RU2496980C2 - Способ получения и использования продуктов скважинной гидродобычи и устройство для его осуществления - Google Patents

Способ получения и использования продуктов скважинной гидродобычи и устройство для его осуществления Download PDF

Info

Publication number
RU2496980C2
RU2496980C2 RU2012128207/03A RU2012128207A RU2496980C2 RU 2496980 C2 RU2496980 C2 RU 2496980C2 RU 2012128207/03 A RU2012128207/03 A RU 2012128207/03A RU 2012128207 A RU2012128207 A RU 2012128207A RU 2496980 C2 RU2496980 C2 RU 2496980C2
Authority
RU
Russia
Prior art keywords
clay
sand
hydraulic
water
gravity
Prior art date
Application number
RU2012128207/03A
Other languages
English (en)
Other versions
RU2012128207A (ru
Inventor
Владимир Иванович Лунёв
Александр Иванович Усенко
Игорь Михайлович Иванюк
Игорь Борисович Бондарчук
Original Assignee
Владимир Иванович Лунёв
Александр Иванович Усенко
Игорь Михайлович Иванюк
Игорь Борисович Бондарчук
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Владимир Иванович Лунёв, Александр Иванович Усенко, Игорь Михайлович Иванюк, Игорь Борисович Бондарчук filed Critical Владимир Иванович Лунёв
Priority to RU2012128207/03A priority Critical patent/RU2496980C2/ru
Publication of RU2012128207A publication Critical patent/RU2012128207A/ru
Application granted granted Critical
Publication of RU2496980C2 publication Critical patent/RU2496980C2/ru

Links

Images

Landscapes

  • Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)
  • Physical Water Treatments (AREA)

Abstract

Изобретение относится к разделению твердых материалов с помощью жидкостей, а именно к промывке гранулированных, порошкообразных или кусковых материалов, и может найти применение для первичного обогащения и дообогащения полезных ископаемых в условиях добычного полигона при скважинной гидродобыче. Способ получения и использования продуктов скважинной гидродобычи включает бурение добычных скважин, гидромониторное разрушение массива горных пород в залежи полезного ископаемого, гидроподъем по скважине на дневную поверхность материала горных пород, гидротранспортирование материала горных пород и выдачу его в виде вертикального веерообразного потока пульпы на карту намыва, улавливание из потока пульпы тяжелой рудосодержащей фракции, сток гидросмеси песка и глины по дренажному каналу в пруд-отстойник, осветление воды в пруде-отстойнике, возврат осветленной воды в оборотную схему водоснабжения добычных скважин. После гравитационного разделения на карте намыва фракций горных пород, турбулентный поток гидросмеси песка и глины по спиральной траектории со стоковой части карты намыва подается самотеком тангенциально в гидроциклон, где песок осаждается в зумпф-накопитель, откуда он откачивается насосом. Водоглиняная смесь подается самотеком в коагуляционную емкость, где под воздействием сил гравитации, физического поля и химического реагента происходит ускоренное осаждение глины в зумпф-накопитель, откуда она откачивается насосом. Осветленная вода подается самотеком в оборотную схему водоснабжения добычных скважин. Выделенная фракция песка подается на забой добычных скважин в качестве абразивного компонента мониторной струи и используется для разупрочнения и дезинтеграции крепких горных пород. Выделенная фракция глины используется в бурении добычных скважин в составе буровых и тампонажных растворов. Способ осуществляют с помощью устройства, включающего добычную скважину, транспортный пульпопровод, карту намыва, улавливатель тяжелой рудосодержащей фракции, систему транспортировки гидросмеси песка и глины. Содержит гидроциклон и коагуляционную емкость, выполненные в земле, рядом с боковым бортом карты намыва. Стенка торцевого борта стоковой части карты намыва выполнена в форме раскрывающейся ветви спирали, центр которой совпадает с центром гидроциклона. Технический результат - повышение эффективности первичного обогащения полезных ископаемых на добычном полигоне при скважинной гидродобыче. 2 н. и 6 з.п. ф-лы, 4 ил.

Description

Изобретение относится к разделению твердых материалов с помощью жидкостей, а именно к промывке гранулированных, порошкообразных или кусковых материалов с помощью гидравлических классификаторов, и может найти применение для первичного обогащения полезных ископаемых при скважинной гидродобыче (СГД).
Известны гравитационные способы обогащения твердых полезных ископаемых (см., например, В.Н. Шохин и др. Гравитационные методы обогащения. М.: Недра, 1980 г.; Горная энциклопедия, Том 2, стр.157-160. Изд-во «СЭ», 1986 г., и др.). Сущность указанных способов состоит в разделении минералов по плотности в поле силы тяжести или центробежных сил для отделения пустой породы и получения концентрата. При этом основными факторами разделения при гравитационном обогащении являются динамические и статические воздействия воды, суспензий или воздуха.
Среди гравитационных способов обогащения полезных ископаемых важное место занимает промывка (см., например, В.В. Троицкий. Промывка полезных ископаемых. М.: Недра, 1978 г.; Горная энциклопедия. Том 4, стр.254-255. Изд-во «СЭ», 1989 г., и др.). Промывка - это процесс гравитационного обогащения полезных ископаемых, основанный на удалении примесей, переводе примесей во взвешенное состояние воздействием потока воды и механизмов и отделении полученной массы от зернистого материала. Существует несколько способов промывки, в том числе посредством слива на лотках и желобах, грохочением, скруббированием и т.п. Промывка, а равным способом и другие гравитационные способы широко используются для обогащения руд черных, цветных, благородных и редких металлов, драгоценных камней, угля, строительных минералов и других полезных ископаемых.
Известен напорный гидравлический транспорт - технологический процесс перемещения твердых материалов, например дезинтегрированных горных пород и полезных ископаемых, песков и песчано-гравийных смесей и др. потоков воды (см., например, Смолдырев А.Е. Трубопроводный транспорт. М.: 1980 г.; Горная энциклопедия. Том 2, стр.36-37. Изд-во «СЭ», 1986 г., и др.). Его сущность состоит в том, что гидросмесь, т.е. смесь воды и горных пород, транспортируется по трубопроводу при избыточном давлении, создаваемом насосным оборудованием. При этом поток гидросмеси в трубопроводе, как правило, носит турбулентный режим с тем, чтобы обеспечить одинаковую плотность и скорость перемещения потока гидросмеси по всему сечению трубопровода и тем самым избежать осаждения породы в донной части.
Существуют сочетанные способы гравитационного разделения твердых компонентов пульпы, в частности руды, песка и глины, с использованием дополнительного фактора действия - физического или химического.
В практике обогащения редкометальной руды на Забайкальском ГОКе применялись 2 схемы оборотного водоснабжения: внутреннего и внешнего.
При внутреннем водообороте руда после измельчения подвергалась двухстадийному гидроциклонированию для отмывки песковой фракции, проходила стадию сгущения в сгустителе П-30, с получением песков и слива, который направлялся во второй сгуститель П-30 для получения осветленной воды и отвальных шламов по схеме, изображенной на фиг.1.
Таким образом, на фабрике была разработана и внедрена схема осветления внутренних оборотных вод методом отстаивания с применением флокулянта полиакриламида (ПАА) - высокомолекулярного соединения с молекулярной массой 3·106-10·107 (неионогенный карбоцепной полимер).
ПАА растворяются в воде при температуре 70-80°С и тщательном перемешивании. В водных растворах ПАА постепенно гидролизуется до аммониевой соли полиакриловой кислоты.
Акриламид получают при взаимодействии натриевой соли акриловой кислоты с серной кислотой. Для получения ПАА его полимеризуют в присутствии инициаторов - органических перекисей или норсульфатов. Применяют ПАА в виде 0,05%-ного раствора. Сначала готовят 1%-ный, при температуре 60-80°С, который затем разбавляют до 0,05%-ного. На фабрике вначале применялся ПАА в виде гелеобразной массы с содержанием основного вещества в количестве 8%. Но применение его в такой форме вызывало большие трудности при растворении и требовало увеличения каскада растворных емкостей, что приводит к снижению эффективности его действия.
Появление гранулированного ПАА позволило устранить вышеуказанные недостатки, а также снизить эксплуатационные затраты на хранение, транспортировку и приготовление рабочих растворов, а также значительно улучшить санитарные условия на рабочих местах в отделении приготовления реагентов. Расход ПАА подбирался - в начале в лабораторных условиях и затем в промышленных. Как было установлено, он в значительной мере зависит от крупности и минерального состава взвесей в сливе 1-го сгустителя и колеблется в пределах 2,0-3,0 мг/м3. Оборотная очищенная вода применялась в технологическом процессе.
Внешний водооборот не предусматривал применение ПАА, и там применялись другие реагенты: сернокислое железо FeSO4 и известь СаО. Оборотная вода, очищенная в хвостохранилище от механических взвесей в виду высокой концентрации различных реагентов в технологическом процессе не применялась, а использовалась в нетехнологических операциях - на уплотнении сальников насосов, транспортировании отвальных продуктов, охлаждении насосов. Реализованный способ обогащения руды, фрагментарно опубликован в специальной литературе:
Л.В. Милованов, Б.П. Краснов. Методы химической очистки сточных вод горнорудных предприятий цветной металлургии. Изд-во «Недра», 1967;
Водоснабжение и очистка сточных вод при разработке россыпных месторождений. М., «Недра», 1975. - Авт. В.В. Назаров, Ю.М. Чикин, В.Р. Личаев, А.П. Курылев;
Вовк Н.Е. Оборотное водоснабжение и подготовка хвостов к складированию. - М., «Недра», 1977;
Гидравлическое складирование хвостов обогащения: Справочник / В.И. Кибирев, Г.А. Райлян, Г.Т. Сазонов и др. - М.: «Недра», 1991.
При СГД руды в некоторых случаях возникает необходимость решения триединой задачи: первичного обогащения руды, извлечения попутных твердых компонентов и осветление оборотной и утилизированной воды. Обычно (В.Ж. Аренс и др., 1980; Ю.В. Либер, 1996; Е.Н. Левченко и др., 1996; Н.И. Бабичев и др., 1996) для этих целей проводят промывку руды и отстаивание оборотной воды в прудах-отстойниках. Известен «Способ обогащения твердых полезных ископаемых при скважинной гидродобыче…» по патенту РФ №2431527, который выбираем за прототип.
В способе-прототипе первичное обогащение твердых полезных ископаемых в условиях добычного полигона при скважинной гидродобыче происходит посредством гравитационного разделения дезинтегрированных полезных ископаемых и вмещающих горных пород в текучей жидкой среде - потоке пульпы, выдаваемой добычной скважиной на карту намыва. Способ включает создание в транспортном пульпопроводе напорного потока пульпы, которому придают в поперечном сечении удлиненную форму, вытянутую по вертикали, и ламинарное течение, затем по крутой баллистической траектории полета струи пульпы. В процессе падения на земную поверхность струю пульпы разделяют на несколько потоков, каждый из которых направляют на дальнейшую обработку, в частности дообогащение (тяжелая рудная фракция), складирование (средняя песковая фракция), утилизацию (легкая глинистая фракция), а жидкий компонент пульпы - воду, после пруда-отстойника - в оборотную систему добычного полигона.
Выполненные в 2006-2009 гг. Томской горнодобывающей компанией и Томской геологоразведочной экспедицией работы на Бакчарском проявлении железных руд, а также успешно осуществленный методом СГД отбор технологических проб рыхлой оолитовой железной руды, суммарной массой 1,7 тыс. тонн, на Полынянском и Бакчарском лицензионных участках, способствовали развитию способа-прототипа и его технической реализации. Особенности состава и свойств нерудных компонентов скважинной гидродобычи стимулировали поиск их полезного применения в процессе бурения добычных скважин и разрушения крепких массивов бакчарской железной руды.
По данным ОАО «Западно-Сибирский испытательный центр» (г. Новокузнецк, 2009 г.) пересчет результатов химического анализа кернового материала объединенной пробы на нормативный минеральный состав показывает, что бакчарская руда состоит из гидрогетита - 35,01%, сидерита - 4,30%, кварца - 24,40%, хлорита железистого - 8,69%, глинистых минералов (гидрослюда-монтмориллонит, гидромусковит) - 20,30%, полевого шпата 5,45%, фосфатов - 0,93%. При этом кварц имеет размеры 0,1-0,4 мм и образует угловатые зерна молочно-белого и желтовато-коричневого цвета, а глинистая фракция образована преимущественно микрочешуйчатыми агрегатами размерами 0,1-0,4 мм в состав которых входят: смешанно-слойная гидрослюда-монтмориллонит, с примесью хлорита железистого, гидромусковита и полевого шпата.
Практически установлено (Особенности состава продуктов скважинной гидродобычи бакчарской железной руды / Авт.: В.И. Лунев, А.И. Усенко, И.Б. Бондарчук, O.K. Скрипко, И.М. Иванюк. - М: Горный информационно-аналитический бюллетень, №3, 2009. - Деп. в Изд. МГГУ. - 9 стр.), что при СГД рыхлой части бакчарской оолитовой железной руды на карте намыва образуется песчаный материал с размерами частиц <0,2 мм, в объеме 25-35% от массы намытой руды и глинистая фракция в объеме не более 0,5-1,5% от массы руды.
Учитывая вышеизложенное была поставлена задача в условиях добычного полигона СГД вывести из состава намываемого на карту намыва массива среднюю песковую и легкую глинистую фракцию, извлекаемые при разрушении рыхлого слоя оолитовой железной руды, с последующим использованием песка и глины в качестве расходных рабочих материалов в процессе СГД.
Поставленная задача решена следующим образом. По способу-прототипу выдаваемая на карту намыва при СГД пульпа рыхлой руды разделяется в поле гравитации на рудную и песчано-глинистую фракции, последняя после гидроциклонирования и сгущения разделяется на песок и глину, которые используются в качестве расходного рабочего материала при бурении скважин и СГД крепкой руды.
ОПИСАНИЕ СПОСОБА
Предложенное техническое решение фактически содержит процедуру обогащения нерудной твердой части выдаваемой на карту намыва пульпы в полевых условиях полигона СГД.
Целесообразность такого обогащения возникла после обнаружения новых технологических свойств конкретных типов песка и глины, повышающих эффективность процесса СГД.
Так, остроугольная ромбовидная кристаллическая структура кварца и крепость его зерен придают песковой фракции, добываемой вместе с рыхлой оолитовой железной рудой, существенные абразивные свойства. Достаточно длительная практика эксплуатации стального внутрискважинного оборудования при СГД песков на территории Томской и Омской областей показала скорый износ деталей, взаимодействующих с движущейся пульпой (водопесковая струя режет металл). Это свойство кварцевого песка позволяет применить его для разрушения крепких целиков в залежах бакчарской железной руды.
Микрочешуйчатая смешанно-слойная гидрослюда-монтмориллонит позволяет получать коллоидную клееобразную глину - дорогостоящий бентонит, - используемый в буровых и тампонажных растворах с глиной (Ф.А. Чегодаев, З.З. Шарафутдинов, Р.З. Шарафутдинова. Буровые и тампонажные растворы. - СПб.: ООО НПО «Профессионал», 2007). Это позволяет обеспечивать местным материалом буровые работы на полигоне СГД (интервал глубин бурения скважин - 160-250 м).
Известный способ-прототип по патенту RU 2431527 усовершенствован следующим образом (см. фиг.2).
После гравитационного разделения на карте намыва фракций горных пород, турбулентный поток песко-глиняной гидросмеси с карты намыва подается самотеком тангенциально в гидроциклон. Закрученный поток за счет межструйных сил трения и трения о стенки гидроциклона становится ламинарным, происходит осаждение песковой фракции. Ламинарная глиняная гидросмесь самотеком подается в коагуляционную емкость, где под воздействием сил гравитации, физического поля (например, ультразвука) и/или химического реагента (например, поливинилакрида) происходит ускоренное осаждение глиняной фракции. Осветленная вода из коагуляционной емкости самотеком полается в оборотную схему водоснабжения добычной скважины. Осажденная в гидроциклоне песковая фракция подается насосом на место складирования и/или в состав пульпы, закачиваемой на забой добычной скважины, в качестве ее абразивного компонента в гидромониторной струе, где используется для разупрочнения и дезинтеграции крепкой горной породы. Осажденная в коагуляционной емкости глиняная фракция подается насосом на место складирования и/или на растворный узел, где используется для создания буровых и/или тампонажных растворов на глине, применяемых для бурения скважин на полигоне СГД.
ОПИСАНИЕ УСТРОЙСТВА
Устройство-прототип по патенту RU 2431527 представляет собой гидротехническое сооружение в составе полигона СГД, содержащее транспортный пульпопровод с выданной щелевидной насадкой, направленной под углом ~ 45° к заданной поверхности; карту намыва с расположенной на ней классификатором по простиранию падения струи пульпы, который улавливает тяжелую, рудосодержащую фракцию твердого в пульпе; дренажный канал, соединяющий стоковую часть карты намыва с прудом-отстойником, где оборотная вода осветляется путем осаждения песчано-глиняной фракции пульпы.
Поставлена задача усовершенствовать конструкцию гидротехнического сооружения, приспособив его для селективного извлечения обогащенных песковой и глиняной фракций, с учетом их полезного применения в процессе СГД.
Сформулированная задача решена следующим образом. Торцевой борт стоковой части карты намыва выполняется в форме раскрывающейся ветви спирали, центр которой совпадает с центром гидроциклона, сооружаемого рядом с боковым бортом стоковой части карты намыва на месте начала дренажного канала. На месте оставшейся части дренажного канала сооружается коагуляционная емкость с поперечным сечением в форме усеченного треугольника. Нижние узкие части гидроциклона и коагуляционной емкости оборудованы зумпфами-накопителями осаждаемого материала, песка - в гидроциклоне и глины - в коагуляционной емкости, в которые помещаются погружные части грунтозаборных насосов. Все конструктивные изменения гидротехнического сооружения выполняются посредством земляных работ, при этом созданные гидротранспортные поверхности карты намыва, гидроциклона и коагуляционной емкости покрываются водонепроницаемым геотехнологическим материалом, а по ходу транспортировки гидросмеси создается искусственный уклон, обеспечивающий самотечное движение от классификатора до слива в водооборотную систему.
Далее сущность изобретения поясняется чертежами:
на фиг.3 показана конструкция устройства гидротехнического сооружения (вид в плане);
на фиг.4 - конструкция устройства гидротехнического сооружения (вид с боку).
В состав гидротехнического сооружения входят: добычная скважина 1; транспортный пульпопровод 2; классификатор 3, улавливающий тяжелую рудосодержащую фракцию; карту намыва руды 4, с боковыми болтами 5 и спиралеобразным стоковым бортом 6 и питающим стоковым каналом 7; гидроциклоном 8 со сливом 9; физический и/или химический коагуляторы 10; коагуляционную емкость 11 со сливом 12 и накопительную емкость водооборотной системы 13.
Изобретение работает следующим образом.
Пульпа, выдаваемая из добычной скважины 1, по транспортному пульпопроводу 2 под напором и углом, около 45° к земной поверхности изливается веерообразно на карту намыва 4, при этом классификатор 3 улавливает наиболее тяжелую рудосодержащую фракцию, а гидросмесь песка и глины изливается на стоковую часть карты намыва 4, где направляемая боковыми бортами 5 попадает на спиралеобразную торцевую стенку 6, которая закручивая поток самотеком подает его по питающему стоковому каналу 7 в гидроциклон 8. В гидроциклоне 8 песок осаждается в зумпф-накопитель, откуда откачивается насосом, а водоглиняная смесь через верхний слив 9 самотеком подается в коагуляционную емкость 11. В коагуляционной емкости 11 происходит ускоренная коагуляция глиняных частиц под воздействием коагулятора 10 (ультразвуковое прозвучивание и/или обработка химическим реагентом, например полиакриламидом) и агрегатированные глиняные частицы под действием сил гравитации осаждаются в зумпф-накопитель, откуда откачиваются насосом, а осветленная вода через верхний слив 12 самотеком подается в накопительную емкость водооборотной системы 13. Угол уклона α для обеспечения устойчивого самотечного движения гидросмеси должен быть равным нескольким градусам - это определяется свойствами состава гидросмеси, шероховатостью поверхностей и необходимым уровнем напора на входе в гидроциклон.
Геометрические параметры спиралеобразной торцевой стенки стоковой части карты намыва гидроциклона и коагуляционной емкости определяются условиями скважинной гидродобычи, напором и составом пульпы, выдаваемой на карту намыва, свойствами гидросмеси песка и глины, условиями погоды и сезоном года. Но, исходя из опыта СГД бакчарской железной руды, могут быть сформулированы следующие общие рекомендации.
При коротком вылете струи пульпы из транспортного пульпопровода (малый напор или «густая» пульпа - Т:Ж=1:(5÷10) целесообразно торцевой стенке стоковой части карты намыва придавать форму витка спирали Архимеда.
При длинном вылете струи пульпы из транспортного пульпопровода (большой напор или «жидкая» пульпа - Т:Ж=1:20÷100 желательно выполнять торцевую стенку стоковой части карты намыва в форме витка логарифмической спирали.
Диаметр, высоту и угол раскрыва конусной части гидроциклона необходимо выбирать исходя из производительности скважины по гидросмеси песка и глины (например, по известной формуле В.И. Шохина и А.Г. Лопатина).
Объем коагуляционной емкости оценивают исходя из соотношений весов песковой и глиняной фракций в гидросмеси, эффективности коагулятора и производительности слива водоглиняной смеси из гидроциклона. Практически этот объем должен быть в 10-20 раз больше объема гидроциклона (около 100 куб. м).
Следует отметить, что вослед способу и реализующего его устройству по патенту RU 2431527, предполагается использовать предложенные изобретения при освоении лицензионных участков Бакчарского железорудного месторождения в Томской области.
Технический результат изобретения - обогащение нерудных полезных ископаемых и их использование на добычном полигоне при разработке месторождений способом СГД.

Claims (8)

1. Способ получения и использования продуктов скважинной гидродобычи, включающий бурение добычных скважин, гидромониторное разрушение массива горных пород в залежи полезного ископаемого, гидроподъем по скважине на дневную поверхность материала горных пород, гидротранспортирование материала горных пород и выдача его в виде вертикального веерообразного потока пульпы на карту намыва, улавливание из потока пульпы тяжелой рудосодержащей фракции, сток гидросмеси песка и глины по дренажному каналу в пруд-отстойник, осветление воды в пруде-отстойнике, возврат осветленной воды в оборотную схему водоснабжения добычных скважин, отличающийся тем, что после гравитационного разделения на карте намыва фракций горных пород турбулентный поток гидросмеси песка и глины по спиральной траектории со стоковой части карты намыва подается самотеком тангенциально в гидроциклон, где песок осаждается в зумпф-накопитель, откуда он откачивается насосом, а водоглиняная смесь подается самотеком в коагуляционную емкость, где под воздействием сил гравитации физического поля и химического реагента происходит ускоренное осаждение глины в зумпф-накопитель, откуда она откачивается насосом, а осветленная вода подается самотеком в оборотную схему водоснабжения добычных скважин, при этом выделенная фракция песка подается на забой добычных скважин в качестве абразивного компонента мониторной струи и используется для разупрочнения и дезинтеграции крепких горных пород, а выделенная фракция глины используется в бурении добычных скважин в составе буровых и тампонажных растворов.
2. Способ по п.1, отличающийся тем, что турбулентный поток гидросмеси песка и глины подается самотеком со стоковой части карты намыва в гидроциклон по траектории витка спирали Архимеда.
3. Способ по п.1, отличающийся тем, что турбулентный поток гидросмеси песка и глины подается самотеком со стоковой части карты намыва в гидроциклон по траектории витка логарифмической спирали.
4. Способ по п.1, отличающийся тем, что в качестве физического поля используют переменное электромагнитное поле, создаваемое в объеме водоглиняной смеси при воздействии ультразвука.
5. Способ по п.1, отличающийся тем, что в качестве химического реагента используют полиакриламид.
6. Устройство для осуществления способа по п.1, включающее добычную скважину, транспортный пульпопровод, карту намыва, улавливатель тяжелой рудосодержащей фракции, систему транспортировки гидросмеси песка и глины, отличающееся тем, что система содержит гидроциклон и коагуляционную емкость, выполненные в земле, рядом с боковым бортом карты намыва, а стенка торцевого борта стоковой части карты намыва выполнена в форме раскрывающейся ветви спирали, центр которой совпадает с центром гидроциклона.
7. Устройство по п.6, отличающееся тем, что стенка торцевого борта части карты намыва выполнена в форме раскрывающейся ветви спирали Архимеда.
8. Устройство по п.6, отличающееся тем, что стенка торцевого борта стоковой части карты намыва выполнена в форме раскрывающейся ветви логарифмической спирали.
RU2012128207/03A 2012-07-03 2012-07-03 Способ получения и использования продуктов скважинной гидродобычи и устройство для его осуществления RU2496980C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012128207/03A RU2496980C2 (ru) 2012-07-03 2012-07-03 Способ получения и использования продуктов скважинной гидродобычи и устройство для его осуществления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012128207/03A RU2496980C2 (ru) 2012-07-03 2012-07-03 Способ получения и использования продуктов скважинной гидродобычи и устройство для его осуществления

Publications (2)

Publication Number Publication Date
RU2012128207A RU2012128207A (ru) 2012-10-27
RU2496980C2 true RU2496980C2 (ru) 2013-10-27

Family

ID=47147090

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012128207/03A RU2496980C2 (ru) 2012-07-03 2012-07-03 Способ получения и использования продуктов скважинной гидродобычи и устройство для его осуществления

Country Status (1)

Country Link
RU (1) RU2496980C2 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2539527C2 (ru) * 2014-04-25 2015-01-20 Владимир Иванович Лунев Способ гидромеханического обогащения буроугольных продуктов скважинной гидродобычи и технологическая линия для его реализации
RU2572896C2 (ru) * 2015-02-02 2016-01-20 Владимир Иванович Лунев Способ получения металлического продукта на месторождении оолитовых железных руд и технологическая линия для его реализации

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4437706A (en) * 1981-08-03 1984-03-20 Gulf Canada Limited Hydraulic mining of tar sands with submerged jet erosion
SU1426950A1 (ru) * 1987-03-25 1988-09-30 Институт Горного Дела Дальневосточного Научного Центра Аппарат дл осветлени суспензий
SU1623693A1 (ru) * 1989-02-21 1991-01-30 Дзержинский филиал Ленинградского научно-исследовательского и конструкторского института химического машиностроения Радиальный сгуститель
SU1740672A1 (ru) * 1988-11-22 1992-06-15 Харьковский Отдел Всесоюзного Научно-Исследовательского Института Водоснабжения, Канализации, Гидротехнических Сооружений И Инженерной Гидрогеологии "Водгео" Сооружение дл складировани твердых полезных ископаемых при гидродобыче
SU1765422A1 (ru) * 1990-09-14 1992-09-30 Государственный научно-исследовательский институт горнохимического сырья Способ скважинной гидродобычи полезных ископаемых
RU2004337C1 (ru) * 1992-02-07 1993-12-15 Всероссийский научно-исследовательский институт минерального сырь им.Н.М.Федоровского Способ добычи и обогащени железных руд
RU2095149C1 (ru) * 1995-08-11 1997-11-10 Амурский комплексный научно-исследовательский институт Амурского научного центра ДВО РАН Способ обогащения песков россыпных месторождений благородных металлов
RU2431527C1 (ru) * 2010-02-08 2011-10-20 Государственное образовательное учреждение высшего профессионального образования Томский политехнический университет Способ обогащения твердых полезных ископаемых при скважинной гидродобыче и устройство для его осуществления

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4437706A (en) * 1981-08-03 1984-03-20 Gulf Canada Limited Hydraulic mining of tar sands with submerged jet erosion
SU1426950A1 (ru) * 1987-03-25 1988-09-30 Институт Горного Дела Дальневосточного Научного Центра Аппарат дл осветлени суспензий
SU1740672A1 (ru) * 1988-11-22 1992-06-15 Харьковский Отдел Всесоюзного Научно-Исследовательского Института Водоснабжения, Канализации, Гидротехнических Сооружений И Инженерной Гидрогеологии "Водгео" Сооружение дл складировани твердых полезных ископаемых при гидродобыче
SU1623693A1 (ru) * 1989-02-21 1991-01-30 Дзержинский филиал Ленинградского научно-исследовательского и конструкторского института химического машиностроения Радиальный сгуститель
SU1765422A1 (ru) * 1990-09-14 1992-09-30 Государственный научно-исследовательский институт горнохимического сырья Способ скважинной гидродобычи полезных ископаемых
RU2004337C1 (ru) * 1992-02-07 1993-12-15 Всероссийский научно-исследовательский институт минерального сырь им.Н.М.Федоровского Способ добычи и обогащени железных руд
RU2095149C1 (ru) * 1995-08-11 1997-11-10 Амурский комплексный научно-исследовательский институт Амурского научного центра ДВО РАН Способ обогащения песков россыпных месторождений благородных металлов
RU2431527C1 (ru) * 2010-02-08 2011-10-20 Государственное образовательное учреждение высшего профессионального образования Томский политехнический университет Способ обогащения твердых полезных ископаемых при скважинной гидродобыче и устройство для его осуществления

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
АРЕНС В.Ж. и др. Скважинная гидродобыча твердых полезных ископаемых. - М.: Недра, 1980, 7-14, с.146. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2539527C2 (ru) * 2014-04-25 2015-01-20 Владимир Иванович Лунев Способ гидромеханического обогащения буроугольных продуктов скважинной гидродобычи и технологическая линия для его реализации
RU2572896C2 (ru) * 2015-02-02 2016-01-20 Владимир Иванович Лунев Способ получения металлического продукта на месторождении оолитовых железных руд и технологическая линия для его реализации

Also Published As

Publication number Publication date
RU2012128207A (ru) 2012-10-27

Similar Documents

Publication Publication Date Title
CN101279811B (zh) 一种钻井废弃物四相固液分离方法
Rassenfoss From flowback to fracturing: water recycling grows in the Marcellus shale
US7244361B2 (en) Metals/minerals recovery and waste treatment process
UA78436C2 (en) Method for rigidification of water suspensions
CN204122256U (zh) 一种萤石矿分选装置
RU2496980C2 (ru) Способ получения и использования продуктов скважинной гидродобычи и устройство для его осуществления
RU2384706C1 (ru) Способ отработки кимберлитовых месторождений
Stone The evolution of paste for backfill
CN202762147U (zh) 一种井下煤泥水沉降装置
EA005875B1 (ru) Способ разделения битуминозных песков
RU2312989C1 (ru) Способ разработки алмазоносных кимберлитовых трубок и плавучая установка для его осуществления
ZA200603336B (en) Metals/minerals recovery and waste treatment process
US2686593A (en) Production and use of stabilized suspensions in water
Alekseev et al. Influence of the development of the mineral resources sector of the Arkhangelsk region on the environment
Wang et al. Flocculation, dewatering and sedimentation behaviour of mine backfill slurry in deep cone thickener (DCT)
RU2431527C1 (ru) Способ обогащения твердых полезных ископаемых при скважинной гидродобыче и устройство для его осуществления
RU2709259C1 (ru) Технологическая линия для переработки глинистых золотосодержащих песков россыпных месторождений
RU2078616C1 (ru) Поточная технологическая линия по переработке металлосодержащей смеси россыпных пород
RU2694666C1 (ru) Способ высокоэффективного извлечения твердых тяжелых полезных ископаемых
RU2578138C2 (ru) Способ разработки железорудных месторождений
Du Toit et al. Khumani iron ore mine paste disposal and water recovery system
RU2764714C1 (ru) Центробежный обогатительно-классифицирующий аппарат
RU2539527C2 (ru) Способ гидромеханического обогащения буроугольных продуктов скважинной гидродобычи и технологическая линия для его реализации
Chaston, IRM* & Napier-Munn Design and operation of dense-medium cyclone plants for the recovery of diamonds in Africa
Meggyes et al. Mine paste backfill–the behaviour of thickened tailings and pipeline design