторых аспектах такая схема включает в себя определение профиля ослабления при приеме, такого как профиль 802, показанный на фиг.8, который определяет различные уровни ослабления с течением времени. Такой профиль может принимать различные формы и может быть определен различными путями. Например, в некоторых случаях профиль может содержать набор значений, которые определяют ослабление при приеме для различных точек во времени. В некоторых случаях профиль может быть определен с помощью уравнения (например, синусоидальной формы колебания). Как показано на фиг.8, максимальное значение (MAX), минимальное значение (MIN) и период 804 могут быть определены для профиля.Let us now consider FIGS. 7 and 8, operations related to using the circuit to change reception attenuation (for example, attenuation in the uplink data channel) over time to reduce mutual interference will be described in detail here. In some aspects, such a scheme includes determining a reception attenuation profile, such as the 802 profile shown in FIG. 8, which defines various levels of attenuation over time. Such a profile can take various forms and can be defined in various ways. For example, in some cases, the profile may contain a set of values that determine the attenuation at reception for different points in time. In some cases, the profile can be determined using an equation (for example, a sinusoidal waveform). As shown in FIG. 8, a maximum value (MAX), a minimum value (MIN), and a
Как более подробно описано ниже, в некоторых аспектах фракционное повторное использование на основе ослабления при приеме может быть достигнуто путем использования профиля ослабления при приеме. Например, соседние точки доступа могут использовать один и тот же профиль (или аналогичный профиль), но работать на основе разных фаз профиля. Например, первая точка доступа может выполнять прием в соответствии с профилем, показанным на фиг.8, в то время как вторая точка доступа может выполнять прием, используя тот же профиль со сдвигом на 180 градусов. Таким образом, когда первая точка доступа принимает с максимальным ослаблением, вторая точка доступа может принимать с минимальным ослаблением.As described in more detail below, in some aspects, fractional reuse based on reception attenuation can be achieved by using a reception attenuation profile. For example, neighboring access points can use the same profile (or a similar profile), but operate on the basis of different phases of the profile. For example, the first access point may receive in accordance with the profile shown in FIG. 8, while the second access point may receive using the same profile with a 180 degree shift. Thus, when the first access point receives with maximum attenuation, the second access point can receive with minimum attenuation.
Как представлено в блоке 702 на фиг.7, сетевой узел 114 (например, компонент 342 профиля контроллера 320 взаимных помех) определяет информацию профиля ослабления при приеме, используемую для беспроводного приема (например, через восходящий канал передачи данных). Такая информация может включать в себя, например, параметры, такие как профиль ослабления при приеме, исходные минимальные и максимальные значения, и исходное значение периода.As presented in
В некоторых случаях один или более из этих параметров могут быть заранее определены или могут определяться случайно. Как правило, однако, эти параметры выбирают в попытке более эффективно уменьшить взаимные помехи между узлами в системе. Определение этой информации может быть основано на различных критериях, таких как, например, один или более отчетов об измерениях из одного или более терминалов доступа, один или более отчетов от одной или более точек доступа в отношении CQI, передаваемых в отчетах одним или более ассоциированными терминалами доступа, количество активных терминалов доступа, и средний трафик по восходящему каналу передачи данных в каждой точке доступа (например, в каждой ячейке).In some cases, one or more of these parameters may be predetermined or may be determined randomly. Typically, however, these parameters are chosen in an attempt to more effectively reduce mutual interference between nodes in the system. The definition of this information may be based on various criteria, such as, for example, one or more measurement reports from one or more access terminals, one or more reports from one or more access points regarding CQIs transmitted in reports by one or more associated terminals access, the number of active access terminals, and average traffic on the uplink data channel at each access point (for example, in each cell).
В конкретном примере, определение параметра профиля ослабления при приеме может быть основано на том, как точки доступа развернуты в системе (например, общее количество точек доступа, плотность точек доступа в пределах заданной области, относительная близость точек доступа и так далее). Здесь, если существует большое количество узлов, которые расположены близко друг к другу, параметры могут быть определены таким образом, что соседние узлы, менее вероятно, могут выполнять прием на высоком уровне ослабления одновременно. В качестве примера, профиль ослабления при приеме может быть сформирован таким образом, что заданная точка доступа может принимать на уровне, близком к максимальному уровню ослабления, за относительно короткий период времени. Таким образом, профиль ослабления при приеме может обеспечить адекватную изолированность, когда большое количество значений фазы (например, 60 градусов, 120 градусов и т.д.) используются различными узлами в системе совместно с профилем ослабления при приеме. И, наоборот, если существует малое количество узлов в системе, параметры могут быть определены для улучшения характеристик при передаче данных (например, пропускной способности). В качестве примера, профиль ослабления при приеме может быть сформирован таким образом, чтобы заданная точка доступа могла принимать на максимальном уровне или близко максимальному уровню ослабления в течение более длительного периода времени.In a specific example, the determination of the reception attenuation profile parameter can be based on how access points are deployed in the system (for example, the total number of access points, the density of access points within a given area, the relative proximity of access points, and so on). Here, if there are a large number of nodes that are close to each other, the parameters can be determined so that neighboring nodes are less likely to perform high-level attenuation at the same time. As an example, a reception attenuation profile may be configured such that a predetermined access point can receive at a level close to the maximum attenuation level in a relatively short period of time. Thus, the attenuation profile at reception can provide adequate isolation when a large number of phase values (e.g. 60 degrees, 120 degrees, etc.) are used by various nodes in the system in conjunction with the attenuation profile at reception. Conversely, if there is a small number of nodes in the system, parameters can be defined to improve performance during data transfer (for example, throughput). As an example, a reception attenuation profile may be formed so that a predetermined access point can receive at or near the maximum attenuation level over a longer period of time.
Различные уровни изолированности между соседними точками доступа (например, ячейками) также могут быть достигнуты путем регулирования величин и минимального, и максимального параметров. Например, большее отношение максимального и минимального значений обеспечивает лучшую изолированность за счет более длительных периодов времени, когда терминал доступа принимает на более низком уровне ослабления.Different levels of isolation between neighboring access points (e.g. cells) can also be achieved by adjusting the values of both the minimum and maximum parameters. For example, a larger ratio of maximum and minimum values provides better isolation due to longer periods of time when the access terminal receives at a lower level of attenuation.
Параметр профиля ослабления при приеме может быть определен на основе трафика (например, нагрузки трафика, типов трафика, требований к качеству услуги трафика), обрабатываемых точками доступа. Например, некоторые типы трафика могут быть более чувствительными к взаимным помехам, чем другие типы трафика. В таком случае можно использовать параметр (например, профиль ослабления при приеме или отношение максимального и минимального значений), который обеспечивает более высокую изолированность (например, как описано выше). Кроме того, некоторые типы трафика могут иметь более строгие требования к пропускной способности (но могут быть менее чувствительными к взаимных помехам), в результате чего можно использовать профиль ослабления при приеме, который обеспечивает большее количество передач при более высоких уровнях ослабления (например, как описано выше).The reception attenuation profile parameter can be determined based on traffic (eg, traffic load, traffic types, traffic service quality requirements) processed by access points. For example, some types of traffic may be more sensitive to mutual interference than other types of traffic. In this case, you can use a parameter (for example, the reception attenuation profile or the ratio of maximum and minimum values), which provides higher isolation (for example, as described above). In addition, some types of traffic may have more stringent bandwidth requirements (but may be less sensitive to mutual interference), whereby a reception attenuation profile can be used that provides more transmissions at higher attenuation levels (e.g., as described above).
В некоторых случаях сетевой узел 114 может определять параметры профиля ослабления при приеме на основе принятой информации, относящейся к взаимным помехам (например, обратной связи из одной или более точек доступа и/или терминалов доступа в системе, как описано выше со ссылкой на фиг.2). Например, количество точек доступа, слышимых заданным терминалом доступа, и относительная близость этих точек доступа к терминалу доступа могут быть определены на основе отчетов об измерениях, принятых из терминала доступа. Таким образом, сетевой узел 114 может определить, могут ли передачи в определенной ячейке (например, ассоциированные с точкой с ограниченным доступом) создавать помеху для соседней ячейки и регулировать соответствующим образом параметры профиля ослабления. Сетевой узел 114 также может определять параметры на основе информации о взаимных помехах, принимаемой из одной или более точек доступа (например, как описано со ссылкой на фиг.2).In some cases, the
В некоторых вариантах выполнения параметры периода могут быть определены на основе компромисса между любой из чувствительности к задержке данных приложения (например, VoIP) и фильтрации/задержки в канале управления нисходящего канала передачи данных (например, CQI/DRC, канал ACK и т.д.), как описано выше.In some embodiments, the period parameters may be determined based on a trade-off between any of the application data delay sensitivity (e.g., VoIP) and filtering / delay in the downlink control channel (e.g., CQI / DRC, ACK, etc.). ) as described above.
Как представлено в блоке 704, в некоторых случаях сетевой узел 114 может определять конкретные значения смещения фазы, и/или другие параметры, описанные выше, которые должны использоваться в определенных точках доступа. Например, сетевой узел 114 может определять величину взаимных помех, которые могут быть видны в данной точке доступа, когда она использует разные значения смещения фазы. Смещение фазы, ассоциированное с самым низким уровнем взаимных помех в этой точке доступа, может быть затем назначено для этой точки доступа.As presented in
Сетевой узел 114 также может назначать значения смещения фазы для соседних узлов так, чтобы уменьшить взаимные помехи между узлами. В качестве конкретного примера, сетевой узел 114 может определять, что передача данных по восходящему каналу данных терминалом доступа 112 может оказывать помеху для приема в точке 104 доступа. Это может быть определено, например, на основе информации, относящейся ко взаимным помехам в восходящем канале передачи данных, которую сетевой узел 114 может запрашивать, как описано в данном описании. Сетевой узел 114 может затем назначать различные (например, на 180 градусов, различия фазы) значения смещения фазы для точек 104 и 106 доступа.The
Как представлено блоком 706, сетевой узел 114 затем передает информацию о профиле ослабления, которую он определил в одной или более точках доступа. Здесь сетевой узел 114 может передавать назначение, специфичное для узла, для каждой точки доступа, или сетевой узел 114 может передавать общее назначение для всех точек доступа в наборе точек доступа.As represented by
Как представлено блоками 708 и 710, точка 104 доступа (например, компонент 344 профиля контроллера 322 взаимных помех) определяет параметры профиля ослабления при приеме, которые она будет использовать для передачи данных по восходящему каналу передачи. В случае, когда сетевой узел 114 назначает все параметры профиля ослабления при приеме, которые должны использоваться в точке 104 доступа, точка 104 доступа может просто использовать эти параметры. В некоторых случаях, точка 104 доступа может случайно выбирать параметр (например, смещение фазы).As represented by
Если все параметры не были назначены сетевым узлом 114 или выбраны случайно, точка 104 доступа может определять, какие параметры следует использовать, на основе соответствующих критериев. В типичном случае точка доступа может воплощать алгоритм отслеживания для динамического определения значения смещения по фазе, которое требуется использовать совместно с профилем ослабления при приеме, минимумом, максимумом и параметрами периода, которые точка 104 доступа приняла из сетевого узла 114.If all parameters have not been assigned by the
В некоторых случаях точка 104 доступа может выбирать значение смещения фазы, которое ассоциировано с самым низким уровнем взаимных помех. Здесь точка 104 доступа может определять, какое значение смещения фазы использовать, аналогично тому, как описано выше. Например, в блоке 708 точка 104 доступа может принимать информацию (например, отчеты об измерениях) из терминала 110 доступа, и/или точка 104 доступа может отслеживать канал передачи данных для определения взаимных помех в канале передачи данных. В качестве примера, в последнем случае, когда точка 104 доступа находится в нерабочем состоянии, она может отслеживать уровень взаимных помех (нагрузку), поступающих из источника, находящегося за пределами ячейки, по восходящему каналу передачи данных. Таким образом, точка 104 доступа может выбирать значение смещения фазы, которое обеспечивает минимальную помеху от источника, находящегося за пределами ячейки, в блоке 710.In some cases, the
В некоторых случаях точка 104 доступа может взаимодействовать с одной или более другими точками доступа, для определения значения смещения по фазе. Например, точка 104 доступа и точка 106 доступа могут согласовывать использование различных (например, не в фазе) значений смещения фазы. В таком случае операции в блоке 708 могут не выполняться.In some cases, the
Как представлено в блоке 712, точка доступа выполняет прием по восходящему каналу передачи данных на основе текущего профиля ослабления при приеме (например, путем применения профиля ослабления для принимаемых сигналов). Таким образом, ослабления при приеме может изменяться с течением времени так, что это позволяет уменьшить взаимные помехи с соседними узлами.As presented in
Описанные выше параметры профиля ослабления при приеме (например, максимум, минимум и параметры периода, определенные сетевым узлом 114), могут быть отрегулированы с течением времени. Например, информация, описанная выше, может быть собрана на периодической основе, и параметры можно регулировать, соответственно (например, с гистерезисом и/или медленной фильтрацией, если требуется). Таким образом, ослаблением при приеме терминалов доступа в системе можно управлять так, чтобы учитывать текущие условия взаимных помех в системе. Например, величина ослабления (например, максимальное ослабление) может быть увеличена при увеличении уровня мощности принимаемого сигнала в одной или более точках доступа. В упрощенном случае maximum_i устанавливают равным minimum_i для каждой точки point_i доступа и, управляют аналогично тому, как описано выше.The reception attenuation profile parameters described above (e.g., maximum, minimum, and period parameters determined by network node 114) can be adjusted over time. For example, the information described above can be collected on a periodic basis, and the parameters can be adjusted accordingly (for example, with hysteresis and / or slow filtering, if required). Thus, attenuation upon reception of access terminals in the system can be controlled so as to take into account the current conditions of mutual interference in the system. For example, the amount of attenuation (for example, maximum attenuation) can be increased by increasing the power level of the received signal at one or more access points. In the simplified case, maximum_i is set equal to minimum_i for each access point_i and is controlled in the same way as described above.
Ниже, со ссылкой на фиг 9 и 10, будут более подробно описаны операции, относящиеся к использованию схемы фракционного повторного использования, в которых применяется избирательная передача (например, выкалывание) по восходящему или нисходящему каналам передачи данных. Как отмечено выше, система может выполнять передачу в течение одного или более определенных временных интервалов, которые в различных вариантах выполнения могут относиться к или могут быть отнесены к фрейму, подфрейму, интервалу, интервалу времени передачи ("TTI"), чередованию HARQ и так далее.Below, with reference to FIGS. 9 and 10, operations related to the use of a fractional reuse scheme in which selective transmission (eg, puncturing) via upstream or downstream data transmission channels will be described in more detail. As noted above, the system can transmit for one or more specific time intervals, which in various embodiments can relate to or can be attributed to a frame, subframe, interval, transmission time interval ("TTI"), HARQ interlace, and so on. .
В некоторых аспектах схема фракционного повторного использования может подразумевать конфигурирование соседних узлов (например, точек доступа и/или терминалов доступа), для исключения передачи во время участка одного или более временных интервалов передачи. Например, первая точка доступа может выполнять передачу во время первого участка (например, части или всего подфрейма) временного интервала, в то время как вторая точка доступа передает во время второго участка (например, другой части подфрейма или полностью в другом подфрейме) временного интервала. В результате, взаимные помехи, которые в противном случае возникли бы между узлами, могут быть уменьшены.In some aspects, a fractional reuse scheme may involve configuring neighboring nodes (e.g., access points and / or access terminals) to prevent transmission of one or more transmission time intervals during a portion. For example, the first access point may transmit during the first section (e.g., part or all of a subframe) of the time interval, while the second access point may transmit during the second section (e.g., another part of the subframe or a completely different subframe) of the time interval. As a result, interference that would otherwise occur between nodes can be reduced.
В некоторых аспектах определение, должен ли узел воздержаться от передачи во время определенной части временного интервала, может включать себя определение того, насколько уровни взаимных помех присутствуют в различных участках временного интервала. Например, узел может воздержаться от передачи в те части временного интервала, которые ассоциированы с более высокой взаимной помехой.In some aspects, determining whether the node should refrain from transmitting during a certain part of the time interval may include determining how much interference levels are present in different parts of the time interval. For example, a node may refrain from transmitting in those parts of a time slot that are associated with higher mutual interference.
Рассмотрим вначале фиг.9, на которой представлен в виде блока 902 сетевой узел 114 (например, компонент 346 управления временным интервалом контроллера 320 взаимных помех) или некоторый другой соответствующий объект, который может определять, как данный временной интервал передачи или набор временных интервалов передачи следует разделить на участки так, чтобы разные узлы могли избирательно воздерживаться от передачи в течение одного или более из этих участков временных интервалов. Это может включать в себя, например, определение таких параметров, как структура каждого участка временного интервала, количество участков временного интервала, размер каждого участка временного интервала и местоположение каждого участка временного интервала. Здесь следует понимать, что данный участок временного интервала может быть определен так, что он будет включать в себя подучастки, которые не являются непрерывными по времени или могут быть определены как один непрерывный период времени. В некоторых случаях эти параметры временного интервала могут быть заранее определены для системы.First, consider FIG. 9, which shows, in
В некоторых аспектах параметры участков временного интервала определены так, чтобы уменьшить взаимные помехи в системе. С этой целью, участки временного интервала могут быть определены на основе того, как узлы развернуты в системе (например, общее количество точек доступа, плотность точек доступа в пределах заданной области, относительная близость точек доступа и так далее). Здесь, если существует большое количество узлов, развернутых в данной области, большее количество участков временных интервалов (например, и, возможно, меньших участков) может быть определено, и/или болеее количество разделений может быть предусмотрено между участками временного интервала. Таким образом, соседние узлы, менее вероятно, будут использовать тот же участок временного интервала (или создавать помехи соседнему участку временного интервала), и любые узлы, потенциально создающие временные помехи, могут быть, таким образом, выполнены так, что они не будут передавать во время большей процентной части временного интервала или набора временных интервалов. И, наоборот, если имеется меньшее количество узлов в системе, меньшее количество участков временного интервала (например, и, возможно, большие участки с меньшим разделением), может быть определено, для улучшения характеристик передачи данных (например, пропускной способности).In some aspects, the parameters of the time slot sections are defined so as to reduce interference in the system. To this end, sections of the time interval can be determined based on how the nodes are deployed in the system (for example, the total number of access points, the density of access points within a given area, the relative proximity of access points, and so on). Here, if there are a large number of nodes deployed in a given area, a larger number of sections of time intervals (for example, and possibly smaller sections) can be determined, and / or more partitions can be provided between sections of the time interval. Thus, neighboring nodes are less likely to use the same portion of the time slot (or interfere with the adjacent portion of the slot), and any nodes potentially causing temporary interference can thus be designed so that they will not transmit time of a larger percentage of a time interval or a set of time intervals. Conversely, if there are fewer nodes in the system, fewer sections of the time interval (for example, and possibly larger sections with less separation) can be determined to improve data transfer characteristics (for example, throughput).
Участки временного интервала также могут быть определены на основе трафика (например, величины трафика, типов трафика, требований качества к услуге, составляющей трафик), обрабатываемого точками доступа. Например, некоторые типы трафика могут быть более чувствительными к взаимным помехам, чем другие типы трафика. В таком случае может быть определено больше количество участков временного интервала, и/или более количество разделений может быть предусмотрено между участками временного интервала. Кроме того, некоторые типы трафика могут иметь более строгие требования к пропускной способности (но могут быть менее чувствительными к взаимным помехам), в результате чего могут быть определены большие участки временного интервала.Sections of the time interval can also be determined based on traffic (for example, the amount of traffic, types of traffic, quality requirements for the service making up the traffic) processed by access points. For example, some types of traffic may be more sensitive to mutual interference than other types of traffic. In this case, more than the number of sections of the time interval can be determined, and / or more number of divisions can be provided between the sections of the time interval. In addition, some types of traffic may have more stringent bandwidth requirements (but may be less sensitive to mutual interference), as a result of which large portions of the time interval can be determined.
Участки временного интервала также могут быть определены на основе взаимных помех в системе. Например, если значения взаимных помех в системе высоки, большие участки временного интервала могут быть определены, и/или более разделений может быть предусмотрено между участками временного интервала.Plots of the time interval can also be determined based on mutual interference in the system. For example, if the interference values in the system are high, large sections of the time interval may be determined, and / or more partitions may be provided between sections of the time interval.
Операции блока 902 могут, поэтому, быть основаны на обратной связи, относящейся к взаимным помехам, из одной или более точек доступа, и/или терминалов доступа в системе (например, как описано выше). Например, отчеты об измерении в терминале доступа и/или отчеты из узлов доступа можно использовать для определения степени, в которой узлы в системе могут оказывать взаимные помехи друг другу.The operations of
Как представлено блоком 904, в некоторых случаях сетевой узел 114 может указывать определенные участки временного интервала, которые должны использоваться определенными узлами. В некоторых случаях участки временного интервала могут быть назначены случайным образом. Однако, как правило, участки временного интервала можно выбирать при попытке уменьшения взаимных помех между узлами в системе. В некоторых аспектах, определение, какой из участков временного интервала должен использовать данный узел, может выполняться аналогично операциям блока 902, описанного выше. Например, сетевой узел 114 может определять величину взаимных помех, которые ассоциированы с участками временного интервала.As represented by
Для нисходящего канала передачи данных точка доступа вначале может быть выполнена с возможностью использования первого участка временного интервала. Затем могут быть определены взаимные помехи, ассоциированные с использованием этого участка временного интервала (например, основаны на отчетах CQI, собранных в течение определенного периода времени). Точка доступа может быть затем выполнена с возможностью использования второго участка временного интервала. Взаимные помехи, ассоциированные с использованием второго участка временного интервала, затем могут быть определены (например, на основе отчетов CQI, собранных за определенный период времени). Сетевой контроллер может затем назначать для точки доступа участок временного интервала, ассоциированный с самым низким уровнем взаимных помех.For a downlink data channel, the access point may initially be configured to use a first portion of a time slot. The mutual interference associated with using this portion of the time interval can then be determined (for example, based on CQI reports collected over a specific period of time). The access point may then be configured to use a second portion of the time slot. Mutual interference associated with the use of the second portion of the time interval can then be determined (for example, based on CQI reports collected over a certain period of time). The network controller may then designate for the access point a portion of the time interval associated with the lowest level of mutual interference.
Для восходящего канала передачи данных терминал доступа может быть выполнен с возможностью первоначального использования первого участка временного интервала. Взаимные помехи, ассоциированные с использованием этого участка временного интервала, например, могут быть определены опосредованно на основе значений мощности передачи (например, автоматически установленных по командам управления мощностью из соответствующей точки доступа), используемым при передаче по восходящему каналу передачи данных с течением периода времени. Терминал доступа может затем быть выполнен с возможностью использования второго участка временного интервала. Взаимные помехи, ассоциированные с использованием второго участка временного интервала, затем могут быть определены (например, как описано выше). Сетевой узел 114 может затем назначать участок временного интервала, ассоциированный с самыми низкими взаимными помехами (например, как обозначено самым низким уровнем мощности передачи по восходящему каналу передачи данных) для этого терминала доступа и его ассоциированной точки доступа.For the uplink data channel, the access terminal may be configured to initially use the first portion of the time interval. Mutual interference associated with the use of this portion of the time interval, for example, can be determined indirectly based on the transmit power values (for example, automatically determined by the power control commands from the corresponding access point) used during transmission over the uplink data channel over a period of time. The access terminal may then be configured to use a second portion of the time slot. Mutual interference associated with the use of the second portion of the time interval can then be determined (for example, as described above). The
Сетевой узел 114 также может назначать участки временного интервала для соседних узлов так, чтобы уменьшить уровень взаимных помех между узлами. В качестве конкретного примера, сетевой узел 114 может определить, что передача по нисходящему каналу передачи данных с точкой 106 доступа может оказывать помеху приему в терминале доступа, ассоциированному с точкой 104 доступа. Это может быть определено, например, на основе информации, относящейся ко взаимным помехам в нисходящем канале передачи данных, которую сетевой узел 114 может получать, как описано в данном описании. Для уменьшения такого возможного уровня взаимных помех сетевой узел 114 может назначать другие участки временного интервала для точек 104 и 106 доступа.
Как представлено блоком 906, сетевой узел 314 может определять смещение времени для одной или более точек доступа для синхронизации временных параметров временного интервала точек доступа. Такая синхронизация может быть достигнута, например, при использовании таких регулировок, как Tau-DPCH (где DPCH относится к выделенному физическому каналу), или для некоторой другой соответствующей схемы синхронизации.As represented by
Как представлено блоком 908, сетевой узел 114 затем передает параметры участка временного интервала, которые он определяет для одной или более точек доступа. Например, сетевой узел 114 может передавать назначение, специфичное для узла, в каждую из точек доступа, или сетевой узел 114 может передавать общее назначение для всех точек доступа в наборе точек доступа. Сетевой узел 114 также может передавать один или более показателей смещения времени для точек доступа, для использования в операциях синхронизации.As represented by block 908, the
Как показано на фиг.10, такая блок-схема последовательности операций описывает операции, которые могут быть выполнены точкой доступа для операций, выполняемых по нисходящему каналу передачи данных, или терминалом доступа для операций, выполняемых по восходящему каналу передачи данных. Сначала рассмотрим случай нисходящего канала передачи данных.As shown in FIG. 10, such a flowchart describes operations that can be performed by an access point for operations performed on a downlink data channel or an access terminal for operations performed on an uplink data channel. First, consider the case of a downlink data channel.
Как представлено блоком 1002, точка 104 доступа (например, компонент 348 управления временным интервалом контроллера 322 взаимных помех) определяет участок временного интервала, который она будет использовать для передачи данных по нисходящему каналу передачи данных. В случае, если сетевой узел 114 назначил участок временного интервала для использования точкой 104 доступа, точка 104 доступа может просто использовать эти участки временного интервала. В некоторых случаях, точка 104 доступа может случайно выбирать, какой из участка временного интервала следует использовать.As represented by block 1002, the access point 104 (for example, the time
Если участок временного интервала не был назначен сетевым узлом 114 или выбран случайно, точка 104 доступа может определять, какой участок временного интервала следует использовать на основе соответствующих критериев. В некоторых аспектах точка 104 доступа может выбирать участок временного интервала, ассоциированный с самым низким уровнем помех. Здесь точка 104 доступа может определять, какой участок временного интервала следует использовать, аналогично тому, как описано выше в блоке 904 (например, путем использования разных участков в разные периоды времени и отслеживания CQI или некоторого другого параметра в течение каждого периода времени).If the time slot portion has not been assigned by the
В некоторых случаях, точка 104 доступа может взаимодействовать с одной или более другими точками доступа, для определения, какой участок временного интервала следует использовать. Например, точка 104 доступа и точка 106 доступа могут согласовывать использование разных (например, взаимно исключающих) участков временного интервала.In some cases, the
Как представлено блоком 1004, точка 104 доступа может определять смещение по времени, для использования при передаче данных по нисходящему каналу передачи данных. Например, точка 104 доступа может непрерывно отслеживать канал передачи данных в течение определенного периода времени для приблизительного определения, когда соседний узел начинает и заканчивает свои передачи. Таким образом, точка 104 доступа может определять (например, оценивать) временные характеристики участка временного интервала соседнего узла. Точка доступа может затем синхронизировать участок временных параметров временного интервала своего нисходящего канала передачи данных с этими моментами времени. В некоторых аспектах это может потребовать определения параметра Tau-DPCH.As represented by block 1004, the
Как представлено блоком 1006, точка 104 доступа может передавать сообщение (например, включающее в себя информацию смещения времени) в ассоциированный терминал доступа для информирования терминала доступа, какие участки временного интервала требуется использовать для нисходящего канала передачи данных. Таким образом, точка 104 доступа может планировать передачи по нисходящему каналу передачи данных по наиболее доступным участкам временного интервала (блок 1008).As represented by block 1006, the
Возвращаясь теперь к сценарию восходящего канала передачи данных, как представлено блоком 1002, терминал 104 доступа (например, контроллер 324 взаимных помех) определяет участки временного интервала, которые он будет использовать для передачи данных по восходящему каналу передачи данных. В случае, когда сетевой узел 114 назначил участки временного интервала для использования терминалом 110 доступа, терминал 110 доступа может просто использовать эти участки временного интервала. В некоторых случаях терминал 110 доступа может случайно выбирать, какой участок временного интервала следует использовать.Returning now to the scenario of the uplink data channel, as represented by block 1002, the access terminal 104 (for example, mutual interference controller 324) determines the portions of the time interval that it will use to transmit data over the uplink data channel. In the case where the
Если участки временного интервала не были назначены сетевым узлом 114 или выбраны случайно, терминал 110 доступа может определять, какой участок временного интервала использовать, на основе соответствующих критериев. В некоторых аспектах терминал 110 доступа может выбирать участок временного интервала, ассоциированный с самым низким уровнем взаимных помех (например, самым малой мощностью передачи). Здесь терминал 110 доступа может определять, какой участок временного интервала следует использовать, аналогично тому, как описано выше, в блоке 904, или это может происходить автоматически в результате выполнения операции управления мощностью точкой 104 доступа.If the time slot portions have not been assigned by the
В некоторых случаях, точка 104 доступа может отслеживать взаимные помехи в восходящем канале передачи данных во время тестов участка временного интервала (например, теста для определения, какой участок временного интервала имеет самый низкий уровень взаимных помех). В таких случаях точка 104 доступа может подавать инструкции в терминал 110 доступа для использования определенных участков временного интервала во время данной фазы теста взаимных помех. В качестве альтернативы, терминал 110 доступа может сообщать в точку 104 доступа, какие участки временного интервала используются на данной фазе теста.In some cases, the
В некоторых случаях, точка 104 доступа может взаимодействовать с одной или более другими точками доступа, для определения, какой участок временного интервала восходящего канала передачи данных следует использовать. Например, точка 104 доступа и точка 106 доступа могут согласовывать использование различных (например, взаимно исключающих) участков временного интервала. В таком случае точка доступа 104 может передавать далее эту информацию в терминал 110 доступа.In some cases, the
Как представлено блоком 1004, терминал 110 доступа может определять смещение по времени, используемое для передачи данных по нисходящему каналу или восходящему каналу передачи данных. Например, терминал 110 доступа может непрерывно отслеживать канал передачи данных в течение определенного периода времени для приблизительного определения, когда соседний узел начинает и заканчивает свои передачи. Таким образом, терминал 110 доступа может определять (например, оценивать) временные параметры участка временного интервала соседнего узла. В качестве альтернативы, терминал 110 доступа может принимать информацию смещения временных параметров из точки 104 доступа (например, параметра Tau-DPCH). В любом случае терминал 110 доступа может затем синхронизировать участок временных параметров временного интервала своего восходящего канала передачи данных с этим временем.As represented by block 1004, the
Как представлено блоком 1006, терминал 110 доступа может передавать сообщение в точку 104 доступа для информирования точки 104 доступа, какие участки временного интервала требуется использовать для восходящего канала передачи данных. Таким образом, терминал 110 доступа может планировать передачу данных по восходящему каналу передачи данных по наилучшим доступным участкам временного интервала (блок 1008).As represented by block 1006, the
Описанные выше операции могут быть выполнены на периодической основе при попытке непрерывного обеспечения наилучших участков временного интервала для узлов системы. В некоторых случаях может быть принято решение не выполнять передачу в течение определенных моментов времени передачи битов пилотной последовательности для обеспечения более точной оценки SNR (ОСШ, отношение сигнал/шум) (например, для EV-DO). В некоторых случаях, решение может быть принято не выполнять передачу в течение передачи по определенным каналам передачи служебных данных для обеспечения лучшей изолированности (например, для HSPA (ВСПП, высокоскоростная пакетная передача данных)). Кроме того, могут быть предусмотрены условия для учета терминалами доступа более низких результатов измерения сигнала, которые они могут видеть из точек доступа, используя описанную выше схему.The operations described above can be performed on a periodic basis while trying to continuously provide the best sections of the time interval for the nodes of the system. In some cases, it may be decided not to transmit the pilot sequence bits for certain times to provide a more accurate SNR estimate (SNR, signal-to-noise ratio) (for example, for EV-DO). In some cases, a decision may be made not to transmit during transmission over certain overhead channels to provide better isolation (for example, for HSPA (VSPP, high-speed packet data)). In addition, conditions may be provided for the access terminals to take into account the lower signal measurement results that they can see from the access points using the scheme described above.
Далее, со ссылкой на фиг.11 и 12, будут более подробно описаны операции, относящиеся к использованию схемы фракционного повторного использования, в которой применяются спектральные маски по восходящему или нисходящему каналам передачи данных. В некоторых аспектах такая схема может подразумевать конфигурирование соседних узлов (например, точек доступа и/или терминалов доступа), для использования разных спектральных масок при передаче. Здесь, вместо использования всего доступного частотного спектра с постоянной мощностью, каждый узел может использовать спектральную маску для формирования неоднородной спектральной плотности мощности. Например, первая точка доступа может передавать, используя спектральную маску, ассоциированную с первым набором спектральных компонентов (например, первым поднабором выделенного спектра частот), в то время как вторая точка доступа передает, используя другую спектральную маску, ассоциированную со вторым набором спектральных компонентов (например, вторым поднабором выделенного частотного спектра). В результате, взаимные помехи, которые в противном случае могли бы возникнуть между узлами, могут быть уменьшены.Next, with reference to FIGS. 11 and 12, operations related to the use of a fractional reuse scheme in which spectral masks are used on the upstream or downstream data transmission channels will be described in more detail. In some aspects, such a scheme may involve configuring neighboring nodes (eg, access points and / or access terminals) to use different spectral masks for transmission. Here, instead of using the entire available frequency spectrum with constant power, each node can use a spectral mask to form an inhomogeneous power spectral density. For example, the first access point can transmit using the spectral mask associated with the first set of spectral components (for example, the first subset of the selected frequency spectrum), while the second access point can transmit using another spectral mask associated with the second set of spectral components (for example , the second subset of the selected frequency spectrum). As a result, interference that might otherwise occur between nodes can be reduced.
В некоторых аспектах определение, будет ли узел использовать данную спектральную маску, может включать в себя определение, в какой степени взаимная помеха видна, когда используют различные спектральные маски. Например, узел может выбрать использование спектральной маски, которая ассоциирована с более низким уровнем помех. Здесь следует понимать, что данная спектральная маска может быть определена так, что она будет включать в себя спектральные компоненты, которые не являются непрерывными по частоте, или может быть определена как одна непрерывная протяженность частот. Кроме того, спектральная маска может содержать положительную маску (например, определяющую частотные компоненты, которые требуется использовать) или отрицательную маску (например, определяющую частотные компоненты, которые не должны быть использованы).In some aspects, determining whether a node will use a given spectral mask may include determining to what extent interference is visible when various spectral masks are used. For example, the node may choose to use a spectral mask that is associated with a lower level of interference. It should be understood here that a given spectral mask can be defined so that it will include spectral components that are not continuous in frequency, or can be defined as one continuous extension of frequencies. In addition, the spectral mask may contain a positive mask (for example, defining frequency components that you want to use) or a negative mask (for example, defining frequency components that should not be used).
Обращаясь первоначально к фиг.11, как представлено блоком 1102, сетевой узел 114 (например, спектральный компонент 350 управления спектральной маской контроллера 320 взаимных помех) может принимать информацию, которая назначает взаимные помехи, ассоциированные с разными спектральными компонентами частотного спектра, выделенного для передачи по нисходящему или восходящему каналам передачи данных.Referring initially to FIG. 11, as represented by
Операции блока 1102, поэтому, могут быть основаны на обратной связи, относящейся к взаимным помехам, из одной или более точек доступа, и/или терминалов доступа в системе (например, как описано выше). Например, отчеты, содержащие результаты измерений терминала доступа, и/или отчеты из узлов доступа можно использовать для определения степени, в которой узлы в системе могут оказывать взаимные помехи друг другу, когда используют данную спектральную маску.The operations of
Как представлено блоком 1104, в некоторых случаях сетевой узел 114 может определять определенные спектральные маски для использования определенными узлами. В некоторых случаях спектральные маски могут быть назначены случайным образом. Однако, как правило, спектральные маски могут быть выбраны при попытке более эффективно уменьшить взаимные помехи между узлами в системе.As represented by
Например, для нисходящего канала передачи данных, точка доступа вначале может быть сконфигурирована для использования первой спектральной маски (например, фильтра, определенного с определенными спектральными характеристиками) при передаче. Такая спектральная маска может быть ограничена, например, по существу, первой половиной выделенного спектра (например, спектральная маска имеет, по существу, спектральную плотность с полной мощностью для половины спектра и, по существу, спектральную плотность с уменьшенной мощностью для другой половины спектра). Взаимные помехи, ассоциированные с использованием спектральной маски, могут затем быть определены (например, основаны на отчетах CQI, собранных в течение периода времени). Точка доступа может затем быть выполнена с возможностью использования второй спектральной маски (например, которая ограничена, по существу, второй половиной выделенного спектра). Взаимные помехи, ассоциированные с использованием второй спектральной маски, затем могут быть определены (например, основаны на отчетах CQI, собранных в течение определенного периода времени). Сетевой узел 114 затем может назначать спектральную маску, ассоциированную с наименьшими взаимными помехами для точки доступа.For example, for a downlink data channel, the access point may initially be configured to use a first spectral mask (for example, a filter defined with specific spectral characteristics) during transmission. Such a spectral mask can be limited, for example, to essentially the first half of the selected spectrum (for example, the spectral mask has essentially spectral density with full power for half the spectrum and essentially spectral density with reduced power for the other half of the spectrum). Mutual interference associated with the use of a spectral mask can then be determined (for example, based on CQI reports collected over a period of time). The access point may then be configured to use a second spectral mask (for example, which is limited to essentially the second half of the selected spectrum). Mutual interference associated with the use of the second spectral mask can then be determined (for example, based on CQI reports collected over a period of time).
Для восходящего канала передачи данных терминал доступа может вначале быть выполнен с возможностью использования первой спектральной маски при передаче. Затем могут быть определены взаимные помехи, ассоциированные с использованием спектральной маски (например, на основе взаимных помех по восходящему каналу передачи данных, измеренных с помощью ассоциированного терминала доступа). Терминал доступа затем может быть выполнен с возможностью использования второй спектральной маски, и может определять взаимные помехи, ассоциированные с использованием второй спектральной маски. Сетевой узел 114 может затем назначать спектральную маску, ассоциированную с самыми низкими взаимными помехами, для терминала доступа.For an uplink data channel, the access terminal may initially be configured to use a first spectral mask in transmission. Then, mutual interference associated with the use of a spectral mask can be determined (for example, based on mutual interference on the uplink data channel measured by the associated access terminal). The access terminal may then be configured to use a second spectral mask, and may determine the mutual interference associated with the use of the second spectral mask.
Сетевой узел 114 также может назначать спектральные маски для соседних узлов так, чтобы уменьшить взаимные помехи между узлами. В качестве конкретного примера, сетевой узел 114 может определять, что передача данных по нисходящему каналу передачи данных, выполняемая точкой 106 доступа, может создавать взаимные помехи для приема в терминале доступа, ассоциированном с точкой 104 доступа. Это может быть определено, например, на основе информации, относящейся к взаимным помехам по нисходящему каналу передачи данных, которую сетевой узел 114 может получать, как описано в данном описании. Для уменьшения таких потенциальных взаимных помех, сетевой узел 114 может назначать различные спектральные маски для точек 104 и 106 доступа.
Как представлено блоком 1106, сетевой узел 114 затем передает спектральные маски, которые он идентифицировал, в соответствующую точку (точки) доступа. Здесь сетевой узел 114 может передавать сообщение, специфичное для узла, в каждую точку доступа, или сетевой узел 114 может передавать общее сообщение во все точки доступа из набора точек доступа.As represented by
Рассмотрим теперь фиг.12, эта блок-схема последовательности операций представляет операции, которые могут быть выполнены точкой доступа и ассоциированным терминалом доступа для операций, выполняемых по нисходящему и восходящему каналам передачи данных. Как представлено блоком 1202, точка 104 доступа (например, компонент 352 управления спектральной маской контроллера 322 взаимных помех) определяет спектральную маску, которая будет использоваться для восходящего или нисходящего каналов передачи данных. В случае, когда сетевой узел 114 назначает спектральную маску, предназначенную для использования, точка 104 доступа может просто использовать назначенную спектральную маску. В некоторых случаях, точка 104 доступа может случайно выбирать, какую спектральную маску следует использовать.Referring now to FIG. 12, this flowchart represents operations that can be performed by an access point and an associated access terminal for operations performed on the downlink and uplink data channels. As represented by
Если спектральная маска не была назначена сетевым узлом 114 или выбрана случайно, точка 104 доступа может определять, какую спектральную маску использовать, на основе соответствующих критериев. В некоторых аспектах точка 104 доступа может выбирать спектральную маску, ассоциированную с самым низким уровнем взаимных помех. Например, точка 104 доступа может определять, какую спектральную маску следует использовать, аналогично тому, как описано выше в блоках 1102 и 1104 (например, путем использования различных спектральных масок в различные периоды времени и отслеживания CQT или некоторого другого параметра, относящегося к взаимным помехам, в течение каждого периода времени).If the spectral mask has not been assigned by the
В некоторых случаях, точка 104 доступа может взаимодействовать с одной или более другими точками доступа для определения, какую спектральную маску использовать. Например, точка 104 доступа и точка 106 доступа могут согласовывать использование различных (например, взаимно исключающих) спектральных масок.In some cases, the
Как представлено блоком 1204, точка 104 доступа передает сообщение в терминал 110 доступа для информирования терминала 110 доступа, какую спектральную маску следует использовать для восходящего канала передачи данных (или, в случае необходимости, для нисходящего канала передачи данных). Таким образом, точка 104 доступа может выполнять передачу по нисходящему каналу передачи данных, используя наилучший доступный спектр, и/или терминал 110 доступа может выполнять передачу по восходящему каналу передачи данных, используя наилучший доступный спектр (блок 1206). Здесь эквалайзер в узле приема (например, в терминале доступа для нисходящего канала передачи данных) может уменьшать эффект спектральной маски (в частности, если отсутствует нагрузка из соседней ячейки). Кроме того, в некоторых случаях, эквалайзер может быть адаптивным и может учитывать определенную спектральную маску, используемую в узле передачи (например, в точке доступа для нисходящего канала передачи данных).As represented by
Описанные выше операции могут быть выполнены на периодической основе, при попытке постоянно предоставлять наилучшие спектральные маски для узлов в системе.The operations described above can be performed on a periodic basis, while trying to constantly provide the best spectral masks for nodes in the system.
Со ссылкой на фиг 13 и 14 будут описаны операции, относящиеся к использованию схемы фракционного повторного использования, с применением кодов расширения (например, кодов Уолша или кодов OVSF). В некоторых аспектах такая схема может подразумевать выполнение соседних узлов (например, точек доступа), с возможностью использования различных кодов расширения при передаче. Здесь, вместо использования всех кодов в выделенном наборе кодов расширения, каждый узел может использовать поднабор кодов расширения. Например, первая точка доступа может выполнять передачу, используя первый набор кодов расширения, в то время как вторая точка доступа выполняет передачу, используя второй набор кодов расширения. В результате, могут быть уменьшены взаимные помехи, которые, в противном случае, могли бы возникнуть между узлами.With reference to FIGS. 13 and 14, operations related to using a fractional reuse scheme using extension codes (eg, Walsh codes or OVSF codes) will be described. In some aspects, such a scheme may involve the execution of neighboring nodes (eg, access points), with the possibility of using different extension codes during transmission. Here, instead of using all the codes in a dedicated set of extension codes, each node can use a subset of the extension codes. For example, the first access point can transmit using the first set of extension codes, while the second access point can transmit using the second set of extension codes. As a result, interference can be reduced, which, otherwise, could occur between nodes.
В некоторых аспектах определение, будет ли узел использовать данный код расширения, может включать в себя определение, в какой степени помеха видна, когда используют различные коды расширения. Например, узел может выбрать использование кода расширения, который ассоциирован с более низким уровнем помех.In some aspects, determining whether a node will use a given extension code may include determining to what extent interference is visible when various extension codes are used. For example, the node may choose to use an extension code that is associated with a lower interference level.
Рассмотрим вначале фиг.13, как представлено блоком 1302, сетевой узел 114 (например, компонент 354 управления кодом расширения контроллера 320 взаимных помех) может принимать информацию, которая назначает взаимные помехи, ассоциированные с различными поднаборами кодов расширения набора кодов расширения, выделенных для передачи по нисходящему каналу передачи данных.First, see FIG. 13, as represented by
Блок 1302 операций поэтому может быть основан на обратной связи, относящейся к взаимным помехам, из одной или более точек доступа, и/или терминалов доступа в системе (например, как описано выше). Например, отчеты, содержащие результаты измерения терминалов доступа, и/или отчеты из узлов доступа можно использовать для определения степени, в которой узлы в системе могут оказывать взаимную помеху друг другу, когда используют данный код расширения.The
Как представлено блоком 1304, в некоторых случаях сетевой узел 114 может указывать определенные коды расширения, которые должны быть использованы определенными узлами. В некоторых случаях коды расширения могут быть назначены случайным образом. Однако, как правило, коды расширения могут быть выбраны в попытке более эффективно уменьшить взаимные помехи между узлами в системе.As represented by
Например, точка доступа вначале может быть сконфигурирована для использования первого набора кодов расширения при передаче по нисходящему каналу передачи данных. Взаимные помехи, ассоциированные с использованием этого набора кодов расширения, могут быть затем определены (например, на основе отчетов CQI, собранных в течение периода времени). Точка доступа может быть затем выполнена с возможностью использования второго набора кодов расширения, и после чего определяют взаимных помехи, ассоциированные с использованием второго набора кодов расширения. Сетевой узел 114 может затем назначать код расширения, ассоциированный с самым низким уровнем помех для точки доступа.For example, an access point may initially be configured to use a first set of extension codes when transmitting on a downlink data channel. Mutual interference associated with the use of this set of extension codes can then be determined (for example, based on CQI reports collected over a period of time). The access point may then be configured to use a second set of extension codes, and then determine the mutual interference associated with the use of the second set of extension codes.
Сетевой узел 114 также может назначать коды расширения для соседних узлов таким образом, чтобы уменьшить взаимные помехи между узлами. В качестве конкретного примера, такой сетевой узел 114 может определить, что передача по нисходящему каналу передачи данных точкой 104 доступа может оказывать помеху приему в терминале доступа, ассоциированном с точкой 106 доступа. Это может быть определено, например, на основе информации, относящейся к взаимным помехам в нисходящем канале передачи данных, которую сетевой узел 114 может получать, как описано в данном описании. Для уменьшения такой потенциальной взаимной помехи сетевой узел 114 может назначать различные коды расширения точкам 104 и 106 доступа.
Как представлено блоком 1306, сетевой узел 114 затем передает коды расширения, которые он идентифицировал в соответствующей точке (точках) доступа. Здесь сетевой узел 114 может передавать сообщение, специфичное для узла, в каждую точку доступа, или сетевой узел 114 может передавать общее сообщение во все точки доступа из набора точек доступа.As represented by
Как представлено блоком 1308, сетевой узел 114 также может передавать один или более других наборов кодов расширения в точку (точки) доступа. Как будет более подробно описано ниже, эти наборы могут идентифицировать коды расширения, которые не используются данной точкой доступа, и/или коды расширения, которые используются некоторой другой точкой доступа.As represented by
Как показано на фиг.14 в блоке 1402, точка 104 доступа (например, компонент 356 управления кодом расширения контроллера 322 взаимных помех) определяет набор кодов расширения, которые будут использоваться для нисходящего канала передачи данных. В случае, когда сетевой узел 114 назначает набор, предназначенный для использования, точка 104 доступа может просто использовать назначенный набор. В некоторых случаях, точка 104 доступа может случайно выбирать, какой набор кодов расширения следует использовать.As shown in FIG. 14 at
Если набор кодов расширения не был назначен сетевым узлом 114 или выбран случайно, точка 104 доступа может определять, какой набор следует использовать, на основе соответствующих критериев. В некоторых аспектах точка 104 доступа может выбирать набор кодов расширения, ассоциированных с самым низким уровнем помех. Например, точка 104 доступа может определять, какой набор следует использовать, аналогично тому, как описано выше со ссылкой на блоки 1302 и 1304 (например, путем использования разных кодов расширения в разные периоды времени и отслеживания CQT или некоторого другого параметра, связанного со взаимными помехами, во время каждого периода времени).If the set of extension codes has not been assigned by the
В некоторых случаях, точка 104 доступа может взаимодействовать с одной или более другими точками доступа, для определения, какой набор кодов расширения следует использовать. Например, точка 104 доступа и точка 106 доступа могут согласовывать использование разных (например, взаимно исключающих) наборов кодов расширения.In some cases, the
Как представлено блоком 1404, точка 104 доступа, в случае необходимости, может синхронизировать свои временные параметры с временными параметрами одной или более других точек доступа. Например, путем достижения выравнивания элементарных сигналов с соседними ячейками (например, ассоциированными с другими точками с ограниченным доступом), ортогональные каналы могут быть установлены между точками доступа путем использования разных кодов расширения в каждой точке доступа. Такая синхронизация может быть выполнена, например, используя технологии, описанные выше (например, точки доступа могут включать в себя функции GPS).As represented by
Как представлено блоком 1406, точка 104 доступа, в случае необходимости, может определять коды расширения, которые используются одной или более другими точками доступа. Такая информация может быть получена, например, из соседнего узла 114 или непосредственно из других узлов доступа (например, через канал обратной связи).As represented by
Как представлено блоком 1408, точка 104 доступа передает сообщение в терминал 110 доступа, для информирования терминала 110 доступа, какой код расширения следует использовать для нисходящего канала передачи данных. Кроме того, точка 104 доступа может передавать информацию в терминал доступа 110, который идентифицирует коды расширения, не используемые точкой 104 доступа, и/или который идентифицирует коды расширения, которые используются некоторой другой точкой доступа (например, соседней точкой доступа).As represented by
Как представлено блоком 1410, точка 104 доступа выполняет передачу по нисходящему каналу передачи данных, используя выбранный набор кодов расширения. Кроме того, как представлено блоком 1412, терминал 110 доступа использует информацию кода расширения, переданную точкой 104 доступа, для декодирования информации, которую он принимает через нисходящий канал передачи данных.As represented by block 1410, the
В некоторых вариантах выполнения, терминал 110 доступа может быть выполнен с возможностью использования информации, относящейся к кодам расширения, не используемой точкой 104 доступа, для более эффективного декодирования принимаемой информации. Например, сигнальный процессор 366 (например, обладающий возможностями компенсации взаимных помех) может использовать эти другие коды расширения в попытке компенсировать на основе принятой информации, какие-либо взаимные помехи, формируемые сигналами, принимаемыми из другого узла (например, точки 106 доступа), которые были кодированы с использованием этих других кодов расширения. Здесь исходную принимаемую информацию обрабатывают путем использования других кодов расширения для получения декодированных битов. Сигнал затем генерирует из декодированных битов, и этот сигнал вычитают из исходной принятой информации. Полученный в результате сигнал затем обрабатывают, используя коды расширения, переданные точкой 104 доступа, для получения выходного сигнала. Предпочтительно, путем использования таких технологий управления взаимными помехами, можно достичь относительно высоких уровней режекции взаимных помех, даже когда точка 104 доступа и терминал 110 доступа не синхронизированы по времени.In some embodiments, the
Описанные выше операции могут выполняться на периодической основе при попытке постоянного предоставления лучших кодов расширения узлов в системе.The operations described above can be performed on a periodic basis in an attempt to constantly provide the best node extension codes in the system.
Рассмотрим теперь фиг.15 и 16, на которых показаны операции, относящиеся к использованию схемы, относящейся к управлению мощностью, для уменьшения взаимных помех. В частности, эти операции относятся к управлению мощностью передачи терминала доступа для уменьшения каких-либо взаимных помех, которые может создавать терминал доступа по восходящему каналу передачи данных в неассоциированной точке доступа (например, которая работает с той же несущей частотой для соседней несущей частоты).Now consider FIGS. 15 and 16, which show operations related to using a circuit related to power control to reduce mutual interference. In particular, these operations relate to controlling the transmit power of the access terminal to reduce any mutual interference that the access terminal may create on the uplink data channel at an unassociated access point (for example, which operates at the same carrier frequency for an adjacent carrier frequency).
Как представлено блоком 1502, узел (например, сетевой узел 114 или точка 104 доступа) принимает сигналы, относящиеся к управлению мощностью, которые можно использовать для определения, как управлять мощностью передачи по восходящему каналу передачи данных терминала 110 доступа. В различных сценариях сигналы могут быть приняты из сетевого узла 114, точки 104 доступа, другой точки доступа (например, точки 106 доступа) или ассоциированного терминала доступа (например, точки 110 доступа). Такая информация может быть принята различными путями (например, через канал обратной связи, по радиоканалу и т.д.).As represented by
В некоторых аспектах эти принимаемые сигналы могут предоставлять показатель взаимных помех в соседней точке доступа (например, точке 106 доступа). Например, как описано в данном описании, терминалы доступа, ассоциированные с точкой 104 доступа, могут генерировать отчеты по результатам измерений и передавать эти отчеты в сетевой узел 114 через точку 104 доступа.In some aspects, these received signals may provide an indication of mutual interference at a neighboring access point (eg, access point 106). For example, as described herein, access terminals associated with
Кроме того, точки доступа в системе могут генерировать показатель нагрузки (например, бит занятости) или относительный предоставляемый канал) и передавать эту информацию в его ассоциированный терминал доступа через нисходящий канал передачи данных. Таким образом, точка 104 доступа может отслеживать нисходящий канал для получения этой информации, или точка доступа 104 может запрашивать эту информацию из ее соответствующих терминалов доступа, которые могут принимать эту информацию через нисходящий канал передачи данных.In addition, access points in the system can generate a load metric (for example, a busy bit) or a relative channel provided) and transmit this information to its associated access terminal via a downlink data channel. Thus, the
В некоторых случаях информация о взаимных помехах может быть принята из сетевого узла 114 или из точки 106 доступа через канал обратной связи. Например, точка 106 доступа может передавать отчеты, содержащие информацию о ее загрузке (например, взаимном уровне помех), в сетевой узел 114. Сетевой узел 114 может затем распределять эту информацию в другие точки доступа в системе. Кроме того, точки доступа в системе могут связываться непосредственно друг с другом для информирования друг друга о своих соответствующих условиях загрузки.In some cases, interference information may be received from the
Как представлено блоком 1504, показатель мощности передачи для терминала 110 доступа определяют на основании описанных выше параметров. Этот показатель может относиться, например, к максимальному разрешенному значению мощности, мгновенному значению мощности или показателю, представляющему отношение трафика к пилотным последовательностям (T2P).As represented by
В некоторых аспектах максимальное значение мощности передачи для терминала 110 доступа определено путем оценки взаимных помех, которые может индуцировать терминал 110 доступа в точке 106 доступа. Такую взаимную помеху можно оценивать, например, на основе информации о потери в канале, получаемой из отчетов об измерениях, принимаемых из терминала 110 доступа. Например, терминал 110 доступа может определять потери в канале до точки 106 доступа в потери в канале до точки 104 доступа. На основе этой информации точка 104 доступа может определять мощность, индуцированную (например, величину взаимных помех) в точке 106 доступа, на основе силы сигнала для сигналов, которые точка 104 доступа принимает из терминала 110 доступа. Точка 104 доступа может, таким образом, определять максимально разрешенную мощность передачи для терминала 110 доступа на основе описанных выше результатов измерений (например, максимальная мощность передачи может быть уменьшена на определенную величину).In some aspects, the maximum transmit power for
В некоторых аспектах значение мгновенной мощности может быть сгенерировано для управления текущей мощностью передачи терминала доступа. Например, в случае, когда количество индуцированных взаимных помех больше чем или равно пороговому значению, терминал 110 доступа может получить инструкцию уменьшить свою мощность передачи (например, на определенную величину или на указанную величину).In some aspects, an instantaneous power value may be generated to control the current transmit power of the access terminal. For example, in the case where the number of induced interference is greater than or equal to the threshold value, the
В некоторых случаях, операция управления мощностью может быть основана на одном или более параметрах. Например, если точка 104 доступа принимает бит занятости из точки 106 доступа, точка 104 доступа может использовать информацию из отчетов об измерениях для определения, вызваны ли помехи в точке 106 доступа терминалом 110 доступа.In some cases, the power control operation may be based on one or more parameters. For example, if the
Рассмотрим теперь фиг.16, в некоторых вариантах выполнения показатель мощности передачи, сгенерированный в блоке 1504, может относиться к максимальному отношению T2P в восходящем канале передачи данных. Кроме того, в некоторых случаях такое значение может быть определено как функция SINR в нисходящем канале передачи данных. Форма колебаний 1602 на фиг.16 иллюстрирует один пример функции, которая соотносит SINR нисходящего канала передачи данных с T2P в восходящем канале передачи данных. В этом случае, применение T2P в восходящем канале передачи данных может уменьшаться по мере уменьшения SINR в нисходящем канале передачи данных. Таким образом, взаимные помехи в восходящем канале передачи данных из терминалов доступа в несбалансированном канале могут быть ограничены. Как показано в примере на фиг.16, минимальное значение 1604 T2P может быть определено для терминала доступа так, чтобы было гарантировано определенное количество минимального веса. Кроме того, может быть определено максимальное значение 1606 T2P. В некоторых аспектах значение T2P восходящего канала передачи данных, выделенного для каждого терминала доступа, может быть ограничено минимальным верхним пределом мощности терминала доступа или функцией, основанной на SINR в нисходящем канале передачи данных (например, как показано на фиг.16). В некоторых вариантах выполнения (например, 3GPP), описанная выше функция может быть обеспечена с помощью планировщика восходящего канала передачи данных точки доступа, который имеет доступ к CQI, передаваемому по каналу обратной связи из терминала доступа.Referring now to FIG. 16, in some embodiments, the transmit power metric generated in
Как снова показано на фиг.15 и представлено в блоке 1506, в некоторых вариантах выполнения может быть разрешено увеличение порогового значения превышения теплового уровня шумов ("RoT", ПТШ) для точки доступа выше обычного значения с целью регулирования нагрузки. Например, в некоторых случаях может быть не установлен какой-либо предел для порога RoT. В некоторых случаях может быть разрешен рост порога RoT до величины, ограниченной только бюджетом восходящего канала передачи данных или уровнем насыщения в точке доступа. Например, верхнее пороговое значение RoT может быть увеличено в точке 104 доступа до заданного значения для обеспечения работы каждого ассоциированного терминала доступа с самым большим уровнем T2P, разрешенным его запасом мощности.As again shown in FIG. 15 and presented in
Обеспечивая возможность такого увеличения порогового значения RoT, точка доступа может управлять своей общей силой принимаемого сигнала. Это может создавать преимущества в ситуациях, когда на точку доступа воздействуют взаимные помехи с высоким уровнем (например, от соседнего терминала доступа). Однако, в отсутствии предельного значения для порога RoT, терминалы доступа в соседних ячейках могут перейти в режим "гонки мощности" для преодоления взаимных помех друг друга. Например, такие терминалы доступа могут переходить в насыщение на их максимальном уровне мощности передачи по восходящему каналу передачи данных (например, 23 дБм) и, в результате, могут создавать существенные помехи в точках макродоступа. Для предотвращения таких условий "гонки", мощность передачи терминала доступа может быть уменьшена в результате увеличения порогового значения RoT. В некоторых случаях, таких условий "гонки" можно избежать в результате использования схемы управления с максимальным отношением T2P по восходящему каналу передачи данных (например, как описано выше со ссылкой на фиг.16).By enabling such an increase in the threshold value of RoT, the access point can control its total received signal strength. This can be advantageous in situations where the access point is subject to high interference (for example, from a neighboring access terminal). However, in the absence of a limit value for the RoT threshold, access terminals in neighboring cells can go into a "power race" to overcome mutual interference between each other. For example, such access terminals can become saturated at their maximum transmit power level on the uplink data channel (for example, 23 dBm) and, as a result, can cause significant interference at macro access points. To prevent such “race” conditions, the transmit power of the access terminal can be reduced by increasing the threshold value of RoT. In some cases, such “race” conditions can be avoided by using a control circuit with a maximum T2P ratio on the uplink data channel (for example, as described above with reference to FIG. 16).
Как представлено блоком 1508, показатель значения мощности передачи (например, максимальной мощности, мгновенной мощности или T2P), рассчитанных с использованием одной или более технологий, описанных выше, может быть передан в терминал 110 доступа для управления мощностью передачи терминала 110 доступа. Такое сообщение может быть передано прямо или опосредованно. В качестве примера в первом случае, можно использовать явную передачу с помощью сигналов, для информирования терминала 110 доступа о новом максимальном значении мощности. В качестве примера последнего случая, точка 104 доступа может регулировать T2P или может передавать показатель нагрузки из точки 106 доступа (возможно, после некоторой модификации) в терминал 110 доступа. Терминал 110 доступа может затем использовать этот параметр для определения максимального значения мощности.As represented by
Рассмотрим теперь фиг.17, в некоторых вариантах выполнения коэффициент ослабления сигнала можно регулировать для уменьшения взаимных помех. Такой параметр может содержать коэффициент шума или ослабление. Величину такого заполнения или ослабления сигнала можно динамически регулировать на основе силы сигнала, измеряемой другими узлами (например, как описано в данном описании) или, используя определенные сообщения передачи сигналов (например, обозначающих уровни взаимных помех), обмен которыми выполняют между точками доступа. Таким образом, точка 104 доступа может компенсировать взаимные помехи, индуцированные расположенными поблизости терминалами доступа.Referring now to FIG. 17, in some embodiments, the attenuation coefficient of the signal can be adjusted to reduce mutual interference. Such a parameter may include noise figure or attenuation. The magnitude of such filling or attenuation of the signal can be dynamically adjusted based on the strength of the signal measured by other nodes (for example, as described in this description) or using certain signaling messages (for example, indicating levels of mutual interference) exchanged between access points. Thus, the
Как представлено блоком 1702, терминал 104 доступа может принимать сигналы, относящиеся к управлению мощностью (например, как описано выше). Как представлено блоками 1704 и 1706, точка 104 доступа может определять, превышает ли, или нет пороговый уровень, или равна ему сила принятого сигнала из ассоциированного терминала доступа или не ассоциированного терминала доступа. В противном случае, точка 104 доступа продолжает отслеживать сигналы, относящиеся к управлению мощностью. Если так, точка 104 доступа регулирует коэффициент ослабления в блоках 1708. Например, в ответ на увеличение силы принимаемого сигнала, точка 104 доступа может увеличивать свой коэффициент шума или ослабление в приемнике. Как представлено блоком 1710, точка 104 доступа может передавать сообщение управления мощностью передачи в свои соответствующие терминалы доступа для увеличения их мощности передачи по восходящему каналу передачи данных, как результат увеличения коэффициента ослабления (например, для преодоления коэффициента шума или ослабления в восходящем канале передачи данных в точке 104 доступа).As represented by
В некоторых аспектах точка 104 доступа может различать сигналы, принимаемые из неассоциированных терминалов доступа, от сигналов, принимаемых из ассоциированных терминалов доступа. Таким образом, терминал 104 доступа может выполнять соответствующее регулирование мощности передачи своих ассоциированных терминалов доступа. Например, различные регулировки могут быть выполнены в ответ на сигналы из ассоциированных, в отличие от не ассоциированных, терминалов доступа (например, в зависимости от того, имеется ли только один ассоциированный терминал доступа).In some aspects,
В другом варианте выполнения может быть выполнена компенсация взаимных помех с помощью точки доступа для терминалов доступа, которые не обслуживаются этой точкой доступа, или для терминалов доступа, которые не входят в активный набор точек доступа. С этой целью коды скремблирования (в WCDMA (ШМДКР, широкополосный многостанционный доступ с кодовым разделением каналов) или в HSPA) или длинные коды пользователя (в 1xEV-DO), могут совместно использоваться между всеми точками доступа (которые принимают коды скремблирования из всех терминалов доступа). Затем точка доступа декодирует соответствующую информацию терминала доступа и удаляет взаимные помехи, ассоциированные с соответствующими терминалами доступа.In another embodiment, interference cancellation can be performed using an access point for access terminals that are not served by that access point, or for access terminals that are not in the active set of access points. To this end, scrambling codes (in WCDMA (WCDMA, code division multiple access) or in HSPA) or long user codes (in 1xEV-DO) can be shared between all access points (which receive scrambling codes from all access terminals ) The access point then decodes the corresponding information of the access terminal and removes the interference associated with the respective access terminals.
В некоторых аспектах представленное описание может использоваться в сети, которая включает в себя охват в макрошкале (например, в сотовой сети, охватывающей большую площадь, такой как сеть 3G, типично называемой сетью с макроячейками), и меньшой зоной охвата (например, в среде сети, развернутой в отдельном жилом помещении или в здании). По мере того, как терминал доступа ("AT" (ТД)) движется через такую сеть, терминал доступа может обслуживаться в определенных местах положения узлами доступа ("AN", (УД)), которые обеспечивают макрообслуживание, в то время как терминал доступа может обслуживаться в других местах узлами доступа, которые обеспечивают обслуживание в меньшем масштабе. В некоторых аспектах узлы с малой зоной обслуживания можно использовать для обеспечения последовательного наращивания пропускной способности в зоне обслуживания, находящейся внутри здания, и предоставления различных услуг (например, для более надежного обслуживания пользователя). В приведенном описании узел, который обеспечивает зону обслуживания в относительно большой области, может называться макроузлом. Узел, который обеспечивает обслуживание в относительно малой области (например, внутри жилого помещения), может называться фемтоузлом. Узел, который обеспечивает обслуживание в области, которая меньше чем макрообласть и больше чем фемтообласть, может называться пикоузлом (например, обеспечивающий обслуживание в пределах коммерческого здания).In some aspects, the disclosed description may be used in a network that includes macroscale coverage (e.g., a cellular network covering a large area, such as a 3G network, typically referred to as a macrocell network), and a smaller coverage area (e.g., in a network environment deployed in a separate living room or building). As the access terminal ("AT" (AT)) moves through such a network, the access terminal can be serviced at certain locations by the access nodes ("AN", (UD)) that provide macro-service while the access terminal can be serviced elsewhere by access nodes that provide services on a smaller scale. In some aspects, sites with a small service area can be used to provide sequential increase in throughput in the service area located inside the building and provide various services (for example, for more reliable user service). In the above description, a node that provides a service area in a relatively large area may be called a macro node. A node that provides services in a relatively small area (for example, inside a living room) may be called a femto node. A node that provides services in an area that is smaller than the macroregion and larger than the femtoregion may be called a pico node (for example, providing services within a commercial building).
Ячейка, ассоциированная с макроузлом, фемтоузлом или пикоузлом, может называться макроячейкой, фемтоячейкой или пикоячейкой, соответственно. В некоторых вариантах выполнения каждая ячейка может дополнительно быть ассоциирована с (например, разделена на) одним или более секторами.A cell associated with a macro node, a femto node, or a pico node may be called a macro cell, a femto cell, or a pico cell, respectively. In some embodiments, each cell may further be associated with (e.g., divided into) one or more sectors.
В различных вариантах выполнения, другая терминология может использоваться, для обозначения макроузла, фемтоузла или пикоузла. Например, макроузел может быть выполнен так или может быть назван как узел доступа, базовая станция, точка доступа, eNodeB, макроячейка и так далее. Кроме того, фемтоузел может быть выполнен или называться как домашний узел B, домашний eNodeB, базовая станция точки доступа, фемтоячейка и так далее.In various embodiments, other terminology may be used to refer to a macro node, femto node, or pico node. For example, a macro node can be made this way or can be named as an access node, base station, access point, eNodeB, macro cell, and so on. In addition, the femto node can be made or referred to as home node B, home eNodeB, access point base station, femtocell, and so on.
На фиг.18 иллюстрируется система 1800 беспроводной передачи данных, выполненная с возможностью поддержки множества пользователей, в которой могут быть воплощены приведенные в данном описании описания. Система 1800 обеспечивает передачу данных для множества ячеек 1802, таких как, например, макроячейки 1802A-1802G, причем каждая ячейка обслуживается соответствующим узлом 1804 доступа (например, узлами 1804A-1804G доступа). Как показано на фиг.18, терминалы 1806 доступа (например, терминалы 1806A-1806L доступа) могут распределяться в разные места в системе с течением времени. Каждый терминал 1806 доступа может связываться с одним или более узлами 1804 доступа по прямому каналу передачи данных ("FL" (ПК)) и/или обратному каналу передачи данных ("RL" (ОК)) в данный момент времени, в зависимости от того, является ли терминал 1806 доступа активным и находится, например, в режиме мягкой передачи. Система 1800 беспроводной передачи данных может обеспечивать услуги в большом географическом регионе. Например, макроячейки 1802A-1802G могут охватывать несколько кварталов, расположенных поблизости.FIG. 18 illustrates a wireless
На фиг.19 иллюстрируется примерная система 1900 передачи данных, где один или более фемтоузлов развернуты в сетевой среде. В частности, система 1900 включает в себя множество фемтоузлов 1910 (например, фемтоузлы 1910A и 1910B), установленных в сетевой среде с относительно малыми масштабами (например, в одном или более жилых помещений 1930 пользователя). Каждый фемтоузел 1910 может быть соединен с глобальной сетью 1940 (например, Интернет) и основной сетью 1950 оператора мобильной связи через DSL маршрутизатор, кабельный модем, беспроводный канал передачи данных или другое средство обеспечения связи (не показано). Как будет описано ниже, каждый фемтоузел 1910 может быть выполнен с возможностью обслуживания ассоциированных терминалов 1920 доступа (например, терминала 1920A доступа) и, в случае необходимости, терминалов 1920, предназначенных для доступа чужих устройств (например, терминала 1920B доступа). Другими словами, доступ к фемтоузлам 1910 может быть ограничен таким образом, что данный терминал 1920 доступа может обслуживаться набором назначенным (например, домашним) фемтоузлом (узлами) 1910, но может не обслуживаться никаким из не назначенных фемтоузлов 1910 (например, соседним фемтоузлом 1910).FIG. 19 illustrates an exemplary
На фиг.20 иллюстрируется пример карты 2000 зоны обслуживания, где определены несколько областей 2002 отслеживания (или областей маршрутизации или областей определения местоположения), каждая из которых включает в себя несколько макрообластей 2004 зоны обслуживания. Здесь области зоны обслуживания, ассоциированные с областями 2002A, 2002B и 2002C отслеживания, разграничены широкими линиями, и области 2004 макрообслуживания представлены шестиугольниками. Области 2002 отслеживания также включают в себя фемтообласти 2006 обслуживания. В этом примере каждая из фемтообластей 2006 обслуживания (например, фемтообласть 2006C обслуживания) представлена внутри макрообласти 2004 обслуживания (например, макрообласти 2004B обслуживания). Следует однако понимать, что фемтообласть 2006 обслуживания может не находиться полностью внутри макрообласти 2004 обслуживания. На практике, большое количество фемтообластей 2006 обслуживания может быть определено с заданной областью 2002 отслеживания или макрообластью 2004 обслуживания. Кроме того, одна или более пико областей обслуживания (не показаны) могут быть определены в пределах заданной области 2002 отслеживания или макрообласти 2004 обслуживания.20 illustrates an example of a
Рассмотрим снова фиг.19, на которой владелец фемтоузла 1910 может подписаться на мобильную услугу, такую как, например, мобильная услуга 3G, предлагаемую через основную сеть 1950 мобильного оператора. Кроме того, терминал 1920 доступа может быть выполнен с возможностью работы, как в макросредах, так и в межсетевых средах с меньшими масштабами (например, внутри жилого помещения). Другими словами, в зависимости от текущего местоположения терминала 1920 доступа, терминал 1920 доступа может обслуживаться узлом 1960 доступа мобильной сети 1950 макроячейки или любым одним из набора фемтоузлов 1910 (например, фемтоузлами 1910A и 1910B, которые находятся внутри соответствующего жилого помещения 1930 пользователя). Например, когда абонент находится вне пределов своего дома, он обслуживается стандартным узлом макродоступа (например, узлом 1960) и, когда абонент находится дома, он обслуживается фемтоузлом (например, узлом 1910A). Здесь следует понимать, что фемтоузел 1920 может обладать обратной совместимостью с существующими терминалами 1920 доступа.Consider again FIG. 19, in which the owner of the femto node 1910 can subscribe to a mobile service, such as, for example, a 3G mobile service offered through a mobile operator’s core network 1950. In addition, the access terminal 1920 can be configured to operate both in macro environments and in smaller internetwork environments (e.g., inside a living room). In other words, depending on the current location of the access terminal 1920, the access terminal 1920 may be served by the access node 1960 of the mobile network 1950 of the macrocell or any one of a set of femto nodes 1910 (for example, femto nodes 1910A and 1910B that are located inside the corresponding
Фемтоузел 1910 может быть развернут на одной частоте или, в качестве альтернативы, на множестве частот. В зависимости от конкретной конфигурации отдельная частота или одна или более из множества частот могут накладываться с одной или более частотами, используемыми макроузлом (например, узлом 1960).Femtocell 1910 can be deployed on a single frequency or, alternatively, on multiple frequencies. Depending on the particular configuration, a single frequency or one or more of a plurality of frequencies may overlap with one or more frequencies used by a macro node (e.g., node 1960).
В некоторых аспектах терминал 1920 доступа может быть выполнен с возможностью соединения с предпочтительным фемтоузлом (например, домашним фемтоузлом терминала 1920 доступа) всякий раз, когда такое соединение возможно. Например, всякий раз, когда терминал 1920 доступа находится в пределах жилого помещения 1930 пользователя, может быть желательным, чтобы терминал 1920 доступа связывался только с домашним фемтоузлом 1910.In some aspects, access terminal 1920 may be configured to connect to a preferred femto node (eg, a home femto node of access terminal 1920) whenever such a connection is possible. For example, whenever the access terminal 1920 is within the user's
В некоторых аспектах, если терминал 1920 доступа работает в пределах сотовой макросети 1950, но не находится постоянно в своей наиболее предпочтительной сети (например, как определено в списке предпочтительного роуминга), терминал, 1920 доступа может продолжать поиск наиболее предпочтительной сети (например, предпочтительного фемтоузла 1910), используя повторный выбор лучшей системы ("BSR", ПЛС), который может включать в себя периодическое сканирование доступных систем, для определения, доступны ли в данный момент времени лучшие системы, с последующими попытками ассоциироваться с такими предпочтительными системами. В процессе получения терминал 1920 доступа может ограничить свой поиск определенным диапазоном и каналом. Например, поиск наиболее предпочтительной системы может повторяться периодически. После обнаружения предпочтительного фемтоузла 1910, терминал 1920 доступа выбирает фемтоузел 1910 для работы в пределах его зоны обслуживания.In some aspects, if the access terminal 1920 operates within the 1950 cellular macro network but is not constantly located in its most preferred network (e.g., as defined in the preferred roaming list), access terminal 1920 may continue to search for the most preferred network (e.g., the preferred femto node 1910) using re-selection of the best system ("BSR", PLC), which may include periodic scanning of available systems, to determine whether the best systems are currently available, followed by attempts to associate with such preferred systems. In the process of obtaining, the access terminal 1920 may limit its search to a specific range and channel. For example, a search for the most preferred system may be repeated periodically. After discovering the preferred femto node 1910, the access terminal 1920 selects the femto node 1910 to operate within its service area.
Фемтоузел может быть ограничен в некоторых аспектах. Например, данный фемтоузел может обеспечивать только определенные услуги для определенных терминалов доступа. При разворачивании с, так называемой, ограниченной (или закрытой) ассоциацией, данный терминал доступа может обслуживаться только мобильной сетью с макроузлом и определенным набором фемтоузлов (например, фемтоузлами 1910, которые постоянно находятся в пределах соответствующих жилых помещений 1930 пользователя). В некоторых вариантах выполнения узел может быть ограничен так, что он не обеспечивает для, по меньшей мере, для одного узла, по меньшей мере одно из: передачи сигналов, доступа к данным, регистрации, пейджинг или предоставления услуги.Femtocell may be limited in some aspects. For example, a given femto node can provide only certain services for certain access terminals. When deployed with a so-called limited (or closed) association, this access terminal can only be served by a mobile network with a macro node and a specific set of femto nodes (for example, femto nodes 1910, which are constantly located within the corresponding residential premises of the user 1930). In some embodiments, a node may be limited so that it does not provide for at least one node at least one of: signaling, data access, registration, paging, or service provision.
В некоторых аспектах ограниченный фемтоузел (который также может называться домашним узлом B закрытой группе абонентов) представляет собой такой узел, который обеспечивает услугу для ограниченного, заранее установленного набора терминалов доступа. Такой набор может быть временно или постоянно расширен в соответствии с необходимостью. В некоторых аспектах закрытая группа абонентов ("CSG" (ЗГА)) может быть определена, как набор узлов доступа (например, фемтоузлов), которые совместно используют общий список управления доступом терминалов доступа. Канал, в котором работают все фемтоузлы (или во всех ограниченных фемтоузлах) в регионе, может называться фемтоканалом.In some aspects, a restricted femto node (which may also be referred to as a home node B to a closed subscriber group) is one that provides a service for a limited, predetermined set of access terminals. Such a set may be temporarily or permanently expanded as necessary. In some aspects, a closed subscriber group (“CSG” (CGA)) may be defined as a set of access nodes (eg, femto nodes) that share a common access control list of access terminals. A channel in which all femto nodes work (or in all restricted femto nodes) in a region can be called a femto channel.
Различные взаимосвязи могут, таким образом, существовать между данным фемтоузлом и данным терминалом доступа. Например, с точки перспективы терминала доступа, фемтоузел без ограниченной ассоциации может называться открытым фемтоузлом. Фемтоузел, который некоторым образом ограничен (например, ограничен для ассоциации и/или регистрации), может называться фемтоузлом с ограничением. Домашним фемтоузлом может называться фемтоузел, через который авторизован терминала доступа для доступа и работы. Гостевым фемтоузлом может называться фемтоузел, по которому терминал доступа временно авторизуют для доступа или работы. Чужим фемтоузлом может называться фемтоузел, по которому терминал доступа не авторизуют для доступа или работы, за исключением, возможно, чрезвычайных ситуаций (например, вызовов 911).Various relationships may thus exist between a given femto node and a given access terminal. For example, from the perspective of an access terminal, a femto node without limited association may be called an open femto node. A femto node that is in some way restricted (for example, restricted for association and / or registration) may be called a restricted femto node. A femtocell can be called a femtocell through which an access terminal is authorized for access and operation. A femtocell can be called a femtocell, by which the access terminal is temporarily authorized for access or work. A femto node may be called a femto node where the access terminal is not authorized to access or work, except, possibly, in emergency situations (for example, 911 calls).
С точки перспективы фемтоузла с ограничением, домашним терминалом доступа может называться терминал доступа, который авторизован для доступа к фемтоузлу с ограничением. Гостевым терминалом доступа может называться терминал доступа, который временно обращается к фемтоузлу с ограничением. Чужим терминалом доступа может называться терминал доступа, который не имеет разрешения на доступ к фемтоузлу с ограничением, за исключением, возможно, чрезвычайных ситуаций, например, таких как вызовы 911 (например, терминал доступа, который не имеет полномочий или разрешения на регистрацию с фемтоузлом с ограничением).From the perspective of a restricted femto node, an access terminal that is authorized to access a restricted femto node can be called a home access terminal. A guest access terminal may be an access terminal that temporarily accesses a femto node with a restriction. An alien access terminal may be an access terminal that does not have permission to access a femto node with a restriction, except, possibly, in emergency situations, such as 911 calls (for example, an access terminal that does not have authority or permission to register with a femto node with restriction).
Для удобства, приведенное в данном описании раскрытие описывает различные функции в контексте фемтоузла. Следует, однако, понимать, что пикоузел может обеспечивать такие же или аналогичные функции для большей области охвата. Например, пикоузел может быть ограничен, домашний пикоузел может быть определен для заданного терминала доступа и так далее.For convenience, the disclosure described herein describes various functions in the context of a femto node. However, it should be understood that the pico node may provide the same or similar functions for a larger scope. For example, a pico node may be limited, a home pico node may be defined for a given access terminal, and so on.
Беспроводная система передачи данных с множественным доступом может одновременно поддерживать передачу данных для множества терминалов беспроводного доступа. Как отмечено выше, каждый терминал может связываться с одной или болеее базовыми станциями путем передачи по прямому и обратному каналам передачи данных. Прямой канал передачи данных (или нисходящий канал передачи данных) относится к каналу передачи данных от базовых станций в терминалы, и обратный канал передачи данных (или восходящий канал передачи данных) относится к каналу передачи данных от терминалов в базовые станции. Такой канал передачи данных может быть установлен через систему "один вход - один выход", "множество входов - множество выходов" ("MIMO" (МВМВ)), или некоторые другие типы систем.A multiple access wireless data system can simultaneously support data transmission for multiple wireless access terminals. As noted above, each terminal can communicate with one or more base stations by transmitting on the forward and reverse data channels. A forward data channel (or a downlink data channel) refers to a data channel from the base stations to the terminals, and a reverse data channel (or an uplink data channel) refers to a data channel from the terminals to the base stations. Such a data transmission channel can be installed through a system of "one input - one output", "multiple inputs - multiple outputs" ("MIMO" (MIMO)), or some other types of systems.
В системе MIMO используется множество (NT) передающих антенн и множество (NR) приемных антенн для передачи данных. Канал MIMO, сформированный NT передающими и NR приемными антеннами, может быть разложен на NS независимых каналов, которые также называются пространственными каналами, где NS≤min{NT, NR}. Каждый из NS независимых каналов соответствует одному измерению. Система MIMO может обеспечивать улучшенные рабочие характеристики (например, более высокую пропускную способность и/или большую надежность), если используются дополнительные размерности, формируемые множеством передающих и приемных антенн.The MIMO system uses multiple (N T ) transmit antennas and multiple (N R ) receive antennas for data transmission. A MIMO channel formed by N T transmit and N R receive antennas can be decomposed into N S independent channels, which are also called spatial channels, where N S ≤min {N T , N R }. Each of the N S independent channels corresponds to one dimension. A MIMO system can provide improved performance (for example, higher throughput and / or greater reliability) if additional dimensions formed by multiple transmit and receive antennas are used.
Система MIMO может поддерживать дуплексную передачу данных с разделением по времени ("TDD" (ДРВ)) и дуплексную передачу данных с частотным разделением ("FDD"(ДЧВ)). В системе TDD передача по прямому и обратному каналам передачи данных находятся в одной и той же частотной области таким образом, что принцип взаимности обеспечивает возможность оценки прямого канала передачи данных по обратному каналу передачи данных. Это позволяет в точке доступа выделять коэффициент усиления за счет формирования луча передачи, когда множество антенн доступны в точке доступа.A MIMO system can support time division duplex (“TDD”) and frequency division duplex (“FDD”) data transmission. In a TDD system, transmission on the forward and reverse data channels is in the same frequency domain so that the reciprocity principle provides an opportunity to evaluate the forward data channel on the reverse data channel. This allows the gain point to be extracted at the access point by generating a transmission beam when multiple antennas are available at the access point.
Приведенные в данном описании описания могут быть воплощены в виде узла (например, устройства), в котором используются различные компоненты для обмена данными, по меньшей мере, с одним или более другим узлом. На фиг.21 представлено несколько примерных компонентов, которые можно использовать для обеспечения обмена данными между узлами. В частности, на фиг.21 иллюстрируется беспроводное устройство 2110 (например, точка доступа) и беспроводное устройство 2150 (например, терминал доступа) системы 2100 MIMO. В устройстве 2110, данные трафика для множества потоков данных предоставляют из источника 2112 данных в процессор 2114 передачи ("TX") данных.The descriptions given in this description can be embodied in the form of a node (for example, a device) that uses various components to exchange data with at least one or more other nodes. On Fig presents several exemplary components that can be used to facilitate the exchange of data between nodes. In particular, FIG. 21 illustrates a wireless device 2110 (e.g., an access point) and a wireless device 2150 (e.g., an access terminal) of a
В некоторых аспектах каждый поток данных передают через соответствующую передающую антенну. Процессор 2114 данных передачи форматирует, кодирует и выполняет чередование данных трафика для каждого потока данных на основе определенной схемы кодирования, выбранной для этого потока данных, для предоставления кодированных данных.In some aspects, each data stream is transmitted through a respective transmit antenna. Transmit
Кодированные данные для каждого потока данных могут быть мультиплексированы с пилотными данными, используя технологии OFDM (МОЧР, мультиплексирование с ортогональным частотным разделением сигналов). Пилотные данные типично представляют собой известную кодовую комбинацию данных, которую обрабатывают известным образом и, которая может использоваться в системе приемника для оценки отклика канала. Мультиплексированные пилотные и кодированные данные для каждого потока данных затем модулируют (то есть, выполняют отображение символа) на основе определенной схемы модуляции (например, BPSK (ДФМн, двоичная фазовая манипуляция), QSPK (КФМн, квадратурная фазовая манипуляция), М-PSK (М-ФМн, М-значная фазовая манипуляция) или М-QAM (М-КАМ, М-значная квадратурная амплитудная модуляция)), выбранной для этого потока данных, для обеспечения символов модуляции. Скорость передачи данных, кодирование и модуляция для каждого потока данных могут быть определены с помощью инструкций, выполненных процессором 2130. Запоминающее устройство 2132 данных может содержать программный код, данные и другую информацию, используемую процессором 2130, или другими компонентами устройства 2110.The coded data for each data stream can be multiplexed with pilot data using OFDM technologies (OFDM, orthogonal frequency division multiplexing). The pilot data typically represents a known code combination of data that is processed in a known manner and that can be used in the receiver system to estimate channel response. The multiplexed pilot and encoded data for each data stream is then modulated (i.e., symbol mapping) based on a specific modulation scheme (e.g., BPSK (DPSK, binary phase shift keying), QSPK (QPSK, quadrature phase shift keying), M-PSK (M -PSK, M-digit phase shift keying) or M-QAM (M-QAM, M-digit quadrature amplitude modulation)) selected for this data stream to provide modulation symbols. The data rate, coding and modulation for each data stream can be determined using the instructions executed by the
Символы модуляции для всех потоков данных затем предоставляют в процессор 2120 TX MIMO, который может дополнительно обрабатывать символы модуляции (например, для OFDM). Процессор 2120 TX MIMO затем предоставляет NT потоков символов модуляции в NT приемопередатчиков ("XCVR") 2122A-2122T. В некоторых аспектах процессор 2120 TX MIMO применяет веса для формирования луча к символам потоков данных и к антенне, через которую передают эти символы.Modulation symbols for all data streams are then provided to a
Каждый приемопередатчик 2122 принимает и обрабатывает соответствующий поток символов для обеспечения одного или более аналоговых сигналов, и дополнительно обрабатывает (например, усиливает, фильтрует и преобразует с повышением частоты) аналоговые сигналы, для получения модулированного сигнала, пригодного для передачи через канал MIMO. Модулированные сигналы из приемопередатчиков 2122A-2122T затем передают через NT антенн 2124A-2124T, соответственно.Each transceiver 2122 receives and processes a corresponding symbol stream to provide one or more analog signals, and further processes (e.g., amplifies, filters, and upconverts) the analog signals to obtain a modulated signal suitable for transmission through the MIMO channel. The modulated signals from
В устройстве 2150 передаваемые модулированные сигналы принимают с помощью NR антенн 2152A-2152R, и принятые сигналы из каждой антенны 2152 предоставляют в соответствующий приемопередатчик ("XCVR") 2154A-2154R. Каждый приемопередатчик 2154 обрабатывает (например, фильтрует, усиливает и преобразует с понижением частоты), соответствующий принятый сигнал, преобразует в цифровую форму обработанный сигнал для получения выборок, и дополнительно обрабатывает эти выборки для получения соответствующего "принятого" потока символов.At
Процессор 2160 данных приема ("RX") затем принимает и обрабатывает NR принятых потоков символов из приемопередатчиков 2154 на основе определенной технологии обработки приемника, для получения NR "детектированных" потоков символов. Процессор 2160 данных RX затем демодулирует, выполняет обратное перемежение и декодирует каждый детектированный поток символов, для восстановления данных трафика для потока данных. Обработка, выполняемая процессором 2160 данных RX, является взаимодополняющей для обработки, выполняемой процессором 2120 TX MIMO и процессором 2114 данных TX в устройстве 2110.A receive (RX)
Процессор 2170 периодически определяет, какую матрицу предварительного кодирования следует использовать (описана ниже). Процессор 2170 формулирует сообщение, передаваемое по обратному каналу передачи данных, содержащее участок индекса матрицы, и участок значения ранга. Запоминающее устройство 2172 данных может сохранять программный код, данные и другую информацию, используемую процессором 2170, или другими компонентами устройства 2150.The
Сообщение, передаваемое по обратному каналу передачи данных, может содержать различные типы информации, относящиеся к каналу передачи данных, и/или принимаемому потоку данных. Сообщение, передаваемое по обратному каналу передачи данных, затем обрабатывают с помощью процессора 2138 данных TX, который также принимает данные трафика для множества потоков данных из источника 2136 данных, модулированные модулятором 2180, обработанные с помощью приемопередатчиков 2154A-2154R, и переданные обратно в устройство 2110.A message transmitted on the reverse data channel may contain various types of information related to the data channel and / or the received data stream. The message transmitted on the reverse data channel is then processed using a
В устройстве 2110 модулированные сигналы из устройства 2150 принимают с помощью антенн 2124, обрабатывают с помощью приемопередатчиков 2122, демодулируют с помощью демодулятора ("DEMOD") 2140, и обрабатывают с помощью процессора 2142 данных приема для выделения сообщения обратного канала передачи данных, переданного устройством 2150. Процессор 2130 затем определяет, какую матрицу предварительного кодирования следует использовать для определения весов формирования луча и затем обрабатывает выделенное сообщение.At
На фиг.21 также показано, что компоненты передачи данных могут включать в себя один или более компонентов, которые выполняют операции управления взаимными помехами, как описано в данном описании. Например, компонент 2190 управления взаимными помехами ("INTER") может взаимодействовать с процессором 2130 и/или другими компонентами устройства 2110, для передачи/приема сигналов в/из другого устройства (например, устройства 2150), как описано в данном описании. Аналогично, компонент 2192 управления взаимными помехами может взаимодействовать с процессором 2170 и/или другими компонентами устройства 2150, для передачи/приема сигналов в/из другого устройства (например, устройства 2110). Следует понимать, что для каждого устройства 2110 и 2150 функции двух или более из описанных выше компонентов могут быть предусмотрены в одном компоненте. Например, один компонент обработки может предоставлять функцию компонента 2190 управления взаимными помехами и процессора 2130, и один компонент обработки может предоставлять функцию компонента 2192 управления взаимными помехами и процессора 2170.FIG. 21 also illustrates that data transmission components may include one or more components that perform mutual interference control operations, as described herein. For example, a mutual interference control (“INTER”)
Приведенное описание может быть воплощено в различных типах систем передачи данных и/или компонентах системы. В некоторых аспектах приведенное описание можно использовать в системе с множественным доступом, выполненной с возможностью поддержки передачи данных множеством пользователей, путем совместного использования доступных системных ресурсов (например, путем указания одной или более из полосы пропускания, мощности передачи, кодирования, чередования и так далее). Например, приведенное здесь описание можно применять к любой одной или комбинации из следующих технологий: системы множественного доступа с кодовым разделением каналов ("CDMA" (МДКР)), системы CDMA с множеством несущих ("MCCDMA" (МДКРМН)), широкополосная CDMA ("W-CDMA" (ШМДКР)), высокоскоростной пакетный доступ ("HSPA", "HSPA+" (ВСПД)), системы многостанционного доступа с временным разделением каналов ("TDMA" (МДВР)), системы множественного доступа с частотным разделением каналов ("FDMA" (МДЧР)), системы FDMA с одной несущей ("SC-FDMA" (МДЧР-ОН)), системы множественного доступа с ортогональным частотным разделением ("OFDMA" (МДОЧР)), или к другим из множества технологий многостанционного доступа. Система беспроводной передачи данных, в которой используется приведенное здесь описание, может быть разработана так, что она будет воплощать один или более из таких стандартов, как IS-95, cdma2000, IS-856, W-CDMA, TDSCDMA (МДКР с разделением времени) и других стандартов. Сеть CDMA может воплощать такую радиотехнологию, как универсальный наземный радиодоступ ("UTRA" (УНРД)), cdma2000 или некоторую другую технологию. UTRA включает в себя W-CDMA и низкую частоту следования элементарных сигналов ("LCR" (НЧЭ)). Технология cdma2000 охватывает стандарты IS-2000, IS-95 и IS-856. Сеть TDMA может воплощать такую радиотехнологию, как глобальная система мобильной связи ("GSM" (ГСМ)). Сеть OFDMA может воплощать такую радиотехнологию, как развернутый UTRA ("E-UTRA" (Р-УНРД)), IEEE 802.11, IEEE 802.16, IEEE 802.20, флэш-OFDM® и т.д. UTRA, E-UTRA и GSM представляют собой часть универсальной мобильной системы передачи данных ("UMTS" (УМСП)). Приведенные здесь описания могут быть воплощены в системе Долговременного развития ("LTE" (ДВР)) 3GPP, в ультрамобильной широкополосной системе ("UMB" (УМШ)), и в других типах систем. LTE представляет собой выпуск UMTS, в котором используется E-UTRA. Хотя определенные аспекты изобретения могут быть описаны с использованием терминологии 3GPP, следует понимать, что описания, приведенные здесь, можно применять в технологии 3GPP (Re199, Re15, Re16, Re17), а также в технологии 3GPP2 (1xRTT, 1xEV-DO Re10, RevA, RevB) и в других технологиях.The above description may be embodied in various types of data communication systems and / or system components. In some aspects, the above description can be used in a multiple access system configured to support data transfer by multiple users by sharing available system resources (for example, by specifying one or more of bandwidth, transmit power, encoding, interleaving, and so on) . For example, the description given here can be applied to any one or combination of the following technologies: Code Division Multiple Access (CDMA) (CDMA), Multi-Carrier CDMA (MCCDMA (CDMA)), Broadband CDMA (" W-CDMA "(ШМДКР)), high-speed packet access (" HSPA "," HSPA + "(HSPA)), time division multiple access systems (" TDMA "(TDMA)), frequency division multiple access systems (" FDMA "(FDMA)), single-carrier FDMA systems (" SC-FDMA "(FDMA-OH)), multiple access systems with orthogonal frequency division multiplexing (“OFDMA”), or to other of a plurality of multiple access technologies. A wireless data communication system that uses the description herein can be designed to implement one or more of such standards as IS-95, cdma2000, IS-856, W-CDMA, TDSCDMA (time division multiplexed CDMA) and other standards. A CDMA network may implement a radio technology such as Universal Terrestrial Radio Access ("UTRA" (URDR)), cdma2000, or some other technology. UTRA includes W-CDMA and low chip rate ("LCR"). Cdma2000 technology covers IS-2000, IS-95, and IS-856 standards. A TDMA network may implement such a radio technology as the Global System for Mobile Communications ("GSM" (GSM)). An OFDMA network may implement such radio technology as deployed UTRA ("E-UTRA" (R-URDR)), IEEE 802.11, IEEE 802.16, IEEE 802.20, flash OFDM®, etc. UTRA, E-UTRA and GSM are part of the universal mobile data transmission system ("UMTS" (UMTS)). The descriptions given here can be embodied in the Long Term Evolution (“LTE”) system of 3GPP, in the Ultra Mobile Broadband System (“UMB” (UMB)), and in other types of systems. LTE is the UMTS release that uses E-UTRA. Although certain aspects of the invention can be described using 3GPP terminology, it should be understood that the descriptions given here can be applied in 3GPP technology (Re199, Re15, Re16, Re17), as well as in 3GPP2 technology (1xRTT, 1xEV-DO Re10, RevA , RevB) and other technologies.
Приведенные здесь описания могут быть внедрены (например, воплощены в или выполнены с помощью) в различные устройства (например, узлы). В некоторых аспектах узел (например, беспроводный узел), воплощенный с приведенными здесь описаниями, может содержать точку доступа или терминал доступа.The descriptions provided herein may be incorporated (e.g., embodied in or implemented by) into various devices (e.g., nodes). In some aspects, a node (eg, a wireless node) embodied with the descriptions provided herein may comprise an access point or access terminal.
Например, терминал доступа может содержать, может быть воплощен как, или может быть известен как оборудование пользователя, станция абонента, модуль абонента, мобильная станция, мобильное устройство, мобильный узел, удаленная станция, удаленный терминал, терминал пользователя, агент пользователя, устройство пользователя, или может быть назван с использованием некоторой другой терминологии. В некоторых вариантах выполнения терминал доступа может содержать сотовый телефон, беспроводный телефон, телефон на основе протокола инициирования сеанса ("SIP" (ПИС)), станцию беспроводной местной линии ("WLL" (БМЛ)), карманный персональный компьютер ("PDA" (КПК)), переносное устройство, обладающее возможностями беспроводной передачи данных, или некоторое другое соответствующее устройство обработки, подключенное к беспроводному модему. В соответствии с этим, один или болеее описанных здесь аспектов могут быть внедрены в телефон (например, с сотовый телефон или смартфон), компьютер (например, переносной компьютер), портативное устройство передачи данных, портативное вычислительное устройство (например, карманный персональный компьютер), развлекательное устройство (например, музыкальное устройство, видео устройство, или спутниковый радиоприемник), устройство системы глобальной навигации или любое другое соответствующее устройство, которое выполнено с возможностью обмена данными через беспроводную среду.For example, an access terminal may comprise, may be embodied as, or may be known as a user equipment, a subscriber station, a subscriber module, a mobile station, a mobile device, a mobile node, a remote station, a remote terminal, a user terminal, a user agent, a user device, or may be called using some other terminology. In some embodiments, the access terminal may comprise a cell phone, a cordless telephone, a Session Initiation Protocol (“SIP”) telephone, a wireless local area station (“WLL”), a personal digital assistant (“PDA” ( PDA)), a portable device with wireless data transfer capabilities, or some other appropriate processing device connected to a wireless modem. Accordingly, one or more of the aspects described herein may be embedded in a telephone (e.g., a cell phone or smartphone), a computer (e.g., a laptop), a portable data device, a portable computing device (e.g., a personal digital assistant), an entertainment device (e.g., a music device, video device, or satellite radio), a global navigation system device, or any other suitable device that is configured to exchange on data through a wireless environment.
Точка доступа может содержать, может быть воплощена как, или может быть известна как узел B, eNodeB, контроллер радиосети ("RNC" (КРС)), базовая станция ("BS" (БС)), базовая радиостанция ("RBS" (БРС)), контроллер базовых станций ("BSC" (КБС)), базовая станция приемопередатчика ("BTS" (БСП)), функция приемопередатчика ("TF" (ФП)), радиоприемопередатчик, радиомаршрутизатор, набор базовых услуг ("BSS" (НБУ)), набор расширенной услуги ("ESS" (НРУ)), или может быть названа с использованием некоторой другой аналогичной терминологии.An access point may comprise, may be embodied as, or may be known as a Node B, an eNodeB, a radio network controller ("RNC" (RNC)), a base station ("BS" (BS)), a radio base station ("RBS" (BRS) )), base station controller ("BSC" (BSC)), base station of the transceiver ("BTS" (BSP)), transceiver function ("TF" (FP)), radio transceiver, radio router, set of basic services ("BSS" ( NBU)), an extended service suite ("ESS" (NRU)), or may be named using some other similar terminology.
В некоторых аспектах узел (например, точка доступа) может содержать узел доступа для системы передачи данных. Такой узел доступа может обеспечивать, например, возможность соединения для или с сетью (например, глобальной вычислительной сетью, такой как Интернет или сотовая сеть связи) через проводной или беспроводной канал передачи данных в сеть. В соответствии с этим, узел доступа может обеспечивать для другого узла (например, терминала доступа) возможность доступа к сети или к некоторым другим функциям. Кроме того, следует понимать, что один или оба из узлов могут быть портативными или, в некоторых случаях, относительно непортативными.In some aspects, a node (eg, an access point) may comprise an access node for a data communication system. Such an access node may provide, for example, connectivity to or with a network (for example, a global computer network such as the Internet or a cellular communication network) via a wired or wireless data channel to the network. Accordingly, the access node may provide for another node (eg, access terminal) access to the network or to some other functions. In addition, it should be understood that one or both of the nodes can be portable or, in some cases, relatively non-portable.
Кроме того, следует понимать, что беспроводный узел может быть выполнен с возможностью передачи и/или приема информации, без использования беспроводных технологий (например, через кабельное соединение). Таким образом, приемник и передатчик, как описано в данном описании, могут включать в себя соответствующие компоненты интерфейса передачи данных (например, компоненты электрического или оптического интерфейса) для обмена данными с не беспроводной средой передачи.In addition, it should be understood that the wireless node can be configured to transmit and / or receive information without the use of wireless technology (for example, via cable connection). Thus, the receiver and transmitter, as described herein, may include appropriate data interface components (e.g., electrical or optical interface components) for exchanging data with a non-wireless transmission medium.
Беспроводный узел может выполнять обмен данными через один или более беспроводных каналов передачи данных, которые основаны на соответствующей технологии беспроводной передачи данных или каким-либо другим образом поддерживают ее. Например, в некоторых аспектах беспроводный узел может быть ассоциирован с сетью. В некоторых аспектах сеть может содержать локальную вычислительную сеть или глобальную вычислительную сеть. Беспроводное устройство может поддерживать или использовать каким-либо другим образом одну или более из множества различных технологии беспроводной передачи данных, протоколов или стандартов, таких, как описаны в данном описании (например, CDMA, TDMA, OFDM, OFDMA, WiMAX, Wi-Fi и так далее). Аналогично, беспроводный узел может поддерживать или каким-либо другим образом использовать одну или более из множества соответствующих схем модуляции или мультиплексирования. Беспроводный узел может, таким образом, включать в себя соответствующие компоненты (например, интерфейсы радиоканалов) для установления и передачи данных через один или более беспроводных каналов передачи данных, используя описанные выше или другие технологии беспроводной передачи данных. Например, беспроводный узел может содержать беспроводный приемопередатчик с соответствующими компонентами передатчика и приемника, которые могут включать в себя различные компоненты (например, генераторы сигнала и процессоры сигналов), которые способствуют передаче данных через беспроводную среду.A wireless node may exchange data through one or more wireless data channels that are based on, or in any other way based on, a suitable wireless data technology. For example, in some aspects, a wireless node may be associated with a network. In some aspects, the network may comprise a local area network or a wide area network. A wireless device may support or otherwise use one or more of many different wireless data technologies, protocols, or standards, such as those described herein (e.g., CDMA, TDMA, OFDM, OFDMA, WiMAX, Wi-Fi, and etc). Similarly, a wireless node may support or otherwise use one or more of a plurality of appropriate modulation or multiplexing schemes. A wireless node may thus include appropriate components (eg, radio channel interfaces) for establishing and transmitting data through one or more wireless data channels using the above or other wireless data transmission technologies. For example, a wireless node may comprise a wireless transceiver with corresponding transmitter and receiver components, which may include various components (e.g., signal generators and signal processors) that facilitate data transmission through a wireless medium.
Компоненты, описанные в данном описании, могут быть воплощены различным образом. Как показано на фиг.22-30, устройства 2200, 2300, 2400, 2500, 2600, 2700, 2800, 2900 и 3000 представлены как последовательность взаимосвязанных функциональных блоков. В некоторых аспектах функции этих блоков могут быть воплощены как система обработки данных, включающая в себя один или более компонентов процессора. В некоторых аспектах функции этих блоков могут быть воплощены с использованием, например, по меньшей мере, части одной или более интегральных схем (например, ASIC (СИМС, специализированная интегральная схема)). Как описано в данном описании, интегральная схема может включать в себя процессор, программное средство, другие соответствующие компоненты или некоторую их комбинацию. Функции этих блоков также могут быть воплощены некоторым другим образом, как описано здесь. В некоторых аспектах один или более из блоков, представленных пунктирными линиями на фиг.22-23, являются необязательными.The components described herein may be embodied in various ways. As shown in FIGS. 22-30,
Устройства 2200, 2300, 2400, 2500, 2600, 2700, 2800, 2900 и 3000 могут включать в себя один или более модулей, которые могут выполнять одну или более из функций, описанных выше со ссылкой на различные чертежи. В некоторых аспектах один или более компонентов контроллера 320 взаимных помех или контроллера 322 взаимных помех могут обеспечивать функцию, относящуюся, например, к средству 2202 чередования HARQ, средству 2302 спецификации профиля, средству 2402 смещения фазы, средству 2502 идентификации, средству 2602 спектральной маски, средству 2702 кода расширения, средству 2802 обработки, средству 2902 мощности передачи или средству 3004 коэффициента ослабления. В некоторых аспектах контроллер 326 передачи данных или контроллер 328 передачи данных могут обеспечивать функцию, относящуюся к, например, средству 2204, 2304, 2404, 2504, 2604, 2704 или 2904. В некоторых аспектах контроллер 332 управления временными характеристиками или контроллер 334 управления временными характеристиками могут обеспечивать функции, относящейся, например, к средству 2206, 2506 или 2706 управления временными характеристиками. В некоторых аспектах контроллер 330 передачи данных может обеспечивать функцию, относящуюся, например, к средству 2802 приема. В некоторых аспектах сигнальный процессор 366 может обеспечивать функцию, относящуюся, например, к средству 2804 обработки. В некоторых аспектах приемопередатчик 302 или приемопередатчик 304 могут обеспечивать функцию, относящуюся, например, к средству 3002 определения сигнала.
Следует понимать, что любые ссылки на элемент, представленный в данном описании, используя такое обозначение как "первый", "второй" и т.д., в общем, не ограничивают количество или порядок этих элементов. Скорее эти обозначения могут использоваться в данном описании как удобный способ отличия между двумя или более элементами или экземплярами элемента. Таким образом, ссылка на первый и второй элементы не означает, что только два элемента могут использоваться здесь или, что первый элемент должен предшествовать второму элементу определенным образом. Кроме того, если только не будет указано другое, набор элементов может содержать один или более элементов.It should be understood that any references to an element presented in this description, using such a designation as "first", "second", etc., in general, do not limit the number or order of these elements. Rather, these designations may be used throughout this specification as a convenient way of distinguishing between two or more elements or instances of an element. Thus, reference to the first and second elements does not mean that only two elements can be used here or that the first element must precede the second element in a certain way. In addition, unless otherwise indicated, a set of elements may contain one or more elements.
Для специалистов в данной области техники будет понятно, что информация и сигналы могут быть представлены с использованием любой из множества различных технологий и технических приемов, Например, данные, инструкции, команды, информация, сигналы, биты, символы и элементарные посылки, на которые может быть сделана ссылка в приведенном выше описании, могут быть представлены напряжениями, токами, электромагнитными волнами, магнитными полями или частицами, оптическими полями или частицами, или любой их комбинацией.It will be understood by those skilled in the art that information and signals can be represented using any of a variety of different technologies and techniques, for example, data, instructions, commands, information, signals, bits, symbols and chips that can be reference is made in the above description, can be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
Для специалистов в данной области техники также, кроме того, будет понятно, что любой из различных иллюстративных логических блоков, модулей, процессоров, средств, схем и этапов алгоритма, описанных со ссылкой на аспекты, раскрытые в данном описании, могут быть воплощены как электрические и аппаратные средства (например, используя цифровое воплощение, аналоговое воплощение или комбинации этих двух подходов, которые могут быть разработаны с использованием кодирования источника или некоторой другой технологии), различные формы программ или инструкции, содержащие код разработки (которые могут называться в данном описании, для удобства, "программным средством" или "программным модулем"), или используя комбинации этих двух подходов. Для ясной иллюстрации такой возможности взаимной замены аппаратных и программных средств, различные иллюстративные компоненты, блоки, модули, схемы и этапы были описаны выше, в общем, с представлением их функций. Будут ли такие функции воплощены, как аппаратное или программное средство, зависит от конкретного применения и конструктивных ограничений, накладываемых на всю систему. Специалисты в данной области техники могут воплотить описанные функции различными способами для каждого конкретного варианта применения, но такие решения при конкретном воплощении не следует интерпретировать как отход от объема настоящего изобретения.It will also be understood by those skilled in the art that any of the various illustrative logical blocks, modules, processors, tools, circuits, and algorithm steps described with reference to the aspects disclosed herein may be embodied as electrical and hardware (for example, using a digital embodiment, an analog embodiment, or combinations of the two approaches that can be developed using source coding or some other technology), various forms of software or and instructions containing development code (which may be referred to in this description, for convenience, “software” or “software module”), or using combinations of these two approaches. To clearly illustrate such a possibility of mutual replacement of hardware and software, various illustrative components, blocks, modules, circuits, and steps have been described above, in general, with a presentation of their functions. Whether such functions are implemented, such as hardware or software, depends on the particular application and design constraints imposed on the entire system. Specialists in the art can implement the described functions in various ways for each particular application, but such solutions in a particular embodiment should not be interpreted as a departure from the scope of the present invention.
Различные иллюстративные логические блоки, модули и схемы, описанные со ссылкой на раскрытые в данном описании аспекты, могут быть воплощены в пределах или выполнены с помощью интегральной схемы ("IC" (ИС)), терминала доступа или точки доступа. IC может содержать процессор общего назначения, процессор цифровых сигналов (DSP (ПЦС)), соответствующую специализированную интегральную схему (ASIC), программируемую вентильную матрицу (FPGA (ПВМ)) или другое программируемое логическое устройство, дискретный логический элемент или транзисторную логику, дискретные аппаратные компоненты, электрические компоненты, оптические компоненты, механические компоненты или любую их комбинацию, разработанную для выполнения описанных в данном описании функций, и могут выполнять коды или инструкции, которые находятся внутри микросхем, за пределами микросхем или с использованием обоих подходов. Процессор общего назначения может представлять собой микропроцессор, но в качестве альтернативы, процессор может представлять собой любой обычный процессор, контроллер, микроконтроллер или конечный автомат. Процессор также может быть воплощен как комбинация вычислительных устройств, например, комбинация DSP и микропроцессора, множества микропроцессоров, одного или более микропроцессоров, совместно с ядром DSP, или любая другая такая конфигурация.The various illustrative logical blocks, modules, and circuits described with reference to the aspects disclosed herein may be embodied within or implemented by an integrated circuit (“IC”), access terminal, or access point. An IC may comprise a general purpose processor, a digital signal processor (DSP (DSP)), a corresponding application specific integrated circuit (ASIC), a programmable gate array (FPGA) or another programmable logic device, a discrete logic element or transistor logic, discrete hardware components , electrical components, optical components, mechanical components, or any combination thereof, designed to perform the functions described in this description, and may execute codes or instructions that s are inside the chip outside the chips or using both approaches. A general purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be embodied as a combination of computing devices, for example, a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
Следует понимать, что любой конкретный порядок или иерархия этапов в любом раскрытом процессе представляет собой один из примерных подходов. На основе конструктивных предпочтений, следует понимать, что конкретный порядок или иерархия этапов в процессах могут быть изменены, оставаясь при этом в пределах объема настоящего изобретения. Приложенные пункты формулы изобретения, относящиеся к способу, представляют элементы различных этапов в определенном порядке, и при этом не подразумеваются ограничения каким-либо представленным определенным порядком или иерархией.It should be understood that any particular order or hierarchy of steps in any open process is one of the approximate approaches. Based on the design preferences, it should be understood that the specific order or hierarchy of steps in the processes can be changed, while remaining within the scope of the present invention. The appended claims relating to the method represent elements of the various steps in a specific order, and are not meant to be limited to any particular order or hierarchy presented.
Описанные функции могут быть воплощены в виде аппаратных средств, программных средств, встроенного программного обеспечения или любой их комбинации. При воплощении в виде программных средств функции могут быть сохранены в или переданы через считываемый компьютером носитель информации, как одна или более инструкций или кодов. Считываемые компьютером носители информации включают в себя как компьютерные носители информации, так и среды передачи данных, включающие в себя любую среду, которая способствует передачу компьютерной программы из одного места в другое. Носители информации могут представлять собой любые доступные носители, к которым может обращаться компьютер. В качестве примера, и не для ограничения, такие считываемые компьютером носители информации могут содержать RAM (ОЗУ, оперативное запоминающее устройство), ROM (ПЗУ, постоянное запоминающее устройство), EEPROM (ЭСППЗУ, электрически стираемое программируемое постоянное запоминающее устройство), CD-ROM или другие накопители на оптических дисках, накопители на магнитных дисках или другие магнитные устройства-накопители, или любую другую среду, которую можно использовать для перемещения или сохранения требуемого программного кода в форме инструкций или структур данных, и доступ к которым может быть осуществлен с помощью компьютера. Кроме того, любое соединение правильно называть считываемым компьютером носителем информации. Например, если программное обеспечение передают из вебсайта, сервера или другого удаленного источника, использующего коаксиальный кабель, оптоволоконный кабель, витую пару, цифровую абонентскую линию (DSL), или беспроводные технологии, такие как инфракрасная, радио и микроволновая связь, тогда этот коаксиальный кабель, оптоволоконный кабель, витая пара, DSL или беспроводные технологии, такие как инфракрасная, радио, и микроволновая связь, будут включены в определение носителя информации. Термины disk и disc, используемые в данном описании, включают в себя компакт-диск (CD), лазерный диск, оптический диск, цифровой универсальный диск (DVD), гибкий диск и диск blu-ray, при этом, в то время как disk обычно воспроизводит данные магнитным способом, disc воспроизводит данные оптическим способом с помощью лазера. Комбинации описанных выше средств также должны быть включены в объем считываемых компьютером носителей информации. В общем, следует понимать, что считываемый компьютером носитель информации может быть воплощен в любом соответствующем компьютерном программном продукте.The described functions may be embodied in the form of hardware, software, firmware, or any combination thereof. When implemented as software, the functions may be stored in or transmitted through a computer-readable storage medium as one or more instructions or codes. Computer-readable storage media include both computer storage media and data transmission media including any medium that facilitates transferring a computer program from one place to another. Storage media may be any available media that can be accessed by a computer. By way of example, and not limitation, such computer-readable storage media may include RAM (RAM, random access memory), ROM (ROM, read-only memory), EEPROM (EEPROM, electrically erasable programmable read-only memory), CD-ROM or other optical disk drives, magnetic disk drives or other magnetic storage devices, or any other medium that can be used to move or save the desired program code in the form of instructions or data structures and access to which can be carried out using a computer. In addition, any connection is correctly called a computer readable storage medium. For example, if the software is transferred from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair cable, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave, then this coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave communications will be included in the definition of storage media. The terms disk and disc as used herein include a compact disc (CD), a laser disc, an optical disc, a digital versatile disc (DVD), a floppy disk, and a blu-ray disc, while disk is typically reproduces data magnetically; disc reproduces data optically with a laser. Combinations of the above means should also be included within the scope of computer readable storage media. In general, it should be understood that a computer-readable storage medium may be embodied in any suitable computer program product.
Приведенное выше описание раскрытых аспектов изобретения предусмотрено для обеспечения для любого специалиста в данной области техники возможностью использования настоящего изобретения. Различные модификации этих аспектов будут понятны для специалиста в данной области техники, и общие принципы, определенные в данном описании, могут быть применены в других аспектах, без выхода за пределы объема изобретения. Таким образом, не предполагается, что настоящее изобретение будет ограничено аспектами, представленными в данном описании, но должно соответствовать самому широкому объему, соответствующего раскрытым в данном описании принципам и новым свойствам.The above description of the disclosed aspects of the invention is intended to provide any person skilled in the art with the ability to use the present invention. Various modifications to these aspects will be apparent to those skilled in the art, and the general principles defined herein may be applied in other aspects without departing from the scope of the invention. Thus, it is not intended that the present invention be limited by the aspects presented herein, but should correspond to the broadest possible scope consistent with the principles and new features disclosed herein.
Claims (85)
идентифицируют первой участок временного интервала нисходящего канала передачи данных, который будет использоваться точкой доступа для передачи, и второй участок временного интервала нисходящего канала, который не будет использоваться точкой доступа для передачи, для уменьшения взаимных помех по нисходящему каналу передачи данных, при этом идентификация первого и второго участков содержит идентификацию, по меньшей мере, одного поднабора из множества поднаборов временного интервала нисходящего канала передачи данных таким образом, что использование, по меньшей мере, одного из поднаборов ассоциировано с меньшим уровнем взаимных помех в нисходящем канале передачи данных, чем при использовании, по меньшей мере, одного другого одного из поднаборов временного интервала нисходящего канала передачи данных; и
передают показатель первого и/или второго участка в точку доступа.1. A method for transmitting data, comprising the steps of:
identify the first section of the time interval of the downlink data channel that will be used by the access point for transmission, and the second section of the time interval of the downstream channel that will not be used by the access point for transmission, to reduce mutual interference on the downstream data channel, while the identification of the first and the second section contains the identification of at least one subset of the many subsets of the time interval of the downlink data channel in this way the use of at least one of the subsets is associated with a lower level of interference in the downlink data channel, than when using at least one other one of the subsets timeslot downlink data channel; and
transmit the indicator of the first and / or second section to the access point.
передают показатель, представляющий смещение временных параметров, в точку доступа для синхронизации временных показателей точки доступа и другой точки доступа.5. The method according to claim 1, further comprising the step of determining a time offset used by another access point; and
transmitting an indicator representing the offset of the time parameters to the access point for synchronizing the timing of the access point and another access point.
контроллер взаимных помех, выполненный с возможностью идентификации первого участка временного интервала нисходящего канала передачи данных, который будет использоваться точкой доступа для передачи, и второго участка временного интервала нисходящего канала передачи данных, который не будет использоваться точкой доступа для передачи, для уменьшения взаимных помех по нисходящему каналу передачи данных, при этом идентификация первого и второго участков содержит идентификацию, по меньшей мере, одного поднабора из множества поднаборов временного интервала нисходящего канала передачи данных таким образом, что использование, по меньшей мере, одного поднабора ассоциировано с более низким уровнем взаимных помех по нисходящему каналу передачи данных, чем использование, по меньшей мере, одного другого одного из поднаборов временного интервала нисходящего канала передачи данных; и
контроллер передачи данных, выполненный с возможностью передачи посредством приемопередатчика показателя первого и/или второго участков в точку доступа.6. A device for transmitting data, comprising:
a mutual interference controller configured to identify a first portion of a time interval of a downlink data channel to be used by an access point for transmission, and a second portion of a time interval of a downstream data channel that will not be used by an access point for transmission to reduce mutual interference in a downlink a data transmission channel, wherein the identification of the first and second sections comprises the identification of at least one subset of the plurality of subsets belt interval downlink data channel so that the use of at least one subset is associated with a lower level of interference on the downlink data transmission than the use of at least one other one of the subsets timeslot downlink data channel; and
a data transfer controller, configured to transmit, by means of a transceiver, an indicator of the first and / or second sections to the access point.
контроллер взаимных помех также выполнен с возможностью определения смещения временных параметров, используемых другой точкой доступа; и
передают показатель смещения временных характеристик во вторую точку доступа для синхронизации временных характеристик в точке доступа и в другой точке доступа.10. The device according to claim 6, in which:
the mutual interference controller is also configured to determine the offset of the time parameters used by another access point; and
transmit a time offset indicator to the second access point to synchronize the time characteristics at the access point and at another access point.
средство для идентификации первого участка временного интервала нисходящего канала передачи данных, который будет использоваться точкой доступа для передачи, и второго участка временного интервала нисходящего канала передачи данных, который не будет использоваться точкой доступа для передачи, для уменьшения взаимных помех в нисходящем канале передачи данных, при этом идентификация первого и второго участков содержит идентификацию, по меньшей мере, одного поднабора из множества поднаборов временного интервала нисходящего канала передачи данных таким образом, что использование, по меньшей мере, одного поднабора ассоциировано с более низкими помехами по нисходящему каналу передачи данных, чем использование, по меньшей мере, одного другого одного из поднаборов временного интервала нисходящего канала передачи данных; и
средство для передачи показателя первого и/или второго участков в точку доступа.11. A device for transmitting data, comprising:
means for identifying the first portion of the time interval of the downlink data channel that will be used by the access point for transmission, and the second portion of the time interval of the downstream data channel that will not be used by the access point for transmission, to reduce mutual interference in the downstream data channel, when this identification of the first and second sections contains the identification of at least one subset of the many subsets of the time interval of the downward channel delivering data in such a way that using at least one subset is associated with lower downlink interference than using at least one other one of the subsets of the downlink channel time slot; and
means for transmitting the metric of the first and / or second sections to the access point.
передачу показателя смещения временных параметров в точку доступа для синхронизации временных параметров точки доступа и другой точки доступа.15. The device according to claim 11, also containing a determination of the offset time parameters used by another access point; and
transmitting a time offset indicator to an access point to synchronize the time parameters of the access point and another access point.
идентифицируют первый участок временного интервала нисходящего канала передачи данных, который будет использоваться точкой доступа для передачи, и второй участок временного интервала нисходящего канала передачи данных, который не будет использоваться точкой доступа для передачи, для того, чтобы уменьшить уровень взаимных помех по нисходящему каналу передачи данных, при этом идентификация первого и второго участков содержит идентификацию, по меньшей мере, одного поднабора из множества поднаборов временного интервала нисходящего канала передачи данных таким образом, что использование, по меньшей мере, одного поднабора ассоциировано с более низким уровнем взаимных помех по нисходящему каналу передачи данных, чем при использовании, по меньшей мере, одного другого одного из поднаборов временного интервала нисходящего канала передачи данных; и
выполняют передачу на первом участке временного интервала нисходящего канала передачи данных и воздерживаются от выполнения передачи на втором участке временного интервала по нисходящему каналу передачи данных.18. A method for wireless data transmission, comprising the steps of:
identify the first section of the time interval of the downlink data channel that will be used by the access point for transmission, and the second section of the time interval of the downward data channel that will not be used by the access point for transmission, in order to reduce the level of mutual interference on the downstream data channel wherein the identification of the first and second sections comprises the identification of at least one subset of the plurality of subsets of the downlink channel time interval la data so that the use of at least one subset is associated with a lower level of interference on the downlink data transmission than when using at least one other one of the subsets timeslot downlink data channel; and
transmit in the first section of the time interval of the downlink data channel and refrain from transmitting in the second section of the time interval in the downlink data channel.
контроллер взаимных помех, выполненный с возможностью идентификации первого участка временного интервала нисходящего канала, который будет использоваться точкой доступа для передачи, и второго участка временного интервала нисходящего канала передачи данных, который не будет использоваться точкой доступа для передачи, для уменьшения взаимных помех в нисходящем канале передачи данных, при этом идентификация первого и второго участков содержит идентификацию, по меньшей мере, одного поднабора из множества поднаборов временного интервала нисходящего канала передачи данных так, что использование, по меньшей мере, одного поднабора ассоциировано с более низкими взаимными помехами в нисходящем канале передачи данных, чем при использовании, по меньшей мере, другого одного из поднаборов временного интервала нисходящего канала передачи данных; и
контроллер передачи данных, выполненный с возможностью передачи в первом участке временного интервала нисходящего канала передачи данных и воздержания от передачи во втором участке временного интервала нисходящего канала передачи.23. A device for transmitting data, comprising:
a mutual interference controller configured to identify a first portion of a downlink time slot to be used by an access point for transmission and a second portion of a downlink time slot of a data channel that will not be used by an access point for transmission to reduce mutual interference in a downlink data, the identification of the first and second sections contains the identification of at least one subset of the many subsets of the time interval a downlink data channel so that the use of at least one subset is associated with lower mutual interference in the downlink data channel than when using at least another one of the subsets of the time interval of the downlink data channel; and
a data controller configured to transmit in a first portion of a time interval of a downlink data channel and to abstain from transmitting in a second portion of a time slot of a downlink transmission channel.
средство для идентификации первого участка временного интервала нисходящего канала передачи данных, который будет использоваться точкой доступа для передачи, и второго участка временного интервала нисходящего канала передачи данных, который не будет использоваться точкой доступа для передачи, для уменьшения взаимных помех в нисходящем канале передачи данных, при этом идентификация первого и второго участков содержит идентификацию, по меньшей мере, одного поднабора из множества поднаборов временного интервала нисходящего канала передачи данных таким образом, что использование, по меньшей мере, одного поднабора ассоциировано с более низкими взаимными помехами по нисходящему каналу передачи данных, чем при использовании, по меньшей мере, одного другого одного из поднаборов временного интервала нисходящего канала передачи данных; и
средство, предназначенное для передачи в первом участке временного интервала нисходящего канала передачи данных и воздержания от передачи во втором участке временного интервала нисходящего канала передачи данных.28. A device for transmitting data, comprising:
means for identifying the first portion of the time interval of the downlink data channel that will be used by the access point for transmission, and the second portion of the time interval of the downstream data channel that will not be used by the access point for transmission, to reduce mutual interference in the downstream data channel, when this identification of the first and second sections contains the identification of at least one subset of the many subsets of the time interval of the downward channel delivering data in such a way that the use of at least one subset is associated with lower mutual interference on the downlink data channel than when using at least one other one of the subsets of the time interval of the downlink data channel; and
means for transmitting in the first section of the time interval of the downlink data channel and refraining from transmitting in the second section of the time interval of the downlink data channel.
передачи в первом участке временного интервала нисходящего канала и воздержания от передачи во втором участке временного интервала нисходящего канала передачи данных.33. A computer-readable medium containing codes enabling a computer to perform: identification of a first portion of a time interval of a downlink data channel to be used by an access point for transmission, and a second portion of a time interval of a downstream data channel that will not be used by an access point for transmission , to reduce mutual interference in the downstream data channel, while the identification of the first and second sections contains an identification of at least at least one subset of the many subsets of the time interval of the downlink data channel so that the use of at least one of the subsets is associated with less mutual interference in the downstream data channel than when using at least one other one of the subsets the time interval of the downlink data channel; and
transmission in the first section of the time interval of the downlink channel and abstention from transmission in the second section of the time interval of the downlink data channel.
идентифицируют первый участок временного интервала восходящего канала передачи данных, который будет использоваться точкой доступа для приема, и второго участка временного интервала восходящего канала передачи данных, который не будет использоваться точкой доступа для приема, для уменьшения взаимных помех в восходящем канале передачи данных, при этом идентификация первого и второго участков содержит идентификацию, по меньшей мере, одного поднабора из множества поднаборов временного интервала восходящего канала передачи данных таким образом, что, использование, по меньшей мере, одного поднабора ассоциировано с более низкими уровнем взаимных помех в восходящем канале передачи данных, чем при использовании, по меньшей мере, одного другого одного из поднаборов временного интервала в восходящем канале передачи данных; и
передают показатели первого и/или второго участков в точку доступа.35. A method for transmitting data, comprising the steps of:
identify the first portion of the time interval of the uplink data channel that will be used by the access point for reception, and the second portion of the time interval of the uplink data channel that will not be used by the access point for reception, to reduce mutual interference in the uplink data channel, while the identification the first and second sections contains the identification of at least one subset of the many subsets of the time interval of the uplink data channel m such that the use of at least one subset is associated with a lower level of mutual interference in the upstream data channel than when using at least one other one of the subsets of the time slot in the uplink data channel; and
transmit indicators of the first and / or second sections to the access point.
контроллер взаимных помех, выполненный с возможностью идентификации первого участка временного интервала восходящего канала передачи данных, который будет использоваться точкой доступа для приема, и второго участка временного интервала восходящего канала передачи данных, который не будет использоваться точкой доступа для приема, для уменьшения взаимных помех в восходящем канале передачи данных, при этом идентификация первого и второго участков содержит идентификацию, по меньшей мере, одного поднабора из множества поднаборов временного интервала восходящего канала передачи данных таким образом, что использование, по меньшей мере, одного поднабора ассоциируют с меньшим уровнем взаимных помех в восходящем канале передачи данных, чем при использовании, по меньшей мере, одного другого одного из поднаборов временного интервала в восходящем канале передачи данных; и
контроллер передачи данных, выполненный с возможностью передачи посредством приемопередатчика показателей первого и/или второго участка в точку доступа.40. A device for transmitting data, comprising:
a mutual interference controller configured to identify a first portion of a time slot of an uplink data channel to be used by an access point for reception and a second portion of a time slot of an uplink data channel that will not be used by an access point for reception to reduce mutual interference in an uplink a data transmission channel, wherein the identification of the first and second sections comprises the identification of at least one subset of the plurality of subsets of times interval of the uplink data channel so that the use of at least one subset is associated with a lower level of mutual interference in the uplink data channel than when using at least one other one of the subsets of the time interval in the uplink data channel ; and
a data transfer controller, configured to transmit, by means of a transceiver, indicators of the first and / or second portion to the access point.
средство, предназначенное для идентификации первого участка временного интервала восходящего канала передачи данных, который будет использоваться точкой доступа для приема, и второго участка временного интервала восходящего канала передачи данных, который не будет использоваться точкой доступа для приема, для уменьшения взаимных помех в восходящем канале передачи данных, при этом идентификация первого и второго участков содержит идентификацию, по меньшей мере, одного поднабора из множества поднаборов временного интервала в восходящем канале передачи данных таким образом, чтобы использование, по меньшей мере, одного поднабора было ассоциировано с более низким уровнем взаимных помех в восходящем канале передачи данных, чем использование, по меньшей мере, одного другого из поднаборов временного интервала восходящего канала передачи данных; и
средство для передачи показателей первого и/или второго участка в точку доступа.45. A device for transmitting data, comprising:
means for identifying a first portion of a time slot of an uplink data channel to be used by an access point for reception and a second portion of a time slot of an uplink data channel that will not be used by an access point for reception to reduce mutual interference in an uplink data channel , wherein the identification of the first and second sections contains the identification of at least one subset of the many subsets of the time interval in ascending I eat data channel so that the use of at least one subset was associated with lower levels of interference in the uplink data channel than the use of at least one other of said subsets timeslot uplink data channel; and
means for transmitting indicators of the first and / or second section to the access point.
передачи показателей первого и/или второго участка в точку доступа.50. A computer-readable storage medium containing codes enabling the computer to identify the first portion of the time interval of the uplink data channel that will be used by the access point for reception, and the second portion of the time interval of the uplink data channel that will not be used by the access point for reception, to reduce mutual interference in the uplink data channel, the identification of the first and second sections contains the identification of at least , one subset of the many subsets of the time interval of the uplink data channel so that the use of at least one subset is associated with a lower level of mutual interference in the uplink data channel than when using at least one other one of the subsets the time interval of the uplink data channel; and
transmit indicators of the first and / or second section to the access point.
идентифицируют первый участок временного интервала восходящего канала передачи данных, который будет использоваться точкой доступа для приема, и второй участок временного интервала восходящего канала передачи данных, который не будет использоваться точкой доступа для приема, для уменьшения взаимных помех в восходящем канале передачи данных, при этом идентификация первого и второго участков содержит идентификацию, по меньшей мере, одного поднабора из множества поднаборов временного интервала восходящего канала передачи данных таким образом, чтобы использование, по меньшей мере, одного поднабора было ассоциировано с более низким уровнем взаимных помех в восходящем канале передачи данных, чем при использовании, по меньшей мере, одного другого одного из поднаборов; и
выполняют прием в первом участке временного интервала восходящего канала передачи данных и воздерживаются от приема во втором участке временного интервала восходящего канала передачи данных.52. A method for wireless data transmission, comprising the steps of:
identify the first portion of the time interval of the uplink data channel that will be used by the access point for reception, and the second portion of the time interval of the uplink data channel that will not be used by the access point for reception, to reduce mutual interference in the uplink data channel, while the identification the first and second sections contains the identification of at least one subset of the many subsets of the time interval of the uplink data channel such so that the use of at least one subset is associated with a lower level of mutual interference in the uplink data channel than when using at least one other one of the subsets; and
receive in the first section of the time interval of the uplink data channel and refrain from receiving in the second section of the time interval of the uplink data channel.
контроллер взаимных помех, выполненный с возможностью идентификации первого участка временного интервала восходящего канала передачи данных, который будет использоваться точкой доступа для приема, и второго участка временного интервала восходящего канала передачи данных, который не будет использоваться точкой доступа для приема, для уменьшения взаимных помех в восходящем канале передачи данных, при этом идентификация первого и второго участков содержит идентификацию, по меньшей мере, одного поднабора из множества поднаборов временного интервала восходящего канала передачи данных таким образом, что использование, по меньшей мере, одного поднабора будет ассоциировано с более низким уровнем взаимных помех в восходящем канале передачи данных, чем использование, по меньшей мере, одного другого одного из поднаборов; и
контроллер передачи данных, выполненный с возможностью приема посредством приемопередатчика в первом участке временного интервала восходящего канала передачи данных и, который воздерживается от приема во втором участке временного интервала восходящего канала передачи данных.57. A device for transmitting data, comprising:
a mutual interference controller configured to identify a first portion of a time slot of an uplink data channel to be used by an access point for reception and a second portion of a time slot of an uplink data channel that will not be used by an access point for reception to reduce mutual interference in an uplink a data transmission channel, wherein the identification of the first and second sections comprises the identification of at least one subset of the plurality of subsets of times th interval uplink data channel so that the use of at least one subset is associated with a lower level of interference in the uplink data channel than the use of at least one other one of the subsets; and
a data transmission controller configured to receive, through the transceiver, in the first section of a time slot of the uplink data channel and which refrains from receiving in the second section of a time slot of the uplink data channel.
средство для идентификации первого участка временного интервала восходящего канала передачи данных, который будет использоваться точкой доступа для приема, и второго участка временного интервала восходящего канала передачи данных, который не будет использоваться точкой доступа для приема, для уменьшения взаимных помех в восходящем канале передачи данных, при этом идентификация первого и второго участков содержит идентификацию, по меньшей мере, одного поднабора из множества поднаборов временного интервала восходящего канала передачи данных таким образом, что использование, по меньшей мере, одного поднабора ассоциировано с более низким уровнем взаимных помех восходящего канала передачи данных, чем при использовании, по меньшей мере, одного другого из поднаборов; и
средство для приема в первом участке временного интервала восходящего канала передачи данных и воздержания от приема во втором участке временного интервала восходящего канала передачи данных.62. A device for transmitting data, comprising:
means for identifying the first portion of the time interval of the uplink data channel that will be used by the access point for reception, and the second portion of the time interval of the uplink data channel that will not be used by the access point for reception, to reduce mutual interference in the uplink data channel, when this identification of the first and second sections contains the identification of at least one subset of the many subsets of the time interval of the upstream transmission channel and data so that the use of at least one subset is associated with a lower level of mutual interference of the upstream data channel than when using at least one other of the subsets; and
means for receiving in the first section of the time interval of the uplink data channel and refraining from receiving in the second section of the time interval of the uplink data channel.
идентификации первого участка временного интервала восходящего канала передачи данных, который будет использоваться точкой доступа для приема, и второго участка временного интервала восходящего канала передачи данных, который не будет использоваться точкой доступа для приема, для уменьшения уровня взаимных помех в восходящем канале передачи данных, при этом идентификация первого и второго участков содержит идентификацию, по меньшей мере, одного поднабора из множества поднаборов временного интервала восходящего канала передачи данных таким образом, что использование, по меньшей мере, одного поднабора ассоциировано с более низким уровнем взаимных помех в восходящем канале передачи данных, чем при использовании, по меньшей мере, одного другого одного из поднаборов; и
выполнения приема на первом участке временного интервала восходящего канала передачи данных и воздержания от приема на втором участке временного интервала восходящего канала передачи данных.67. A computer-readable storage medium containing codes enabling the computer to execute:
identifying the first portion of the time interval of the uplink data channel that will be used by the access point for reception, and the second portion of the time interval of the uplink data channel that will not be used by the access point for reception, to reduce the level of mutual interference in the uplink data channel, the identification of the first and second sections comprises the identification of at least one subset of the plurality of subsets of the time interval of the uplink data channel so that the use of at least one subset is associated with a lower level of mutual interference in the uplink data channel than when using at least one other one of the subsets; and
perform reception in the first section of the time interval of the uplink data channel and abstain from receiving in the second section of the time interval of the uplink data channel.
идентифицируют первый участок временного интервала восходящего канала передачи данных, который будет использоваться терминалом доступа для передачи, и второй участок временного интервала восходящего канала передачи данных, который не будет использоваться терминалом доступа для передачи для уменьшения взаимных помех в восходящем канале передачи данных, в котором идентификация первого и второго участков содержит идентификацию, по меньшей мере, одного поднабора из множества поднаборов временного интервала восходящего канала передачи данных таким образом, что использование, по меньшей мере, одного поднабора ассоциируют с более низким уровнем взаимных помех в восходящем канале передачи данных, чем при использовании, по меньшей мере, одного другого одного из поднаборов; и
выполняют передачу в первом участке временного интервала восходящего канала передачи данных и воздерживаются от передачи во втором участке временного интервала восходящего канала передачи данных.69. A method for wireless data transmission, comprising the steps of:
identify the first portion of the time interval of the uplink data channel that will be used by the access terminal for transmission, and the second portion of the time interval of the uplink data channel that will not be used by the access terminal for transmission to reduce mutual interference in the uplink data channel in which the identification of the first and the second sections contains the identification of at least one subset of the many subsets of the time interval of the upstream transmission channel data so that the use of at least one subset are associated with a lower level of interference in the uplink data channel, than when using at least one other one of the subsets; and
transmit in the first section of the time interval of the uplink data channel and refrain from transmitting in the second section of the time interval of the uplink data channel.
терминал доступа принимает команды на управление мощностью, которые регулируют мощность передачи терминала доступа, на основе уровня взаимных помех в восходящем канале передачи данных; и
идентификация первого и второго участков содержит определение уровней мощности передачи, которые используют, когда терминал доступа выполняет передачу во время различных поднаборов временного интервала восходящего канала передачи данных.71. The method according to p, in which:
the access terminal receives power control commands that control the transmit power of the access terminal based on the level of mutual interference in the uplink data channel; and
the identification of the first and second sections comprises determining transmission power levels that are used when the access terminal transmits during various subsets of the time interval of the uplink data channel.
контроллер взаимных помех, выполненный с возможностью идентификации первого участка временного интервала восходящего канала передачи данных, который будет использоваться терминалом доступа для передачи, и второго участка временного интервала восходящего канала передачи данных, который не будет использоваться терминалом доступа для передачи, для уменьшения взаимных помех в восходящем канале передачи данных, при этом идентификация первого и второго участков содержит идентификацию, по меньшей мере, одного поднабора из множества поднаборов временного интервала восходящего канала передачи данных таким образом, что использование, по меньшей мере, одного поднабора ассоциировано с более низким уровнем взаимных помех в восходящем канале передачи данных, чем при использовании, по меньшей мере, одного другого одного из поднаборов; и
контроллер передачи данных, выполненный с возможностью передачи посредством приемопередатчика в первом участке временного интервала восходящего канала передачи данных и воздержания от передачи во втором участке временного интервала восходящего канала передачи данных.74. A device for transmitting data, comprising:
a mutual interference controller configured to identify a first portion of a time slot of an uplink data channel to be used by an access terminal for transmission, and a second portion of a time slot of an uplink data channel that will not be used by an access terminal for transmission to reduce mutual interference in an uplink a data transmission channel, wherein the identification of the first and second sections comprises the identification of at least one subset of the plurality of burs of the time interval of the uplink data channel so that the use of at least one subset is associated with a lower level of mutual interference in the uplink data channel than when using at least one other one of the subsets; and
a data transfer controller configured to transmit via the transceiver in the first section of the time interval of the uplink data channel and to abstain from transmitting in the second section of the time interval of the uplink data channel.
терминал доступа принимает команды управления мощностью, которые регулируют мощность передачи терминала доступа, на основе уровня взаимных помех в восходящем канале передачи данных; и
идентификация первого и второго участков содержит определение уровней мощности передачи, которые используют, когда терминал доступа выполняет передачу во время разных поднаборов временного интервала в восходящем канале передачи данных.76. The device according to item 74, in which:
the access terminal receives power control commands that control the transmit power of the access terminal based on the level of mutual interference in the uplink data channel; and
the identification of the first and second sections contains the determination of the transmission power levels that are used when the access terminal transmits during different subsets of the time interval in the uplink data channel.
средство для идентификации первого участка временного интервала восходящего канала передачи данных, который будет использоваться терминалом доступа для передачи, и второго участка временного интервала в восходящем канале передачи данных, который не будет использоваться терминалом доступа для передачи, для уменьшения взаимных помех в восходящем канале передачи данных, при этом идентификация первого и второго участков содержит идентификацию, по меньшей мере, одного поднабора из множества поднаборов временного интервала восходящего канала передачи данных таким образом, что использование, по меньшей мере, одного поднабора ассоциировано с более низким уровнем взаимных помех в восходящем канале передачи данных, чем использование, по меньшей мере, одного другого одного из поднаборов; и
средство для передачи на первом участке временного интервала восходящего канала передачи данных и воздержания от передачи на втором участке временного интервала восходящего канала передачи данных.79. A device for transmitting data, comprising:
means for identifying a first portion of a time slot of an uplink data channel that will be used by the access terminal for transmission, and a second portion of a time slot in an uplink data channel that will not be used by the access terminal for transmission, to reduce mutual interference in the uplink data channel, wherein the identification of the first and second sections comprises the identification of at least one subset of the plurality of subsets of a time interval ascending to data transmission analisis such that the use of at least one subset is associated with a lower level of mutual interference in the upstream data channel than the use of at least one other one of the subsets; and
means for transmitting in the first section of the time interval of the uplink data channel and refraining from transmitting in the second section of the time interval of the uplink data channel.
терминал доступа принимает команды управления мощностью, которые регулируют мощность передачи терминала доступа на основе уровня взаимных помех в восходящем канале передачи данных; и
идентификация первого и второго участков содержит определение уровней мощности передачи, которые используют, когда терминал доступа выполняет передачу во время разных поднаборов временного интервала в восходящем канале передачи данных.81. The device according to p. 80, in which:
the access terminal receives power control commands that adjust the transmit power of the access terminal based on the level of mutual interference in the uplink data channel; and
the identification of the first and second sections contains the determination of the transmission power levels that are used when the access terminal transmits during different subsets of the time interval in the uplink data channel.
идентификации первого участка временного интервала восходящего канала передачи данных, который будет использоваться терминалом доступа для передачи, и второго участка временного интервала восходящего канала передачи данных, который не будет использоваться терминалом доступа для передачи, для уменьшения взаимных помех в восходящем канале передачи данных, при этом идентификация первого и второго участков содержит идентификацию, по меньшей мере, одного поднабора из множества поднаборов временного интервала восходящего канала передачи данных таким образом, что использование, по меньшей мере, одного поднабора ассоциировано с более низким уровнем взаимных помех в восходящем канале передачи данных, чем при использовании, по меньшей мере, одного другого одного из поднаборов; и
передачи на первом участке временного интервала восходящего канала передачи данных и воздержания от передачи во втором участке временного интервала восходящего канала передачи данных.84. A computer-readable storage medium containing codes enabling the computer to execute:
identifying the first portion of the time interval of the uplink data channel that will be used by the access terminal for transmission, and the second portion of the time interval of the uplink data channel that will not be used by the access terminal for transmission, to reduce mutual interference in the uplink data channel, wherein the first and second sections contains the identification of at least one subset of the many subsets of the time interval of the upstream transmission channel and data so that the use of at least one subset is associated with a lower level of mutual interference in the uplink data channel than when using at least one other one of the subsets; and
transmitting in the first section of the time interval of the uplink data channel and refraining from transmitting in the second section of the time interval of the uplink data channel.
Applications Claiming Priority (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US97444907P | 2007-09-21 | 2007-09-21 | |
US97442807P | 2007-09-21 | 2007-09-21 | |
US60/974,428 | 2007-09-21 | ||
US60/974,449 | 2007-09-21 | ||
US97479407P | 2007-09-24 | 2007-09-24 | |
US60/974,794 | 2007-09-24 | ||
US97729407P | 2007-10-03 | 2007-10-03 | |
US60/977,294 | 2007-10-03 | ||
US12/212,638 | 2008-09-17 | ||
US12/212,638 US9137806B2 (en) | 2007-09-21 | 2008-09-17 | Interference management employing fractional time reuse |
PCT/US2008/077104 WO2009039432A1 (en) | 2007-09-21 | 2008-09-19 | Interference management employing fractional time reuse |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2010115756A RU2010115756A (en) | 2011-10-27 |
RU2499367C2 true RU2499367C2 (en) | 2013-11-20 |
Family
ID=44997782
Family Applications (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2010115783/08A RU2453077C2 (en) | 2007-09-21 | 2008-09-19 | Controlling noise using harq alternations |
RU2010115756/07A RU2499367C2 (en) | 2007-09-21 | 2008-09-19 | Interference management employing fractional time reuse |
RU2010115760/07A RU2475970C2 (en) | 2007-09-21 | 2008-09-19 | Noise management with application of partial reuse of codes |
RU2010115777/07A RU2464734C2 (en) | 2007-09-21 | 2008-09-19 | Management of mutual noise using power and signal attenuation profiles |
RU2010115768/08A RU2459356C2 (en) | 2007-09-21 | 2008-09-19 | Control of noise using partial repeated usage of frequencies |
RU2010115750/07A RU2474080C2 (en) | 2007-09-21 | 2008-09-19 | Noise management by power control |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2010115783/08A RU2453077C2 (en) | 2007-09-21 | 2008-09-19 | Controlling noise using harq alternations |
Family Applications After (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2010115760/07A RU2475970C2 (en) | 2007-09-21 | 2008-09-19 | Noise management with application of partial reuse of codes |
RU2010115777/07A RU2464734C2 (en) | 2007-09-21 | 2008-09-19 | Management of mutual noise using power and signal attenuation profiles |
RU2010115768/08A RU2459356C2 (en) | 2007-09-21 | 2008-09-19 | Control of noise using partial repeated usage of frequencies |
RU2010115750/07A RU2474080C2 (en) | 2007-09-21 | 2008-09-19 | Noise management by power control |
Country Status (1)
Country | Link |
---|---|
RU (6) | RU2453077C2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11382121B2 (en) | 2017-06-14 | 2022-07-05 | Idac Holdings, Inc. | Reliable control signaling |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3221989B1 (en) * | 2016-01-22 | 2019-10-09 | Telefonaktiebolaget LM Ericsson (publ) | Methods and arrangements for managing information about signal quality and/or signal strength received by a wireless device in a downlink |
RU2704108C1 (en) * | 2019-05-08 | 2019-10-24 | Акционерное общество "Концерн "Созвездие" | Method for adaptive power control in a radio line with linear prediction of the second order of interference power value |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2294720A (en) * | 1939-07-25 | 1942-09-01 | Ibm | Apparatus for verifying statistical data |
WO1999008464A1 (en) * | 1997-08-08 | 1999-02-18 | Telefonaktiebolaget Lm Ericsson (Publ) | Uplink channel puncturing for reduced interference within a wireless data communications network |
RU2002129901A (en) * | 2000-04-07 | 2004-03-10 | Квэлкомм Инкорпорейтед (US) | METHOD FOR MAKING SERVICE TRANSFER FOR DIGITAL BASIC STATIONS WITH DIFFERENT SPECTRAL CHARACTERISTICS |
GB2402023A (en) * | 2000-07-14 | 2004-11-24 | Ip Access Ltd | Maintaining frequency of a control channel in a cellular communication system |
EP1564912A1 (en) * | 2002-12-26 | 2005-08-17 | Matsushita Electric Industrial Co., Ltd. | Radio communication system, communication terminal device, base station device, and radio communication method |
WO2006127617A2 (en) * | 2005-05-23 | 2006-11-30 | Navini Networks, Inc. | Method and system for interference reduction |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IL100213A (en) * | 1990-12-07 | 1995-03-30 | Qualcomm Inc | CDMA microcellular telephone system and distributed antenna system therefor |
US5892796A (en) * | 1996-05-10 | 1999-04-06 | Rypinski; Chandos A. | Frame format and method for adaptive equalization within an integrated services wireless local area network |
BRPI9909023B1 (en) * | 1998-03-23 | 2017-03-28 | Samsung Electronics Co Ltd | power control device and method of controlling a common reverse link channel in a cdma communication system |
US6597705B1 (en) * | 1998-09-10 | 2003-07-22 | Qualcomm Incorporated | Method and apparatus for distributed optimal reverse link scheduling of resources, such as a rate and power in a wireless communication system |
RU2242091C2 (en) * | 1999-10-02 | 2004-12-10 | Самсунг Электроникс Ко., Лтд. | Device and method for gating data transferred over control channel in cdma communication system |
US6680902B1 (en) * | 2000-01-20 | 2004-01-20 | Nortel Networks Limited | Spreading code selection process for equalization in CDMA communications systems |
US8199696B2 (en) * | 2001-03-29 | 2012-06-12 | Qualcomm Incorporated | Method and apparatus for power control in a wireless communication system |
JP2003174400A (en) * | 2001-12-06 | 2003-06-20 | Ntt Docomo Inc | Mobile communication terminal, interference removing system, interference removing method and base station |
US7106707B1 (en) * | 2001-12-20 | 2006-09-12 | Meshnetworks, Inc. | System and method for performing code and frequency channel selection for combined CDMA/FDMA spread spectrum communication systems |
US7239622B2 (en) * | 2002-09-19 | 2007-07-03 | Qualcomm Incorporated | Modified scheduling technique for a telecommunication system |
EP1638221A4 (en) * | 2003-06-20 | 2009-12-09 | Fujitsu Ltd | Wcdma mobile communication system |
US7162204B2 (en) * | 2003-11-24 | 2007-01-09 | Broadcom Corporation | Configurable spectral mask for use in a high data throughput wireless communication |
DE60303109T2 (en) * | 2003-07-28 | 2006-07-27 | Alcatel | Method and apparatus for selecting subcarriers according to quality of service requirements in a multi-carrier communication system |
RU2276458C2 (en) * | 2003-11-26 | 2006-05-10 | Институт радиотехники и электроники Российской Академии Наук | Method for direct-chaotic information transfer with given spectrum mask |
GB2411328B (en) * | 2004-02-23 | 2007-05-16 | Toshiba Res Europ Ltd | Adaptive MIMO systems |
KR20070089119A (en) * | 2004-07-23 | 2007-08-30 | 와이어리스 밸리 커뮤니케이션 인크 | System, method, and apparatus for determining and using the position of wireless devices or infrastructure for wireless network enhancements |
EP1798884A4 (en) * | 2004-10-07 | 2012-12-19 | Sharp Kk | Base station device, radio communication system and radio transmission method |
US7468966B2 (en) * | 2004-12-30 | 2008-12-23 | Motorola, Inc. | Method and apparatus for performing neighbor tracking in a wireless local area network |
US20060203757A1 (en) * | 2005-03-11 | 2006-09-14 | Spotwave Wireless Inc. | Adaptive repeater system |
EP1775978B1 (en) * | 2005-06-15 | 2009-07-29 | Alcatel Lucent | A method for uplink interference coordination in single frequency networks, a base station and a mobile network therefor |
-
2008
- 2008-09-19 RU RU2010115783/08A patent/RU2453077C2/en active
- 2008-09-19 RU RU2010115756/07A patent/RU2499367C2/en not_active IP Right Cessation
- 2008-09-19 RU RU2010115760/07A patent/RU2475970C2/en not_active IP Right Cessation
- 2008-09-19 RU RU2010115777/07A patent/RU2464734C2/en active
- 2008-09-19 RU RU2010115768/08A patent/RU2459356C2/en not_active IP Right Cessation
- 2008-09-19 RU RU2010115750/07A patent/RU2474080C2/en active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2294720A (en) * | 1939-07-25 | 1942-09-01 | Ibm | Apparatus for verifying statistical data |
WO1999008464A1 (en) * | 1997-08-08 | 1999-02-18 | Telefonaktiebolaget Lm Ericsson (Publ) | Uplink channel puncturing for reduced interference within a wireless data communications network |
RU2002129901A (en) * | 2000-04-07 | 2004-03-10 | Квэлкомм Инкорпорейтед (US) | METHOD FOR MAKING SERVICE TRANSFER FOR DIGITAL BASIC STATIONS WITH DIFFERENT SPECTRAL CHARACTERISTICS |
GB2402023A (en) * | 2000-07-14 | 2004-11-24 | Ip Access Ltd | Maintaining frequency of a control channel in a cellular communication system |
EP1564912A1 (en) * | 2002-12-26 | 2005-08-17 | Matsushita Electric Industrial Co., Ltd. | Radio communication system, communication terminal device, base station device, and radio communication method |
WO2006127617A2 (en) * | 2005-05-23 | 2006-11-30 | Navini Networks, Inc. | Method and system for interference reduction |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11382121B2 (en) | 2017-06-14 | 2022-07-05 | Idac Holdings, Inc. | Reliable control signaling |
US11800524B2 (en) | 2017-06-14 | 2023-10-24 | Interdigital Patent Holdings, Inc. | Reliable control signaling |
Also Published As
Publication number | Publication date |
---|---|
RU2010115750A (en) | 2011-10-27 |
RU2464734C2 (en) | 2012-10-20 |
RU2474080C2 (en) | 2013-01-27 |
RU2010115756A (en) | 2011-10-27 |
RU2459356C2 (en) | 2012-08-20 |
RU2010115777A (en) | 2011-10-27 |
RU2010115760A (en) | 2011-10-27 |
RU2475970C2 (en) | 2013-02-20 |
RU2010115783A (en) | 2011-10-27 |
RU2010115768A (en) | 2011-10-27 |
RU2453077C2 (en) | 2012-06-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2511222C2 (en) | Interference management using power and signal attenuation profiles | |
JP5356391B2 (en) | Interference management using HARQ interlace | |
JP5642757B2 (en) | Interference management using power control | |
KR101226589B1 (en) | Interference management employing fractional frequency reuse | |
KR101148607B1 (en) | Method, apparatus, and computer-readable medium for interference management employing fractional code reuse | |
US9137806B2 (en) | Interference management employing fractional time reuse | |
RU2499367C2 (en) | Interference management employing fractional time reuse |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20150920 |