RU2498768C2 - Устройство и способ для определения физиологического параметра - Google Patents

Устройство и способ для определения физиологического параметра Download PDF

Info

Publication number
RU2498768C2
RU2498768C2 RU2009104115/14A RU2009104115A RU2498768C2 RU 2498768 C2 RU2498768 C2 RU 2498768C2 RU 2009104115/14 A RU2009104115/14 A RU 2009104115/14A RU 2009104115 A RU2009104115 A RU 2009104115A RU 2498768 C2 RU2498768 C2 RU 2498768C2
Authority
RU
Russia
Prior art keywords
eff
parameter
patient
value
effective
Prior art date
Application number
RU2009104115/14A
Other languages
English (en)
Other versions
RU2009104115A (ru
Inventor
Штефан ЙОКЕН
Original Assignee
Пульзион Медикал Системз Аг
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Пульзион Медикал Системз Аг filed Critical Пульзион Медикал Системз Аг
Publication of RU2009104115A publication Critical patent/RU2009104115A/ru
Application granted granted Critical
Publication of RU2498768C2 publication Critical patent/RU2498768C2/ru

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • A61B5/029Measuring or recording blood output from the heart, e.g. minute volume
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/02108Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/0215Measuring pressure in heart or blood vessels by means inserted into the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7253Details of waveform analysis characterised by using transforms
    • A61B5/7257Details of waveform analysis characterised by using transforms using Fourier transforms

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Physiology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Vascular Medicine (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

Изобретение относится к медицинской технике, а именно к средствам определения физиологических параметров. Устройство содержит датчик показаний кровяной переменной пациента, средство памяти хранения показаний в виде кривой по времени I, средства оценки для определения среднего значения по кривой и определения физиологического параметра с его использованием. Средства оценки дополнительно выполнены с возможностью определения спектральной плотности S(ω) кривой и дисперсии кровяной переменной, моделирующего параметра, представляющего собой эффективное значение сердечного сокращения, с использованием среднего значения и спектральной плотности S(ω) и дисперсии. В способе определения с использованием устройства эффективное значение выбрано из эффективной амплитуды Аeff сердечного сокращения, эффективной продолжительности deff сердечного сокращения и эффективной площади Feff под сердечным сокращением. Физиологический параметр определяют с использованием моделирующего параметра. Физический носитель хранения содержит хранимую на нем компьютерную программу выполнения способа. Использование изобретения позволяет определить физиологический параметр пациента в контексте с искажениями, вызванными аритмией или отражениями от ветвей артерии. 3 н. и 36 з.п. ф-лы, 6 ил.

Description

Настоящее изобретение относится к устройству для определения, по меньшей мере, одного физиологического параметра пациента. В частности, изобретение относится к устройству для определения, по меньшей мере, одного физиологического параметра пациента, при этом устройство содержит, по меньшей мере, одно устройство датчика, выполненное с возможностью обеспечения показаний кровяной переменной пациента, средство хранения для хранения упомянутых показаний в виде, по меньшей мере, одной кривой, представляющей упомянутую кровяную переменную по времени и средства оценки, выполненные с возможностью определения среднего значения по упомянутой кривой и определения упомянутого, по меньшей мере, одного физиологического параметра с использованием упомянутого среднего значения.
Кроме того, изобретение относится к способу определения, по меньшей мере, одного физиологического параметра пациента, путем обеспечения показаний кровяной переменной пациента, сохранения упомянутых показаний в виде, по меньшей мере, одной кривой, представляющей упомянутую кровяную переменную по времени, определения среднего значения по упомянутой кривой измерения давления и определения упомянутого, по меньшей мере, одного физиологического параметра с использованием упомянутого среднего значения.
Кроме того, изобретение относится к физическому носителю хранения, содержащему хранимую на нем компьютерную программу, которая, при исполнении в компьютерной системе, предписывает компьютерной системе выполнять способ определения, по меньшей мере, одного физиологического параметра пациента.
Устройства и способы для определения параметров сердечной функции, например, минутного сердечного выброса, фракций выброса или ударного объема сердца широко известны на современном уровне знаний. В частности, минутный сердечный выброс можно получать из непрерывного волнового сигнала артериального давления, который получают с помощью традиционного средства по артериальной линии, измеряющей артериальное давление. Минутный сердечный выброс обычно равен ударному объему сердца, умноженному на частоту сердечных сокращений.
Например, в патенте США № 6071244 предлагается способ для измерения минутного сердечного выброса пациента, который предусматривает непрерывное измерение волнового сигнала артериального давления, затем выполнение автокорреляции данных волнового сигнала и, наконец, установление минутного сердечного выброса умножением преобразованных автокорреляционных данных на калибровочный коэффициент с использованием известного способа точной калибровки для данного пациента.
В документе EP-A-0947941 описано определение in vivo функции диастолического расслабления и минутного сердечного выброса для пациента с использованием анализа формы пульса.
Однако современные надежные способы непрерывного определения минутного сердечного выброса и/или ударного объема сердца требуют калибровки по опорному значению, которое обычно определяют посредством дополнительного периодически выполняемого измерения. Кроме того, анализы формы пульса требуют надежного определения дикротической выемки для разделения систолического и диастолического составляющих пульсового давления. Кроме того, в некоторых обстоятельствах, например, во время обширного оперативного вмешательства, волновой сигнал может совсем не обнаруживать дикротической выемки. Кроме того, вышеописанные решения сопряжены с риском искажений при измерении давления из-за аритмии или отражений от ветвей артерии.
Дополнительно существует необходимость уменьшить степень инвазивности в гемодинамических методиках измерений.
Поэтому целью настоящего изобретения является создание устройства или способа, соответственно, вышеописанного типа для измерения физиологического параметра, например, минутного сердечного выброса, фракций выброса или ударного объема сердца, с решением, при этом, проблемы обязательной калибровки данных измерений по опорному значению, полученному посредством дополнительного непрерывного измерения для пациента.
Дополнительной целью настоящего изобретения является создание устройства или способа, соответственно, вышеописанного типа, которые обходятся без обязательного обнаружения дикротической выемки.
Кроме того, целью настоящего изобретения является минимизация вышеописанных искажений измерений в устройстве или способе, обусловленных аритмией или отражениями от ветвей артерии.
Дополнительной целью является, по меньшей мере, не увеличение степени инвазивности имеющей место при определении физиологического параметра(ов).
В соответствии с одним аспектом настоящего изобретения, данные цели достигаются с помощью устройства типа, описанного в начале, в котором средство оценки устройства дополнительно выполнено с возможностью
- определения, по меньшей мере, чего-то одного из спектральной плотности S(ω) кривой и дисперсии упомянутого артериальной кровяной переменной,
- определения, по меньшей мере, одного моделирующего параметра, представляющего собой эффективное значение сердечного сокращения, с использованием определенного среднего значения и, по меньшей мере, одного из упомянутой спектральной плотности S(ω) и упомянутой дисперсии, при этом, упомянутое эффективное значение выбрано из эффективной амплитуды Aeff упомянутого сердечного сокращения, эффективной продолжительности deff упомянутого сердечного сокращения и эффективной площади Feff под упомянутым сердечным сокращением, и
- определения упомянутого, по меньшей мере, одного физиологического параметра с использованием, по меньшей мере, одного упомянутого моделирующего параметра.
В предпочтительном варианте осуществления, данные цели достигаются с помощью устройства для определения, по меньшей мере, одного физиологического параметра пациента, при этом, упомянутое устройство содержит:
- устройство датчика давления, выполненное с возможностью обеспечения показаний артериального давления упомянутого пациента,
- средство памяти для хранения упомянутых показаний в виде кривой P(t) изменения давления со временем t,
- средства оценки, выполненные с возможностью определения среднего артериального давления <P> по упомянутой кривой P(t) измерения давления и определения упомянутого, по меньшей мере, одного физиологического параметра с использованием упомянутого среднего артериального давления <P>,
при этом упомянутые средства оценки дополнительно выполнены с возможностью
- определения, по меньшей мере, чего-то одного из спектральной плотности S(ω) упомянутой кривой изменения давления и дисперсии <(δP)2> упомянутого артериального давления,
- определения, по меньшей мере, одного моделирующего параметра, представляющего собой эффективное значение сердечного сокращения, с использованием упомянутого среднего артериального давления <P> и, по меньшей мере, чего-то одного из упомянутой спектральной плотности S(ω) и упомянутой дисперсии <(δP)2>, при этом, упомянутое эффективное значение выбрано из эффективной амплитуды Aeff упомянутого сердечного сокращения, эффективной продолжительности deff упомянутого сердечного сокращения и эффективной площади Feff под упомянутым сердечным сокращением, и
- определения упомянутого, по меньшей мере, одного физиологического параметра с использованием, по меньшей мере, одного упомянутого моделирующего параметра.
Хотя настоящее изобретение далее будет описано с фокусировкой на этот предпочтительный вариант осуществления, настоящее изобретение может также быть выполнено в равной степени преимущественным способом, с использованием сенсорных устройств, отличающихся от устройства датчика давления, тем не менее, следующих тому же или в значительной степени аналогичному принципу оценки. Например, настоящее изобретение может быть преимущественно выполнено с использованием сенсорного устройства пульсовой оксиметрии и/или (опто-)плетизмографии и основывая методики оценивания на показаниях пульсовой оксиметрии и/или (опто-)плетизмографии, которые обычно включают в себя множество сигналов яркости.
Методики оценивания, описанные далее на основании показаний артериального давления, таким образом, могут быть выполнены аналогичным способом, с использованием кривой, представляющей собой местный объем крови, переменную местной перфузии или т.п., вместо кривой изменения давления, и среднее значение такой переменной, вместо среднего артериального давления. Т.е. в методиках оценивания, описанных далее, члены уравнения, обусловленные артериальным давлением, могут заменяться членами уравнения, обусловленными еще одной переменной, указывающей состояние перфузии артерии.
Следует понимать, что кривая может непосредственно являться производной от исходных данных, таких как электрический сигнал, зависящий от местного светопропускания и/или отражение, обнаруженное посредством установки оптического датчика.
Так как сенсорные устройства пульсовой оксиметрии и/или (опто-)плетизмографии могут легко выполняться с использованием неинвазивных датчиков (например, датчики-зажимы пальцев, датчики-зажимы ушей или датчики, прикрепляющиеся ко лбу), настоящее изобретение, таким образом, позволяет значительно снизить или исключить инвазивность определения физиологического, в частности, гемодинамического, параметра.
Датчики пульсовой оксиметрии и/или (опто-)плетизмографии как таковые являются в значительной степени известными из предшествующего уровня техники. Плетизмография является методикой измерения вариаций объема крови, находящихся в соотношении с пульсом субъекта. Данная методика делает возможным осуществление непрерывных неинвазивных измерений артериального давления или частоты пульса, соответственно. Измерение пульсовой оксиметрии позволяет определить кислородное насыщение крови. В оптоплетизмографии, главным образом, существует два альтернативных принципа измерения: измерения передачи и измерения отражения. Измерения передачи основываются на измерении интенсивности по закону Ламберта-Бера. В оптоплетизмографии обычно используются две или более длин волн в диапазоне приблизительно от 600 нм до приблизительно 1000 нм, как правило, около 660 нм и 940 нм. Подходящими местами замера являются, например, кончики пальцев, мочки ушей, лоб (для измерений отражения), нос и пальцы ноги. Технические выполнения датчиков являются широко известными как из патентной, так и не патентной литературы, например, Vincent Chan, Steve Underwood: «A Single-Chip Pulsoximeter Design Using the MSP430» SLAA274 - November 2005 (http://focus.ti.com/lit/an/slaa274/slaa274.pdf) и Texas Instruments Medical Applications Guide 1Q2009, p. 37-44 (http://focus.ti.com/lit/an/slyb108d/slyb108d.pdf).
В предпочтительном варианте упомянутый, по меньшей мере, один физиологический параметр содержит, по меньшей мере, что-то одно из ударного объема SV сердца, минутного сердечного выброса CO и фракции EF выброса.
Кроме того, упомянутые средства оценки предпочтительно выполнены с возможностью определения упомянутого ударного объема SV сердца в форме произведения первого моделирующего параметра, представляющего собой упомянутую эффективную амплитуду Aeff, и второго моделирующего параметра, представляющего собой упомянутую эффективную продолжительность deff.
Кроме того, упомянутые средства оценки предпочтительно выполнены с возможностью определения упомянутой фракции EF выброса в форме произведения моделирующего параметра, представляющего собой упомянутую эффективную продолжительность deff, и частоты HR сердечных сокращений упомянутого пациента.
В частности, упомянутые средства оценки предпочтительно выполнены с возможностью определения упомянутого минутного сердечного выброса CO в форме произведения первого моделирующего параметра, представляющего собой упомянутую эффективную амплитуду Aeff, второго моделирующего параметра, представляющего собой упомянутую эффективную продолжительность deff, и приближенной величины частоты сердечных сокращений упомянутого пациента.
В предпочтительном варианте упомянутая приближенная величина упомянутой частоты сердечных сокращений выбрана из фактически измеренной частоты HR сердечных сокращений и приближенной функции λeff, при этом упомянутая приближенная функция λeff содержит частное от деления делимого, содержащего квадрат среднего артериального давления <P>, на делитель, содержащий спектральную плотность S(ω) при ω = 0.
Кроме того, в предпочтительном варианте упомянутые средства оценки выполнены с возможностью применения параметра α коррекции при определении упомянутого первого моделирующего параметра, при этом, упомянутый параметр α коррекции принимает значения большие или равные 1, причем, чем выше упомянутые значения, тем меньше ритм сердца пациента отклоняется от ритмического состояния.
Кроме того, в предпочтительном варианте упомянутые средства оценки выполнены с возможностью применения монотонной корректирующей функции σ, зависящей от упомянутого параметра α коррекции и принимающей значения от 0 до 1, при этом, упомянутая корректирующая функция σ принимает значение 0, если упомянутый параметр α коррекции равен 1, и упомянутая корректирующая функция σ принимает значение 1, при упомянутом параметре α коррекции, стремящемся к бесконечности.
В предпочтительном варианте упомянутая эффективная амплитуда Aeff обеспечивается как частное от деления делимого, содержащего сумму упомянутой дисперсии <(δP)2> и произведения упомянутой корректирующей функции σ и квадрата среднего артериального давления <P>, на делитель, содержащий среднее артериальное давление <P>.
Кроме того, в предпочтительном варианте упомянутая эффективная продолжительность deff обеспечивается как частное от деления делимого, содержащего спектральную плотность S(ω), при ω = 0, на делитель, содержащий сумму упомянутой дисперсии <(δP)2> и произведения упомянутой корректирующей функции σ и квадрата среднего артериального давления <P>.
Упомянутое устройство предпочтительно обеспечивает также средство Фурье-преобразования для определения упомянутой спектральной плотности S(ω) в форме Фурье-преобразования автокорреляции упомянутой кривой изменения давления.
В предпочтительном варианте спектральная плотность S(ω), при ω = 0, обеспечивается в форме упомянутой дисперсии <(δP)2>, умноженной на постоянный коэффициент.
В предпочтительном варианте осуществления упомянутый блок оценки дополнительно выполнен с возможностью определения сравнительной величины, по меньшей мере, одного из упомянутых физиологических параметров по упомянутой кривой изменения давления с использованием алгоритмов формы пульса.
В дополнительном предпочтительном варианте осуществления упомянутое устройство дополнительно содержит
- средство для введения перемещающегося отклонения характерной физической величины (например, температуры, оптической/спектральной характеристики или концентрации индикатора) в кровоток упомянутого пациента в первом местоположении кровообращения упомянутого пациента, и
- средство датчика для измерения упомянутой физической величины во втором местоположении кровообращения упомянутого пациента с течением времени,
при этом упомянутое средство памяти выполнено с возможностью записи упомянутой физической величины, измеренной с течением времени в упомянутом втором местоположении, в виде кривой разведения, и упомянутый блок оценки выполнен с возможностью определения сравнительной величины, по меньшей мере, одного из упомянутых физиологических параметров по упомянутой кривой разведения с использованием алгоритмов разведения.
В предпочтительном варианте упомянутый блок оценки выполнен с возможностью применения упомянутой сравнительной величины для калибровки.
В предпочтительном варианте упомянутая калибровка содержит определение, с применением упомянутой сравнительной величины, параметра α коррекции, применяемого при определении упомянутого моделирующего параметра, при этом, упомянутый параметр α коррекции принимает значения, большие или равные 1, причем, чем выше упомянутые значения, тем меньше ритм сердца пациента отклоняется от ритмического состояния.
В предпочтительном варианте упомянутый блок оценки выполнен с возможностью отбрасывания и повторного вычисления упомянутого физиологического параметра, если разность между найденным физиологическим параметром и соответствующей сравнительной величиной превышает пороговое значение.
В дополнение к описанным вариантам осуществления, вышеописанные цели достигаются, в соответствии с дополнительным аспектом изобретения, с использованием способа определения, по меньшей мере, одного физиологического параметра пациента, при этом, упомянутый способ содержит следующие этапы:
- импортируют показания кровяной переменной упомянутого пациента,
- сохраняют упомянутые показания в виде кривой, представляющей упомянутую кровяную переменную по времени t,
- определяют среднее значение по упомянутой кривой и определяют, по меньшей мере, один физиологический параметр с использованием упомянутого среднего значения,
причем способ дополнительно содержит следующие этапы:
- определяют, по меньшей мере, что-то одно из спектральной плотности S(ω) упомянутой кривой и дисперсии упомянутой кровяной переменной,
- определяют, по меньшей мере, один моделирующий параметр, представляющий собой эффективное значение сердечного сокращения, с использованием упомянутого среднего значения и, по меньшей мере, чего-то одного из упомянутой спектральной плотности S(ω) и упомянутой дисперсии, при этом, упомянутое эффективное значение выбрано из эффективной амплитуды Aeff упомянутого сердечного сокращения, эффективной продолжительности deff упомянутого сердечного сокращения и эффективной площади Feff под упомянутым сердечным сокращением, и
- определяют упомянутый, по меньшей мере, один физиологический параметр с использованием, по меньшей мере, одного упомянутого моделирующего параметра.
В предпочтительном варианте осуществления, вышеописанные цели достигаются с использованием способа определения, по меньшей мере, одного физиологического параметра пациента, при этом упомянутый способ содержит следующие этапы:
- импортируют показания артериального давления пациента упомянутого пациента,
- сохраняют упомянутые показания в виде кривой P(t) изменения давления со временем t,
- определяют среднее артериальное давление <P> по упомянутой кривой P(t) измерения давления и определяют, по меньшей мере, один физиологический параметр с использованием упомянутого среднего артериального давления <P>,
причем способ дополнительно содержит следующие этапы:
- определяют, по меньшей мере, что-то одно из спектральной плотности S(ω) упомянутой кривой изменения давления и дисперсии <(δP)2> упомянутого артериального давления,
- определяют, по меньшей мере, один моделирующий параметр, представляющий собой эффективное значение сердечного сокращения, с использованием упомянутого среднего артериального давления <P> и, по меньшей мере, чего-то одного из упомянутой спектральной плотности S(ω) и упомянутой дисперсии <(δP)2>, при этом, упомянутое эффективное значение выбрано из эффективной амплитуды Aeff упомянутого сердечного сокращения, эффективной продолжительности deff упомянутого сердечного сокращения и эффективной площади Feff под упомянутым сердечным сокращением, и
- определяют упомянутый, по меньшей мере, один физиологический параметр с использованием, по меньшей мере, одного упомянутого моделирующего параметра.
В предпочтительном варианте, в вышеописанном способе упомянутый, по меньшей мере, один физиологический параметр содержит, по меньшей мере, что-то одно из ударного объема SV сердца, минутного сердечного выброса CO и фракции EF выброса.
Как упоминалось, применительно к вышеописанному устройству, способ, описанный далее на основании показаний артериального давления, преимущественно может быть реализован аналогичным способом, с использованием кривой, представляющей собой переменную местного объема крови, переменную местной перфузии или т.п., вместо кривой изменения давления, и среднее значение такой переменной, вместо среднего артериального давления. Т.е. в способе, описанном ниже, члены уравнения, обусловленные артериальным давлением, могут заменяться членами уравнения, обусловленными еще одной переменной, указывающей состояние перфузии.
В частности, может являться преимуществом выполнение способа, согласно изобретению, с использованием показаний пульсовой оксиметрии и/или (опто-)плетизмографии (которые могут обычно содержать множество сигналов яркости), так как измерения пульсовой оксиметрии и/или (опто-)плетизмографии могут легко выполняться неинвазивным способом.
В дополнительном предпочтительном варианте вышеописанного способа упомянутый ударный объем SV сердца определяют в форме произведения первого моделирующего параметра, представляющего собой упомянутую эффективную амплитуду Aeff, и второго моделирующего параметра, представляющего собой упомянутую эффективную продолжительность deff.
В дополнительном предпочтительном варианте вышеописанного способа упомянутую фракцию EF выброса определяют в форме произведения моделирующего параметра, представляющего собой упомянутую эффективную продолжительность deff, и частоты HR сердечных сокращений упомянутого пациента.
В дополнительном предпочтительном варианте вышеописанного способа упомянутый минутный сердечный выброс CO определяют в форме произведения первого моделирующего параметра, представляющего собой упомянутую эффективную амплитуду Aeff, второго моделирующего параметра, представляющего собой упомянутую эффективную продолжительность deff, и приближенной величины частоты сердечных сокращений упомянутого пациента.
Кроме того, в предпочтительном варианте вышеописанного способа упомянутую приближенную величину упомянутой частоты сердечных сокращений выбирают из фактически измеренной частоты HR сердечных сокращений и приближенной функции λeff, при этом упомянутая приближенная функция λeff содержит частное от деления делимого, содержащего квадрат среднего артериального давления <P>, на делитель, содержащий спектральную плотность S(ω) при ω = 0.
Кроме того, в вышеописанном способе, при определении упомянутого моделирующего параметра, предпочтительно применяют параметр α коррекции, при этом, упомянутый параметр α коррекции принимает значения большие или равные 1, причем, чем выше упомянутые значения, тем меньше ритм сердца пациента отклоняется от ритмического состояния.
В вышеописанном способе предпочтительно применяют монотонную корректирующую функцию σ, зависящую от упомянутого параметра α коррекции и принимающую значения от 0 до 1, при этом, упомянутая корректирующая функция σ принимает значение 0, если упомянутый параметр α коррекции равен 1, и упомянутая корректирующая функция σ принимает значение 1, при упомянутом параметре α коррекции, стремящемся к бесконечности.
В предпочтительном варианте осуществления вышеописанного способа упомянутую эффективную амплитуду Aeff обеспечивают как частное, при этом, делимое упомянутого частного от деления содержит сумму упомянутой дисперсии <(δP)2> и произведения упомянутой корректирующей функции σ и квадрата среднего артериального давления <P>, и делитель упомянутого частного от деления содержит среднее артериальное давление <P>.
В предпочтительном варианте вышеописанного способа упомянутую эффективную продолжительность deff обеспечивают как частное от деления делимого, содержащего спектральную плотность S(ω), при ω=0, на делитель, содержащий сумму упомянутой дисперсии <(δP)2> и произведения упомянутой корректирующей функции σ и квадрата среднего артериального давления <P>.
В дополнительном предпочтительном варианте вышеописанного способа упомянутую спектральную плотность S(ω) определяют в форме Фурье-преобразования автокорреляции упомянутой кривой изменения давления.
В предпочтительном варианте вышеописанного способа спектральную плотность S(ω), при ω=0, обеспечивают в форме упомянутой дисперсии <(δP)2>, умноженной на постоянный коэффициент.
В предпочтительном варианте вышеописанного способа определяют сравнительную величину, по меньшей мере, одного из упомянутых физиологических параметров по упомянутой кривой изменения давления, с использованием алгоритмов формы пульса.
В предпочтительном варианте осуществления вышеупомянутый способ дополнительно содержит следующие этапы:
- вводят информацию о перемещающемся отклонении характерной физической величины (например, температуры, оптической/ спектральной характеристики или концентрации индикатора), введенной в кровоток упомянутого пациента в первом местоположении кровообращения упомянутого пациента, и
- записывают показания измерения упомянутой физической величины во втором местоположении кровообращения упомянутого пациента с течением времени,
при этом упомянутые показания измерения упомянутой физической величины в упомянутом втором местоположении кровообращения упомянутого пациента записывают в виде кривой разведения, и упомянутую сравнительную величину, по меньшей мере, одного из упомянутых физиологических параметров определяют по упомянутой кривой разведения с использованием алгоритмов разведения.
В предпочтительном варианте вышеописанного способа упомянутую сравнительную величину применяют для калибровки.
В дополнение к вышеописанному способу, упомянутая калибровка предпочтительно содержит этап определения, с применением упомянутой сравнительной величины, параметра α коррекции, применяемого при определении упомянутого моделирующего параметра, при этом, упомянутый параметр α коррекции принимает значения, большие или равные 1, причем, чем выше упомянутые значения, тем меньше ритм сердца пациента отклоняется от ритмического состояния.
В предпочтительном варианте вышеописанного способа упомянутый физиологический параметр отбрасывают и повторно вычисляют, если разность между найденным физиологическим параметром и соответствующей сравнительной величиной превышает пороговое значение.
Дополнительный вариант осуществления настоящего изобретения содержит физический носитель хранения, содержащий хранимую на нем компьютерную программу, которая, при исполнении в компьютерной системе, предписывает компьютерной системе выполнять вышеописанный способ.
Как правило, любой из вариантов осуществления или вариантов исполнения, описанных или упомянутых в настоящей заявке, может быть особенно полезен в зависимости от фактических условий применения. Кроме того, признаки одного варианта осуществления можно объединять с признаками другого варианта осуществления, а также с признаками, по существу, известными из известного уровня техники, насколько технически возможно, и если не указано иначе.
Далее приведено подробное описание изобретения. Прилагаемые чертежи, на которых представлены схематичные изображения последовательности операций и графики, служат для более глубокого понимания признаков настоящего изобретения. На данных чертежах:
Фиг.1 - блок-схема последовательности операций, поясняющая предпочтительный вариант осуществления способа согласно изобретению для определения минутного сердечного выброса CO. Дополнительные признаки представлены пунктирными линиями. Количественный параметр α может зависеть от CVP (центрального венозного давления) и/или колебаний частоты сердечных сокращений,
Фиг.2 - примерный график функциональной взаимозависимости σ(α), т.е. поведение σ при типичных значениях α, в соответствии с одним вариантом осуществления настоящего изобретения,
Фиг.3 - кривая корреляционной связи между значениями CO, найденными в соответствии с вариантом осуществления настоящего изобретения по уравнению (24) и опорным значениям COref, полученным посредством транспульмонарного измерения минутного сердечного выброса,
Фиг.4 - изображение общей схемы устройства в соответствии с вариантом осуществления настоящего изобретения, с использованием датчика артериального давления.
Фиг.5 - изображение общей схемы устройства согласно различным вариантам осуществления настоящего изобретения, с использованием датчика оптоплетизмографии.
Фиг.6 показывает видоизмененную схему, сходную с Фиг.5.
На Фиг.1 представлены (указанные обычными линиями) важнейшие этапы одного предпочтительного варианта осуществления настоящего изобретения. Пунктирные линии указывают дополнительные этапы для модификации варианта осуществления и создания, тем самым, другого предпочтительного варианта осуществления. Для удобства изображения предпочтительных вариантов осуществления и облегчения их понимания, нижеследующее описание также имеет целью более подробное пояснение принципиальных основ вычислительного устройства.
Основное внимание в описанных вариантах осуществления уделяется определению минутного сердечного выброса, однако, с помощью устройства и способов в соответствии с настоящим изобретением можно также устанавливать другие физиологические параметры, в частности, параметры, характеризующие сердечную функцию, например, фракции выброса или ударный объем сердца.
Как показано на Фиг.1, в настоящем изобретении используются показания измерений, представляющие собой артериальное или аортальное давления P, при этом, показания обеспечиваются либо в виде необработанных данных (например, напряжения или электрического тока) из подходящего датчика или уже в предварительно обработанном состоянии. Выполнение фактических измерений можно осуществлять различными способами, например, с применением подходящего артериального катетерного узла с измерительным преобразователем давления или с применением неинвазивных измерений артериального давления, и широко известно в технике, и не относится к самому способу согласно изобретению. Измеренное давление зависит от времени t и получается в результате суперпозиции нескольких сердечных сокращений bk(t - tk), начиная с момента времени tk. Вследствие отражений в артериальном дереве, в получаемое давление могут вносить вклад несколько сердечных сокращений, что можно описать следующей функцией:
P ( t ) = k b k ( t t k ) ( 1 )
Figure 00000001
В общем, все сокращения могут различаться между собой, но, для ограниченного периода времени, существует такое среднее сокращение b(t), что функцию в уравнении (1) можно с достаточной точностью описать следующим образом
P ( t ) = k b k ( t t k ) ( 2 )
Figure 00000002
k b ( t t k ) ( 3 )
Figure 00000003
Поскольку частота HR сердечных сокращений здоровых живых существ обычно не изменяется значительно в течение ограниченного интервала времени (например, от 10 с до 200 с), то сокращения следуют одно за другим почти равномерно, и моменты, когда происходят сокращения, определяют выражением tk = k/HR.
Однако во время сильной аритмии сердечные сокращения происходят очень нерегулярно. Наихудшим сценарием является беспорядочное наступление событий независимых сокращений, что можно описать пуассоновским процессом, т.е. интервалы между последовательными сокращениями распределены случайным образом в соответствии с нижеследующим экспоненциальным распределением q:
q(tk -tk-1) = HR * exp(-HR * (tk -tk-1)).
В данном случае, суперпозиция согласно уравнению (3) является процессом Кемпбелла, описанным в работе: [N.R. Campbell, “The study of discontinuous phenomena”. Proc. Camp. Philos. Soc. Math. Phys. Sci, 15:117-136, 1909].
В соответствии с настоящим изобретением, сердечную функцию можно оценить в двух состояниях, т.е. при ритмичной и неритмичной сердечной активности, с помощью среднего, дисперсии и спектральной плотности измеренной функции P(t) давления.
Среднее артериальное давление <P> выводят интегрированием измеренного давления P(t) по соответствующему интервалу T времени, т.е.
M A P = < P > = 1 T 0 T P ( t ) d t ( 4 )
Figure 00000004
Дисперсию давления вычисляют из δP(t) = P(t) - < P>, так что:
< ( δ P ( t ) ) 2 > = 1 T 0 T ( P ( t ) < P > ) 2 d t ( 5 )
Figure 00000005
Спектральная плотность является Фурье-преобразованием автокорреляции от P(t) и, следовательно, определяется следующим образом:
S ( ω ) = 4 0 cos ( ω τ ) < δ P ( t ) δ P ( t τ ) > d τ ( 6 )
Figure 00000006
В случае аритмии, аритмические состояния можно описать приложениями уравнений (4)-(6) к процессу Кемпбелла, что дает, в результате, следующие функции:
< P > = H R 0 b ( t ) d t ( 7 )
Figure 00000007
< ( δ P ) 2 > = H R 0 b 2 ( t ) d t ( 8 )
Figure 00000008
S ( ω ) = 2 H R | b ˜ ( ω ) | 2 ( 9 )
Figure 00000009
где Фурье-преобразование b ˜ ( ω )
Figure 00000010
среднего сокращения b(t) получено как:
b ˜ ( ω ) = 0 b ( t ) e i ω t d t ( 10 )
Figure 00000011
Для ритмических состояний с периодически следующими сердечными сокращениями, применение уравнений (4)-(6) дает, в результате:
< P > = H R 0 b ( t ) d t ( 11 )
Figure 00000012
< ( δ P ) 2 > = H R 0 b 2 ( t ) d t < P > 2 ( 12 )
Figure 00000013
S ( ω ) = 2 α H R | b ˜ ( ω ) | 2 , п р и α > 1 ( 13 )
Figure 00000014
Параметр α зависит от изменчивости частоты сердечных сокращений в течении времени, намного большего, чем T. Для практических реализаций, α можно определить путем эмпирических исследований или простой оценкой с учетом принципов, изложенных в настоящей заявке.
Объединение разных условий можно сделать на основе следующих соображений. Уравнения (7)-(9) и (11)-(13) имеют одинаковую структуру. В частности, α в уравнении (13) уменьшается со снижением точности в периодичности сокращений b(t). И, наконец, для хаотично происходящих сокращений, α стремится к нижнему пределу α = 1, и уравнения (13) и (11) становятся идентичными. Уравнения (12) и (8) также могут быть объединены. Поэтому, вводят функцию σ(α), которая стремится к 0, когда α стремится к 1, и σ(α) стремится к 1 для α >> 1. Данная зависимость изображена, в качестве примера, на Фиг.2.
В результате, ритмичная, аритмичная и промежуточная работа сердца описывается следующими выражениями:
< P > = H R 0 b ( t ) d t ( 14 )
Figure 00000015
< ( δ P ) 2 > = H R 0 b 2 ( t ) d t σ ( α ) < P > 2 ( 15 )
Figure 00000016
S ( ω ) = 2 α H R | b ˜ ( ω ) | 2 ( 16 )
Figure 00000017
где α и σ ограничены следующим образом:
α σ (альфа)
аритмичная 1 0
промежуточная ≥1 > 0 и < 1
ритмичная >1 1
Кроме того, полученные данные можно интерпретировать так, чтобы иметь возможность характеризовать среднее сокращение через его амплитуду A и продолжительность d.
A : = b 2 ( t ) d t b ( t ) d t ( 17 )
Figure 00000018
d : = b ( t ) d t 2 b 2 ( t ) d t ( 18 )
Figure 00000019
Таким образом, если принять, что волна является прямоугольным импульсом,
b(t) = A, при 0 ≤ t ≤ d (19)
b(t) = 0, при других t
То ввод уравнений (14)-(16) дает:
A e f f = < ( δ P ) 2 > + σ < P > 2 < P > ( 20 )
Figure 00000020
d e f f = S ( 0 ) 2 α ( < ( δ P ) 2 > + σ < P > 2 ( 21 )
Figure 00000021
Здесь индекс «eff» введен для обозначения того, что Aeff и deff являются эффективными значениями, реконструированными из измеренного сигнала P(t) давления. Следует подчеркнуть, что упомянутая реконструкция возможна во всех состояниях, даже если сердечные сокращения не обнаружимы на кривой P(t) изменения давления. Кроме того, произведение амплитуды Aeff и продолжительности deff дает, в результате, площадь под эффективным сокращением Feff, которая составляет
F e f f = A e f f d e f f = S ( 0 ) 2 α < P > , ( 22 )
Figure 00000022
даже если сокращения не представляются в виде прямоугольного импульса.
Кроме того, отношение
λ e f f = 2 α < P > 2 S ( 0 ) ( 23 )
Figure 00000023
дает приближение частоты сердечных сокращений во всех обстоятельствах.
В соответствии с вариантами осуществления настоящего изобретения, полученные параметры используют для получения характеристик сердечной функции пациента. В частности, количественные величины Aeff, deff, λeff и их комбинации полезны для получения таких характеристик, как ударный объем SV сердца, минутный сердечный выброс CO, фракция EF выброса и других.
В частности, минутный сердечный выброс CO можно получить из выражения
C O = H R A e f f d e f f = H R S ( 0 ) 2 α < P > ( 24 )
Figure 00000024
Для проверки значений, полученных по способу согласно изобретению, выполнили сравнение с известным стандартным опорным способом. С этой целью, минутный сердечный выброс измерили по настоящему изобретению, а также установленным термодилюционным способом в соответствии с ЕР-А-0 637 932.
Результаты данного сравнения представлены на Фиг.3. На данной фигуре, абсцисса представляет минутный сердечный выброс литрах в минуту, определенный опорным способом, и ордината представляет минутный сердечный выброс литрах в минуту, определенный способом согласно изобретению. Соответственно, имеет место хорошее согласование между результатами, полученными для минутного сердечного выброса при обоих измерениях.
Кроме того, из параметров, найденных в соответствии со способом согласно изобретению несложно получить также другие сердечные функции, ударный объем сердца и фракцию выброса.
Ударный объем SV сердца получают делением минутного сердечного выброса на частоту сердечных сокращений HR; то есть: SV = Aeff * deff.
Кроме того, величина deff*HR соответствует фракции EF выброса. В зависимости от местоположения измерения давления (легочная артерия или системная артерия), показания которого используют, упомянутая фракция выброса может быть фракцией выброса либо левого, либо правого желудочка.
Ниже приведено описание дополнительных вариантов осуществления изобретения.
Оптимальное упрощение способа согласно изобретению можно осуществить, если требуется спектральная плотность для частот f, близких к ω = 2πf = 0 или равных данной частоте. Тогда, в соответствии с уравнением (6), можно воспользоваться дисперсией давления P для аппроксимации
S(0) ≈ 2 * (<P2> - <P>2) (25)
= 2 * <(δP)2> (26)
Данное упрощение можно также использовать в других выражениях, в частности, в уравнении (24).
Кроме того, возможна поправка на аритмию, так как коэффициент 1/α может зависеть от изменчивости частоты сердечных сокращений.
Кроме того, на коэффициент 1/α может влиять центральное венозное давление CVP. Поэтому, чтобы установить α, можно учитывать CVP либо вводом данных измерения непосредственно в форме, обеспечиваемой источником измерения CVP, либо вводом пользователем. В общем, измерение CVP, по существу, широко известно в данной области техники и не относится к способу согласно изобретению.
Влияние изменения частоты сердечных сокращений в настоящем изобретении можно выявить определением числа сердечных сокращений в выборке данных давления и эффективной частоты λeff сердечных сокращений, определяемой из уравнения (23). В частности, отношение HR и λeff дает уравнение
α = H R S ( 0 ) 2 < P > 2 ( 27 )
Figure 00000025
Поэтому возможна настройка системы контроля пациента, реализующей настоящее изобретение, на текущую изменчивость частоты сердечных сокращений.
Спектральную плотность S(0) для ω = 2πf = 0 можно также определить иначе, например,
a) с помощью спектральной плотности для частот, стремящихся к нулю, т.е. S(0) = limω→0S(ω) = limt→0S(2πf), или
b) подгонкой соответствующей функции (например, S(ω) = S(0)/[1 + (ωτ)2]n+1) к измеренному спектру. В данном случае, в предпочтительном варианте следует пренебречь локальным максимумом, соответствующим частоте сердечных сокращений.
На Фиг.4 показана общая схема устройства в соответствии с вариантом осуществления настоящего изобретения. Артериальный катетер 1 снабжен датчиком давления для измерения артериального давления. Датчик давления катетера 1 соединен, через измерительный преобразователь 2 давления, с входным каналом 3 устройства 4 контроля пациента. Кроме проксимального порта 7, применяемого для получения сигнала давления, катетер 1 может содержать, по меньшей мере, один другой проксимальный порт 8 для выполнения дополнительных функций, например, измерений температуры крови или чего-то подобного. Устройство 4 контроля пациента содержит соответствующее средство хранения для хранения показаний артериального давления с течением времени и выполнения функции обрабатывающего хранилища.
Устройство контроля пациента содержит также вычислительное средство 9, которое может содержать экземпляр 9 обработки цифровых сигналов, который запрограммирован на выполнение вычислений в соответствии с вышеописанными уравнениями, дисплей 5 для визуализации найденных параметров (в виде численных величин, графически или обоими способами) и элементы 10 управления для управления упомянутым устройством. Кроме того, найденные параметры могут сохраняться на носителе для записи информации. С этой целью, устройство 4 контроля пациента может содержать различные интерфейсные порты для подключения периферийного оборудования.
В частности, предпочтительный вариант осуществления нуждается только в одном датчике артериального давления. Хотя показано, что датчик является инвазивным, использующим упомянутый катетер 1, но, взамен, можно применить неинвазивный датчик давления. Вместо показанного артериального катетера 1 (или в дополнение к нему), можно также применить катетер в легочной артерии, в частности, если требуется определить фракцию выброса из правого желудочка.
Полезными, в частности, могут быть разные варианты осуществления сборной конструкции инвазивного датчика давления. Давление либо может передаваться гидравлически к проксимальному катетерному порту 7 и измеряться внешним датчиком, либо может быть измерено непосредственно в намеченном месте датчиком, установленным на конце или вблизи конца катетера. Возможно применение емкостных датчиков, пьезоэлектрических датчиков или оптических датчиков давления (например, на базе интерферометра Фабри-Перо).
Как видно из процедуры, представленной на Фиг.1, первый сигнал P давления измеряют упомянутым устройством, показанным на Фиг.4, например, в бедренной артерии, лучевой артерии, плечевой артерии или легочной артерии, или любом другом подходящем артериальном сосуде, находящемся позади по кровотоку от левого или правого желудочка, соответственно.
С использованием уравнения (6), вычислительное устройство 9 вычисляет среднее артериальное давление, дисперсию и спектральную плотность для давления, измеренного в течение соответствующего интервала времени (например, от 10 с до 200 с). Для вычисления спектральной плотности можно применить вышеозначенное средство для быстрого преобразования Фурье.
Кроме того, для ω = 0 и α = 1, вычислительное средство 9 использует уравнение (22) для вычисления эффективной площади Feff. Зависимость между эффективной площадью Feff и ударным объемом SV сердца дается отношением 1/α, где последнее можно определить эмпирически или, в качестве альтернативы, обращением к опорным результатам измерения SV (например, методом транспульмонарной термодилюции) для пациента, проходящего лечение. Чтобы выполнить данные опорные измерения SV, устройство 4 контроля пациента может быть соответственно оборудовано, например, посредством обеспечения дополнительных входных каналов для показаний измерения методом термодилюции и реализации подходящих термодилюционных алгоритмов в вычислительном средство 9, как, по существу, известно в данной области.
Знание SV позволяет определять CO согласно CO = HP * SV, где частоту HR сердечных сокращений можно также, по желанию, определять по давлению и спектральной плотности или другими способами.
Хотя варианты осуществления, подробно описанные выше, основаны на измерении артериального давления, изобретение может быть выполнено на основе плетизмографических измерений, как описано в водной части описания. Фиг.5 показывает схему с оптоплетизмографическим датчиком-зажимом 11 пальца, использующим фотометрическое средство для измерения проходящей интенсивности света и передающим соответствующий сигнал к входному каналу 3 устройства 4 контроля пациента. Устройство 4 контроля пациента содержит подходящее средство хранения для хранения показаний фотометра по времени и выполнения функций обрабатывающего хранилища.
Контролирование пациента также содержит вычислительное средство 9, которое может включать в себя экземпляр 9 обработки цифровых сигналов, который запрограммирован выполнять вычисления в соответствии с уравнениями, описанными выше, причем кривая изменения давления и производные от нее члены уравнения заменяются соответствующими членами уравнения, основанными на плетизмографическом измерении.
Как описано выше в других вариантах осуществления, также обеспечиваются дисплей 5 для визуализации определенных параметров (в виде числовых значений, графически или обоих) и элементы 10 управления для работы упомянутого устройства. Более того, определенные параметры могут быть сохранены на носитель записи и/или распечатаны.
Вариант осуществления, изображенный на Фиг.6, в целом представлен в виде варианта осуществления по Фиг.5, но дополнительно содержит канал 13 инжекции для ввода пилюли температурой ниже температуры крови через центральный венозный катетер 14 к кровотоку в верхней полой вене пациента, и датчик 15 температуры для измерения температуры артериальной крови с течением времени. Температура артериальной крови и сигнал, указывающий температуру введенной пилюли и время введения предоставляются устройству 4 контроля пациента посредством дополнительных входных каналов 16 и 17, соответственно. Средства памяти устройства 4 контроля пациента записывают температуру артериальной крови, измеренную с течением времени, для определения от нее кривой термодилюции. Устройство 4 контроля пациента выполнено с возможностью определения, с использованием, по существу, известных алгоритмов термодилюции, по меньшей мере, одного сравнительного значения физиологического параметра по кривой разведения, чтобы сделать возможным калибровку системы.

Claims (39)

1. Устройство для определения, по меньшей мере, одного физиологического параметра пациента, при этом упомянутое устройство содержит:
- устройство датчика, выполненное с возможностью обеспечения показаний кровяной переменной упомянутого пациента,
- средство памяти для хранения упомянутых показаний в виде кривой, представляющей упомянутую переменную по времени t,
- средства оценки, выполненные с возможностью определения среднего значения по упомянутой кривой и определения упомянутого, по меньшей мере, одного физиологического параметра с использованием упомянутого среднего значения,
отличающееся тем, что
упомянутые средства оценки дополнительно выполнены с возможностью
- определения, по меньшей мере, одного из спектральной плотности S(ω) упомянутой кривой и дисперсии упомянутой кровяной переменной,
- определения, по меньшей мере, одного моделирующего параметра, представляющего собой эффективное значение сердечного сокращения, с использованием упомянутого среднего значения и, по меньшей мере, одного из упомянутой спектральной плотности S(ω) и упомянутой дисперсии, при этом упомянутое эффективное значение выбрано из эффективной амплитуды Аeff упомянутого сердечного сокращения, эффективной продолжительности deff упомянутого сердечного сокращения и эффективной площади Feff под упомянутым сердечным сокращением, и
- определения упомянутого, по меньшей мере, одного физиологического параметра с использованием, по меньшей мере, одного упомянутого моделирующего параметра.
2. Устройство по п.1, в котором упомянутый, по меньшей мере, один физиологический параметр содержит, по меньшей мере, одно из ударного объема SV сердца, минутного сердечного выброса СО и фракции ЕF выброса.
3. Устройство по п.2, в котором упомянутые средства оценки выполнены с возможностью определения упомянутого ударного объема SV сердца в форме произведения первого моделирующего параметра, представляющего собой упомянутую эффективную амплитуду Аeff, и второго моделирующего параметра, представляющего собой упомянутую эффективную продолжительность deff.
4. Устройство по п.2, в котором упомянутые средства оценки выполнены с возможностью определения упомянутой фракции ЕF выброса в форме произведения моделирующего параметра, представляющего собой упомянутую эффективную продолжительность deff, и частоты HR сердечных сокращений упомянутого пациента.
5. Устройство по п.2, в котором упомянутые средства оценки выполнены с возможностью определения упомянутого минутного сердечного выброса СО в форме произведения первого моделирующего параметра, представляющего собой упомянутую эффективную амплитуду Аeff, второго моделирующего параметра, представляющего собой упомянутую эффективную продолжительность deff, и приближенной величины частоты сердечных сокращений упомянутого пациента.
6. Устройство по п.5, в котором упомянутая приближенная величина упомянутой частоты сердечных сокращений выбрана из фактически измеренной частоты HR сердечных сокращений и приближенной функции λeff, при этом упомянутая приближенная функция λeff содержит частное от деления делимого, содержащего квадрат среднего значения, на делитель, содержащий спектральную плотность S(ω) при ω=0.
7. Устройство по любому из предыдущих пунктов, в котором упомянутые средства оценки выполнены с возможностью применения параметра α коррекции при определении упомянутого моделирующего параметра, при этом упомянутый параметр α коррекции принимает значения, большие или равные 1, причем, чем выше упомянутые значения, тем меньше ритм сердца пациента отклоняется от ритмического состояния.
8. Устройство по п.7, в котором упомянутые средства оценки выполнены с возможностью применения монотонной корректирующей функции σ, зависящей от упомянутого параметра α коррекции и принимающей значения от 0 до 1, при этом упомянутая корректирующая функция σ принимает значение 0, если упомянутый параметр α коррекции равен 1, и упомянутая корректирующая функция σ принимает значение 1, при упомянутом параметре α коррекции, стремящемся к бесконечности.
9. Устройство по п.8, в котором упомянутая эффективная амплитуда Аeff обеспечивается как частное от деления делимого, содержащего сумму упомянутой дисперсии и произведения упомянутой корректирующей функции σ и квадрата среднего значения, и делитель, содержащий среднее значение.
10. Устройство по п.8, в котором упомянутая эффективная продолжительность deff обеспечивается как частное от деления делимого, содержащего спектральную плотность S(ω) при ω=0, на делитель, содержащий сумму упомянутой дисперсии и произведения упомянутой корректирующей функции σ и квадрата среднего значения.
11. Устройство по п.1, содержащее средство Фурье-преобразования для определения упомянутой спектральной плотности S(ω) в форме Фурье-преобразования автокорреляции упомянутой кривой.
12. Устройство по п.1, в котором спектральная плотность S(ω) при ω=0 обеспечивается в форме упомянутой дисперсии, умноженной на постоянный коэффициент.
13. Устройство по п.1, в котором упомянутый блок оценки дополнительно выполнен с возможностью определения сравнительной величины, по меньшей мере, одного из упомянутых физиологических параметров с использованием алгоритмов формы пульса.
14. Устройство по п.1, дополнительно содержащее
- средство для введения перемещающегося отклонения характерной физической величины в кровоток упомянутого пациента в первом местоположении кровообращения упомянутого пациента и
- средство датчика для измерения упомянутой физической величины во втором местоположении кровообращения упомянутого пациента с течением времени,
при этом упомянутое средство памяти выполнено с возможностью записи упомянутой физической величины, измеренной с течением времени в упомянутом втором местоположении, в виде кривой разведения, и упомянутый блок оценки выполнен с возможностью определения сравнительной величины, по меньшей мере, одного из упомянутых физиологических параметров по упомянутой кривой разведения с использованием алгоритмов разведения.
15. Устройство по п.13, в котором упомянутый блок оценки выполнен с возможностью применения упомянутой сравнительной величины для калибровки.
16. Устройство по п.15, в котором калибровка содержит определение, с применением упомянутой сравнительной величины, параметра σ коррекции, применяемого при определении упомянутого моделирующего параметра, при этом, упомянутый параметр σ коррекции принимает значения, большие или равные 1, причем чем выше упомянутые значения, тем меньше ритм сердца пациента отклоняется от ритмического состояния.
17. Устройство по п.13, в котором упомянутый блок оценки выполнен с возможностью отбрасывания и повторного вычисления упомянутого физиологического параметра, если разность между найденным физиологическим параметром и соответствующей сравнительной величиной превышает пороговое значение.
18. Устройство по любому из предыдущих пунктов, в котором упомянутое устройство датчика включает в себя устройство датчика давления, причем упомянутая кровяная переменная является артериальным давлением, упомянутая кривая, представляющая собой переменную по времени, является кривой Р(t) изменения давления по времени t и упомянутое среднее значение является средним артериальным давлением <Р>.
19. Устройство по любому из пп.1-17, в котором упомянутое устройство датчика включает в себя сенсорное устройство пульсовой оксиметрии и/или плетизмографии
20. Способ определения, по меньшей мере, одного физиологического параметра пациента, при этом упомянутый способ содержит следующие этапы:
- импортируют показания кровяной переменной пациента упомянутого пациента,
- сохраняют упомянутые показания в виде кривой, представляющей упомянутую кровяную переменную по времени t,
- определяют среднее значение по упомянутой кривой и определяют, по меньшей мере, один физиологический параметр с использованием упомянутого среднего значения,
отличающийся тем, что упомянутый способ дополнительно содержит следующие этапы
- определяют, по меньшей мере, одно из спектральной плотности S(ω) упомянутой кривой и дисперсии упомянутой кровяной переменной,
- определяют, по меньшей мере, один моделирующий параметр, представляющий собой эффективное значение сердечного сокращения, с использованием упомянутого среднего значения и, по меньшей мере, одного из упомянутой спектральной плотности S(ω) и упомянутой дисперсии, при этом упомянутое эффективное значение выбрано из эффективной амплитуды Аeff упомянутого сердечного сокращения, эффективной продолжительности deff упомянутого сердечного сокращения и эффективной площади Feff под упомянутым сердечным сокращением, и
- определяют упомянутый, по меньшей мере, один физиологический параметр с использованием, по меньшей мере, одного упомянутого моделирующего параметра.
21. Способ по п.20, в котором упомянутый, по меньшей мере, один физиологический параметр содержит, по меньшей мере, одно из ударного объема SV сердца, минутного сердечного выброса СО и фракции ЕР выброса.
22. Способ по п.21, в котором упомянутый ударный объем SV сердца определяют в форме произведения первого моделирующего параметра, представляющего собой упомянутую эффективную амплитуду Аeff, и второго моделирующего параметра, представляющего собой упомянутую эффективную продолжительность deff.
23. Способ по п.21, в котором упомянутую фракцию ЕF выброса определяют в форме произведения моделирующего параметра, представляющего собой упомянутую эффективную продолжительность deff, и частоты HR сердечных сокращений упомянутого пациента.
24. Способ по п.21, в котором упомянутый минутный сердечный выброс СО определяют в форме произведения первого моделирующего параметра, представляющего собой упомянутую эффективную амплитуду Аeff, второго моделирующего параметра, представляющего собой упомянутую эффективную продолжительность deff, и приближенной величины частоты сердечных сокращений упомянутого пациента.
25. Способ по п.24, в котором упомянутую приближенную величину упомянутой частоты сердечных сокращений выбирают из фактически измеренной частоты HR сердечных сокращений и приближенной функции λeff, при этом упомянутая приближенная функция λeff содержит частное от деления делимого, содержащего квадрат среднего значения, на делитель, содержащий спектральную плотность S(ω) при ω=0.
26. Способ по п.20, в котором, при определении упомянутого моделирующего параметра, применяют параметр α коррекции, при этом упомянутый параметр α коррекции принимает значения, большие или равные 1, причем чем выше упомянутые значения, тем меньше ритм сердца пациента отклоняется от ритмического состояния.
27. Способ по п.26, в котором применяют монотонную корректирующую функцию σ, зависящую от упомянутого параметра α коррекции и принимающую значения от 0 до 1, при этом упомянутая корректирующая функция σ принимает значение 0, если упомянутый параметр α коррекции равен 1, и упомянутая корректирующая функция σ принимает значение 1, при упомянутом параметре α коррекции, стремящемся к бесконечности.
28. Способ по п.27, в котором упомянутую эффективную амплитуду Аeff обеспечивают как частное, при этом делимое упомянутого частного от деления содержит сумму упомянутой дисперсии и произведения упомянутой корректирующей функции σ и квадрата среднего значения, и делитель упомянутого частного от деления содержит среднее значение.
29. Способ по п.27, в котором упомянутую эффективную продолжительность deff обеспечивают как частное от деления делимого, содержащего спектральную плотность S(ω) при ω=0 на делитель, содержащий сумму упомянутой дисперсии и произведения упомянутой корректирующей функции σ и квадрата среднего значения.
30. Способ по п.20, в котором упомянутую спектральную плотность S(ω) определяют в форме Фурье-преобразования автокорреляции упомянутой кривой.
31. Способ по п.20, в котором спектральную плотность S(ω) при ω=0 обеспечивают в форме упомянутой дисперсии, умноженной на постоянный коэффициент.
32. Способ по п.20, в котором определяют сравнительную величину, по меньшей мере, одного из упомянутых физиологических параметров с использованием алгоритмов формы пульса.
33. Способ по п.20, дополнительно содержащий следующие этапы
- вводят информацию о перемещающемся отклонении характерной физической величины, введенной в кровоток упомянутого пациента в первом местоположении кровообращения упомянутого пациента, и
- записывают показания измерения упомянутой физической величины во втором местоположении кровообращения упомянутого пациента с течением времени,
при этом упомянутые показания измерения упомянутой физической величины в упомянутом втором местоположении кровообращения упомянутого пациента записывают в виде кривой разведения и упомянутую сравнительную величину, по меньшей мере, одного из упомянутых физиологических параметров определяют по упомянутой кривой разведения с использованием алгоритмов разведения.
34. Способ по п.32, в котором упомянутую сравнительную величину применяют для калибровки.
35. Способ по п.34, в котором калибровка содержит этап определения, с применением упомянутой сравнительной величины, параметра α коррекции, применяемого при определении упомянутого моделирующего параметра, при этом упомянутый параметр α коррекции принимает значения, большие или равные 1, причем чем выше упомянутые значения, тем меньше ритм сердца пациента отклоняется от ритмического состояния.
36. Способ по п.32, в котором упомянутый физиологический параметр отбрасывают и повторно вычисляют, если разность между найденным физиологическим параметром и соответствующей сравнительной величиной превышает пороговое значение.
37. Способ по любому из пп.20-36, в котором упомянутая кровяная переменная является артериальным давлением, упомянутая кривая, представляющая собой переменную по времени t, является кривой Р(t) изменения давления по времени t и упомянутое среднее значение является средним артериальным давлением <Р>.
38. Способ по любому из пп.20-36, в котором импортированные показания являются показаниями, полученными вследствие методик плетизмографических и/или пульсооксиметрических измерений.
39. Физический носитель хранения, содержащий хранимую на нем компьютерную программу, которая, при исполнении в компьютерной системе, предписывает компьютерной системе выполнять способ по одному из пп.20-38.
RU2009104115/14A 2008-02-07 2009-02-06 Устройство и способ для определения физиологического параметра RU2498768C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP08101369A EP2087836B1 (en) 2008-02-07 2008-02-07 Apparatus and method for determining a physiological parameter
EP08101369.0 2008-02-07

Publications (2)

Publication Number Publication Date
RU2009104115A RU2009104115A (ru) 2010-08-20
RU2498768C2 true RU2498768C2 (ru) 2013-11-20

Family

ID=39535337

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009104115/14A RU2498768C2 (ru) 2008-02-07 2009-02-06 Устройство и способ для определения физиологического параметра

Country Status (7)

Country Link
US (1) US20090204012A1 (ru)
EP (1) EP2087836B1 (ru)
JP (1) JP5449793B2 (ru)
CN (1) CN101502414B (ru)
BR (1) BRPI0805530E2 (ru)
ES (1) ES2385602T3 (ru)
RU (1) RU2498768C2 (ru)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2281504A1 (en) * 2009-08-04 2011-02-09 Pulsion Medical Systems AG Apparatus and method for determining a physiological parameter
CN102647941B (zh) * 2009-10-06 2015-11-25 皇家飞利浦电子股份有限公司 用于执行远程光电容积描记的方法和系统
CN102834055B (zh) * 2010-09-01 2015-04-08 株式会社东芝 医用图像处理装置
US9622666B2 (en) 2011-12-14 2017-04-18 California Institute Of Technology Noninvasive systems for blood pressure measurement in arteries
EP2793691B1 (en) 2011-12-22 2022-11-02 California Institute of Technology Intrinsic frequency hemodynamic waveform analysis
US9060745B2 (en) 2012-08-22 2015-06-23 Covidien Lp System and method for detecting fluid responsiveness of a patient
US8731649B2 (en) 2012-08-30 2014-05-20 Covidien Lp Systems and methods for analyzing changes in cardiac output
US9357937B2 (en) 2012-09-06 2016-06-07 Covidien Lp System and method for determining stroke volume of an individual
US9241646B2 (en) 2012-09-11 2016-01-26 Covidien Lp System and method for determining stroke volume of a patient
US20140081152A1 (en) 2012-09-14 2014-03-20 Nellcor Puritan Bennett Llc System and method for determining stability of cardiac output
US8977348B2 (en) 2012-12-21 2015-03-10 Covidien Lp Systems and methods for determining cardiac output
US9949696B2 (en) * 2013-03-14 2018-04-24 Tensys Medical, Inc. Apparatus and methods for computing cardiac output of a living subject via applanation tonometry
CA2927671A1 (en) * 2013-10-18 2015-04-23 California Institute Of Technology Intrinsic frequency analysis for left ventricle ejection fraction or stroke volume determination
WO2015112512A1 (en) 2014-01-21 2015-07-30 California Institute Of Technology Portable electronic hemodynamic sensor systems
KR101666106B1 (ko) 2014-03-13 2016-10-14 울산대학교 산학협력단 체액 분포 모니터링 방법 및 장치 및 혈장량 측정 방법 및 장치
CN104188663B (zh) * 2014-09-11 2016-10-26 康泰医学系统(秦皇岛)股份有限公司 一种人体生理参数采集有效值自启动方法及其系统
WO2016130083A1 (en) 2015-02-09 2016-08-18 Nitto Denko Corporation Method and apparatus for deriving mean arterial pressure of a subject
CN107708531A (zh) * 2015-05-15 2018-02-16 莱昂斯加特科技公司 从生理数据中确定生理参数的方法
JP2019503824A (ja) * 2015-12-07 2019-02-14 メディシ テクノロジーズ,エルエルシー 観察的心不全モニタリングシステム
CN105748056B (zh) * 2016-04-01 2018-11-27 广州视源电子科技股份有限公司 血压检测系统
GB2557199B (en) * 2016-11-30 2020-11-04 Lidco Group Plc Haemodynamic monitor with improved filtering
SG10202112770TA (en) 2016-12-15 2021-12-30 Baxter Int System and method for monitoring and determining patient parameters from sensed venous waveform
US20180214033A1 (en) * 2017-02-02 2018-08-02 Edwards Lifesciences Corporation Hemodynamic monitor providing enhanced cardiac output measurements
US11039754B2 (en) 2018-05-14 2021-06-22 Baxter International Inc. System and method for monitoring and determining patient parameters from sensed venous waveform
CN110755055A (zh) * 2019-10-18 2020-02-07 上海掌门科技有限公司 一种用于确定脉搏波形的波形评价信息的方法与设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5526817A (en) * 1992-04-30 1996-06-18 Pulsion Verwaltungs Gmbh & Co. Medizintechnik Kg Process for determining a patient's circulatory fill status
US5685316A (en) * 1996-04-08 1997-11-11 Rheo-Graphic Pte Ltd. Non-invasive monitoring of hemodynamic parameters using impedance cardiography
RU2252692C2 (ru) * 2003-07-25 2005-05-27 ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ НАУЧНО-ПРОИЗВОДСТВЕННО-КОНСТРУКТОРСКАЯ ФИРМА "Медиком МТД" Способ исследования функционального состояния головного мозга, устройство для исследования функционального состояния головного мозга и способ измерения подэлектродного сопротивления
RU2258455C2 (ru) * 2003-11-05 2005-08-20 ЗАО "Транзас" Способ мониторинга функционального состояния человека

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5390679A (en) * 1993-06-03 1995-02-21 Eli Lilly And Company Continuous cardiac output derived from the arterial pressure waveform using pattern recognition
GB9600209D0 (en) * 1996-01-05 1996-03-06 Monitoring Tech Ltd Improved method and apparatus for the measurement of cardiac output
US5813993A (en) * 1996-04-05 1998-09-29 Consolidated Research Of Richmond, Inc. Alertness and drowsiness detection and tracking system
DE19814371A1 (de) 1998-03-31 1999-10-14 Pulsion Verwaltungs Gmbh & Co Verfahren zur in-vivo Bestimmung der Compliance-Funktion und des systemischen Blutflusses eines Lebewesens und Vorrichtung zur Durchführung der Verfahren
AUPQ420599A0 (en) * 1999-11-24 1999-12-16 Duncan Campbell Patents Pty Ltd Method and apparatus for determining cardiac output or total peripheral resistance
US7422562B2 (en) * 2003-12-05 2008-09-09 Edwards Lifesciences Real-time measurement of ventricular stroke volume variations by continuous arterial pulse contour analysis
DE102004024334A1 (de) * 2004-05-17 2005-12-22 Pulsion Medical Systems Ag Vorrichtung zur Ermittlung eines hämodynamischen Parameters
US20060167361A1 (en) * 2005-01-27 2006-07-27 Bennett Tommy D Method and apparatus for continuous pulse contour cardiac output
US20070112275A1 (en) * 2005-08-15 2007-05-17 Cooke William H Medical Intervention Indicator Methods and Systems
US7539532B2 (en) * 2006-05-12 2009-05-26 Bao Tran Cuffless blood pressure monitoring appliance
EP1884189A1 (en) * 2006-08-03 2008-02-06 Pulsion Medical Systems AG Apparatus and method for determining a physiologic parameter of a patient applying fourier transformation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5526817A (en) * 1992-04-30 1996-06-18 Pulsion Verwaltungs Gmbh & Co. Medizintechnik Kg Process for determining a patient's circulatory fill status
US5685316A (en) * 1996-04-08 1997-11-11 Rheo-Graphic Pte Ltd. Non-invasive monitoring of hemodynamic parameters using impedance cardiography
RU2252692C2 (ru) * 2003-07-25 2005-05-27 ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ НАУЧНО-ПРОИЗВОДСТВЕННО-КОНСТРУКТОРСКАЯ ФИРМА "Медиком МТД" Способ исследования функционального состояния головного мозга, устройство для исследования функционального состояния головного мозга и способ измерения подэлектродного сопротивления
RU2258455C2 (ru) * 2003-11-05 2005-08-20 ЗАО "Транзас" Способ мониторинга функционального состояния человека

Also Published As

Publication number Publication date
RU2009104115A (ru) 2010-08-20
JP2009183715A (ja) 2009-08-20
CN101502414A (zh) 2009-08-12
BRPI0805530A2 (pt) 2009-10-06
BRPI0805530E2 (pt) 2010-01-26
JP5449793B2 (ja) 2014-03-19
ES2385602T3 (es) 2012-07-27
EP2087836A1 (en) 2009-08-12
EP2087836B1 (en) 2012-04-04
CN101502414B (zh) 2013-05-29
US20090204012A1 (en) 2009-08-13

Similar Documents

Publication Publication Date Title
RU2498768C2 (ru) Устройство и способ для определения физиологического параметра
US7785263B2 (en) Pressure-based system and method for determining cardiac stroke volume
US7651466B2 (en) Pulse contour method and apparatus for continuous assessment of a cardiovascular parameter
JP6669409B2 (ja) 血圧値を測定するための方法、機器及びコンピュータプログラム
EP1689294B1 (en) Arterial pressure-based, automatic determination of a cardiovascular parameter
EP2120689B1 (en) Method and device for measuring parameters of cardiac function
US9414755B2 (en) Method for estimating a central pressure waveform obtained with a blood pressure cuff
US20130053664A1 (en) Elimination of the effects of irregular cardiac cycles in the determination of cardiovascular parameters
US10349838B2 (en) Methods and apparatus for determining arterial pulse wave velocity
US20030036685A1 (en) Physiological signal monitoring system
US20100152592A1 (en) Assessment of Preload Dependence and Fluid Responsiveness
JP2012505679A (ja) 血圧の非侵襲的測定のためのシステムおよび装置
EP2967368A1 (en) Apparatus and methods for computing cardiac output of a living subject via applanation tonometry
Yang et al. Estimation and validation of arterial blood pressure using photoplethysmogram morphology features in conjunction with pulse arrival time in large open databases
EP2281504A1 (en) Apparatus and method for determining a physiological parameter
US20230263476A1 (en) Method and apparatus for estimating the reliability of cardiac output measurements
US20230371824A1 (en) Assessing a cardiac condition independently of ppg waveform amplitude analysis
Rajagopal et al. Estimation of Non-invasive Cuff-less Blood Pressure Using the Photoplethysmogram Signal
Cox et al. From peripheral finger-derived pulse waveforms to aortic pressure waveform features: an application of a generalized transfer function

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20150207