RU2495965C1 - Электрофоретический способ формирования покрытий из графена - Google Patents

Электрофоретический способ формирования покрытий из графена Download PDF

Info

Publication number
RU2495965C1
RU2495965C1 RU2012119376/02A RU2012119376A RU2495965C1 RU 2495965 C1 RU2495965 C1 RU 2495965C1 RU 2012119376/02 A RU2012119376/02 A RU 2012119376/02A RU 2012119376 A RU2012119376 A RU 2012119376A RU 2495965 C1 RU2495965 C1 RU 2495965C1
Authority
RU
Russia
Prior art keywords
graphene
suspension
coating
voltage
nanoparticles
Prior art date
Application number
RU2012119376/02A
Other languages
English (en)
Inventor
Владимир Васильевич Старших
Евгений Александрович Максимов
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Челябинская государственная агроинженерная академия"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Челябинская государственная агроинженерная академия" filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Челябинская государственная агроинженерная академия"
Priority to RU2012119376/02A priority Critical patent/RU2495965C1/ru
Application granted granted Critical
Publication of RU2495965C1 publication Critical patent/RU2495965C1/ru

Links

Abstract

Изобретение относится к области гальванотехники и может быть использовано в медицине, часовой промышленности, при изготовлении оптических элементов светодиодов и изделий, работающих на истирание в опорах скольжения. Способ включает получение наночастиц графена, приготовление ионизированной суспензии с наночастицами графена на основе спиртового раствора, введение суспензии в емкость с электродами и осаждение наночастиц графена под действием постоянного тока с формированием графенового покрытия на изделиях, подключенных к отрицательному полюсу источника тока, при этом упомянутую суспензию готовят с водородным показателем 5-12 рН, а покрытие формируют под действием постоянного тока плотностью 2,5 мА/см2 и напряжением 80-110 В. Технический результат: повышение качества покрытий, нанесенных на различные материалы - металлические, стеклянные, резиновые, керамические. 4 з.п. ф-лы, 6 пр.

Description

Изобретение относится к технологии создания защитных покрытий из наночастиц графена на материалы с различными физико-химическими свойствами. При этом достигается повышение качества защитных покрытий на разнородные материалы и изделия из них: металл, стекло, пластмассу, резину, оптические элементы светодиодов, медицинское оборудование, имплантанты человека, короноки зубов; удается значительно увеличить стойкость изделий с покрытием, работающих на истирание в опорах скольжения, в качестве твердой смазки в часовой промышленности.
Известен способ электролитического нанесения покрытий на плоские изделия, включающий непрерывное осаждение материала из раствора при пропускании технологического тока между катодом и анодом (RU 2207410 С1, МПК C25D 5/33, C25D 7/04, опубл. 15.04.2003 г.).
Недостатком указанного способа является то, что он не гарантирует достаточной степени качества защитного покрытия.
Известен способ формирования тонких пленок электролита YSZ методом электрофоретического осаждения на пористых катодах, включающий получение суспензии нанопорошка YSZ в изопропиловом спирте и ацетилацетоне с добавлением полимерного модификатора БМК-5 (сополимер бутилметакрилата с 5% метакриловой кислотой, молекулярной массой 3.1×10-5). Суспензию концентрацией 2 г/л готовили по навеске нанопорошка, который диспергировали в смешанной среде (изопропанол: ацетилацетон=1:1) объемом 25 см3. Суспензию 20 г/л шихты LSM готовили в смешанной среде объемом 50 см3. Перед нанесением шихту LSM измельчали в изопропиловом спирте до обеспечения удельной поверхности 13 м2/г.При электрофоретическом осаждении катодом служила пористая LSM-подложка площадью 13 мм, анодом - диск из нержавеющей стали, расстояние между электродами - 1 см. Использовали режим осаждения 50 В, ток осаждения 1,5 мА, время осаждения 1-2 минуты (RU 2400858 С1, МПК H01J 1|02, опубл. 27.09.10 г.).
Недостатком способа является значительное количество крупных пор размером 3-20 мкм. На металлическую поверхность оседают не индивидуальные частицы размером 10-20 нм, а их агрегаты размером 100-200 нм. Образуется пористое покрытие, что снижает качество защитного нанопокрытия металла.
Наиболее близким аналогом (прототипом) предлагаемого изобретения является способ, заключающийся в получении наночастиц графена, приготовлении суспензии, содержащей жидкую и твердую фазы из наночастиц графена, положительную зарядку наночастиц графена, введение суспензии в емкость, содержащей электроды, электрофоретическое осаждение наночастиц графена на отрицательно заряженный электрод путем пропускания постоянного электротока между электродами (Wu Z-S, Pei S.F./Field Emission of Single - Layer Graphere Films Prepared by Electrophoresis Deposition // Adv.mater. - 2009. - V21. - P1756-1760).
Недостатком прототипа является получение «пористого» графенового покрытия с неровной поверхностью.
Задачей заявляемого способа является повышение качества защитного графенового покрытия при нанесении на изделия из материалов с различными физико-химическими свойствами: металла, стекла, пластмассы, резины.
Технический результат достигается благодаря тому, что электрофоретический способ формирования покрытий из графена включает получение наночастиц графена, приготовление ионизированной суспензии с наночастицами графена на основе спиртового раствора, введение суспензии в емкость с электродами, осаждение наночастиц графена под действием постоянного тока на анод, но для нанесения графенового покрытия на материалы, различные по физико-химическому составу и свойствам, применяют суспензию с водородным показателем 5-12 рН при постоянном токе плотностью 2,5 мА/см2 и напряжении 80-110 В. Кроме того, для нанесения графенового покрытия на металлические изделия применяют суспензию с водородным показателем 5,4-5,5 рН при напряжении 80 В; для нанесения графенового покрытия на стеклянные изделия применяют суспензию с водородным показателем 5,5-6,5 рН при напряжении 90 В; для нанесения графенового покрытия на резиновые изделия применяют суспензию с водородным показателем 7,5-8,0 рН при напряжении 100 В; для нанесения графенового покрытия на керамические изделия применяют суспензию с водородным показателем 8,0-12,0 рН при напряжении 110 В.
Исследования показали, что при использовании для осаждения графенового покрытия на изделия из различных материалов суспензии с водородным показателем меньше 5 рН и больше 12 рН, напряжения меньше 80 В и больше 110 В, плотности тока меньше и больше 2,5 мА\см2 качество покрытия резко снижается.
Известно, что у изделий из материала сталь 10 предел прочности на растяжение 340 МПа, предел текучести 210 МПа, относительное удлинение на растяжение 30%, твердость 20-40 HRC.
По данным сайта http//dtamania.ru/news/grefen у графеновой пленки предел прочности на растяжение в 10 раз больше, чем у стали, жесткость на изгиб (устойчивость на изгиб) в 13 раз больше аналогичного показателя стали, показатель твердости в 2 раза больше, чем у стали.
Графеновое покрытие имеет следующие характеристики: предел прочности на растяжение 3400 МПа, предел текучести 2100 МПа, твердость 40-80 HRC. По данным (http//issp.ras.ru/Control/inform/perst/2011/11_24) шероховатость поверхности графеной пленки составляет 0,15·10-9 - 0,20·10-9 м.
При использовании защитных покрытий из графеновой пленки стойкость покрытий поверхности труб нефти - газопроводов повышается в 10 раз, покрытий, работающих в подшипниках качения в качестве твердой смазки - в 2 раза. У металлических листов с глянцевой поверхностью шероховатость R a
Figure 00000001
=1,2-1,05 мкм (1,2 10-6-1,05 10-6 м). Таким образом, нанесение графеного покрытия на металлическую глянцевую поверхность стали позволяет снизить шероховатость ее поверхности в 1000 раз. Для таких поверхностей не требуется дальнейшая обработка: полировка и шлифовка.
Нанесение графеного покрытия на поверхность металла или стекла позволяет улучшить микрогеометрию (снизить шероховатость) и тем самым повысить качество поверхности, например, для металлических листов офсетной печати, оконных и автомобильного стекол. На такую поверхность не оседает пыль и грязь, что позволяет отказаться от регулярной очистки металлических листов офсетной печати, оконных и автомобильного стекол.
Пример 1. Нанесение защитного покрытия на металлическую поверхность. При этом производили следующие операции: химическое отшелушивание частиц графена путем обработки графита 20% раствором азотной кислоты HNO3. При этом получен монослой графена с размерами частиц 10-30 нм в количестве 80%. Суспензию для электролита готовили следующим образом. В 150 г изопропилового спирта вводили 15 г нанопорошка графена со средним размером частиц 10-30 нм. Далее частицы графена положительно заряжали, добавляя Mg (NO3)2×6Н2О. Весовое соотношение частиц графена и добавки - 1:1. Полученную суспензию диспергировали на диспергаторе УЗГ-0.4\22 в течение 5 мин. После обработки была получена однородная суспензия Mg2+ - абсорбированных частиц графена. Суспензия являлась седиментационно-устойчивой и не оседала. Полученную суспензию сливали в емкость, где расположены положительно и отрицательно заряженные электроды. Обрабатываемое изделие из металла подсоединяли к отрицательному полюсу источника постоянного тока, а графитовый электрод диаметром 1-15 мм - к положительному. Процесс электрофоретического осаждения наночастиц графена проводили при напряжении 80-100 В, плотности тока 2,5 мА/см 2, время обработки 5-10 мин. В результате получено ровное покрытие 4 мг/см2. Водородный показатель суспензии рН 5,38-5,39.
Пример 2. Условия приготовления суспензии и процесс электрофоретического осаждения аналогично примеру 1. Обрабатываемое изделие из стекла соединялось с отрицательным полюсом источника постоянного тока. В жидкую часть суспензии добавляли 0,002 г щелочного металла, например Na. При взаимодействии изопропилого спирта со щелочным металлом образуется неустойчивое вещество (алкоголят), легко распадающееся на ионы. Водородный показатель суспензии рН 5,4-5,5. В результате получено ровное покрытие 5 мг/см2.
Пример 3. Условия приготовления суспензии и процесс электрофоретического осаждения аналогично примеру 1.
Обрабатываемое изделие из оптического элемента светодиода соединялось с отрицательным полюсом источника постоянного тока. В жидкую часть суспензии добавляли 0,003 г щелочного металла, например Na. При взаимодействии изопропилого спорта со щелочным металлом образуется неустойчивое вещество (алкоголят), легко распадающееся на ионы. Водородный показатель суспензии рН 5,4-5,5. В результате получено ровное покрытие 6 мг/см2.
Пример 4. Условия приготовления суспензии и процесс электрофоретического осаждения аналогично примеру 1.
Обрабатываемое изделие из пластмассы соединялось с отрицательным полюсом источника постоянного тока. В жидкую часть суспензии добавляли 0,004 г щелочного металла, например Na. При взаимодействии изопропилого спорта со щелочным металлом образуется неустойчивое вещество (алкоголят), легко распадающееся на ионы. Водородный показатель суспензии рН 5,5-6,5. В результате получено ровное покрытие 7 мг/см2.
Пример 5. Условия приготовления суспензии и процесс электрофоретического осаждения аналогично примеру 1.
Обрабатываемое изделие из резины соединялось с отрицательным полюсом источника постоянного тока. В жидкую часть суспензии добавляли 0,005 г щелочного металла, например Na. При взаимодействии изопропилого спорта со щелочным металлом образуется неустойчивое вещество (алкоголят), легко распадающееся на ионы. Водородный показатель суспензии рН 7,5-8. В результате получено ровное покрытие 8 мг/см2.
Пример 6. Условия приготовления суспензии и процесс электрофоретического осаждения аналогично примеру 1.
Обрабатываемое изделие из керамики соединялось с отрицательным полюсом источника постоянного тока. В жидкую часть суспензии добавляли 0,006 г щелочного металла, например Na. При взаимодействии изопропилого спорта со щелочным металлом образуется неустойчивое вещество (алкоголят), легко распадающееся на ионы. Водородный показатель суспензии рН 8-9. В результате получено ровное покрытие 9 мг/см2.
Использование способа позволяет повысить качество защитных покрытий из графена на материалы с различными физико-химическими свойствами.

Claims (5)

1. Способ электрофоретического формирования покрытий из графена, включающий получение наночастиц графена, приготовление ионизированной суспензии с наночастицами графена на основе спиртового раствора, введение суспензии в емкость с электродами и осаждение наночастиц графена под действием постоянного тока с формированием графенового покрытия на изделиях, отличающийся тем, что упомянутую суспензию готовят с водородным показателем 5-12 рН, а покрытие формируют под действием постоянного тока плотностью 2,5 мА/см2 и напряжением 80-110 В.
2. Способ по п.1, отличающийся тем, что при формировании графенового покрытия на металлических изделиях используют суспензию с водородным показателем 5,4-5,5 рН при напряжении 80 В.
3. Способ по п.1, отличающийся тем, что при формировании графенового покрытия на стеклянные изделия используют суспензию с водородным показателем 5,5-6,5 рН при напряжении 90 В.
4. Способ по п.1, отличающийся тем, что при формировании графенового покрытия на резиновые изделия используют суспензию с водородным показателем 7,5-8,0 рН при напряжении 100 В.
5. Способ по п.1, отличающийся тем, что при формировании графенового покрытия на керамические изделия используют суспензию с водородным показателем 8,0-12,0 рН при напряжении 110 В.
RU2012119376/02A 2012-05-11 2012-05-11 Электрофоретический способ формирования покрытий из графена RU2495965C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012119376/02A RU2495965C1 (ru) 2012-05-11 2012-05-11 Электрофоретический способ формирования покрытий из графена

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012119376/02A RU2495965C1 (ru) 2012-05-11 2012-05-11 Электрофоретический способ формирования покрытий из графена

Publications (1)

Publication Number Publication Date
RU2495965C1 true RU2495965C1 (ru) 2013-10-20

Family

ID=49357220

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012119376/02A RU2495965C1 (ru) 2012-05-11 2012-05-11 Электрофоретический способ формирования покрытий из графена

Country Status (1)

Country Link
RU (1) RU2495965C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2729486C1 (ru) * 2016-09-08 2020-08-07 Ппг Индастриз Огайо, Инк. Способы нанесения покрытия на электропроводящие подложки и соответствующие электроосаждаемые композиции, включающие частицы графенового углерода

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2243298C2 (ru) * 1999-05-04 2004-12-27 Пирелли Кави Э Системи С.П.А. Способ получения сверхпроводящего слоистого материала и получаемый из него сверхпроводящий слоистый элемент
US20080053831A1 (en) * 2003-09-30 2008-03-06 The Boeing Company Electrochemical Depositions Applied to Nanotechnology Composites
CN102002747A (zh) * 2009-09-01 2011-04-06 宝山钢铁股份有限公司 金属表面富勒烯薄膜的电泳制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2243298C2 (ru) * 1999-05-04 2004-12-27 Пирелли Кави Э Системи С.П.А. Способ получения сверхпроводящего слоистого материала и получаемый из него сверхпроводящий слоистый элемент
US20080053831A1 (en) * 2003-09-30 2008-03-06 The Boeing Company Electrochemical Depositions Applied to Nanotechnology Composites
CN102002747A (zh) * 2009-09-01 2011-04-06 宝山钢铁股份有限公司 金属表面富勒烯薄膜的电泳制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ADVANCED MATERIALS, т.21, вып.17, 2009, с.1756-1760. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2729486C1 (ru) * 2016-09-08 2020-08-07 Ппг Индастриз Огайо, Инк. Способы нанесения покрытия на электропроводящие подложки и соответствующие электроосаждаемые композиции, включающие частицы графенового углерода

Similar Documents

Publication Publication Date Title
Shokouhfar et al. Formation mechanism and surface characterization of ceramic composite coatings on pure titanium prepared by micro-arc oxidation in electrolytes containing nanoparticles
Zhang et al. Electrophoretic deposition of PTFE particles on porous anodic aluminum oxide film and its tribological properties
JP5529916B2 (ja) プラズマ電解酸化処理による軽金属系基材の表面への皮膜形成方法
Fattah-alhosseini et al. Review of the role of graphene and its derivatives in enhancing the performance of plasma electrolytic oxidation coatings on titanium and its alloys
Nominé et al. Surface charge at the oxide/electrolyte interface: toward optimization of electrolyte composition for treatment of aluminum and magnesium by plasma electrolytic oxidation
CN103643278B (zh) 一种汽车配件铝材微弧氧化的方法
Lee et al. Incorporation of carbon nanotubes into micro-coatings film formed on aluminum alloy via plasma electrolytic oxidation
Samanipour et al. Electrophoretic enhanced micro arc oxidation of ZrO2–HAp–TiO2 nanostructured porous layers
Lin et al. Preparation of hydroxyapatite coating on smooth implant surface by electrodeposition
ES2739548T3 (es) Procedimiento para oxidación electrolítica por plasma
Velichenko et al. PbO2 based composite materials deposited from suspension electrolytes: electrosynthesis, physico-chemical and electrochemical properties
RU2495965C1 (ru) Электрофоретический способ формирования покрытий из графена
Abdulkareem et al. Evaluation of surface roughness of 316L stainless steel substrate on nanohydroxyapatite by electrophoretic deposition
KR101406408B1 (ko) 금속 표면처리용 조성물의 제조방법, 이를 이용한 표면처리강판 및 이의 제조방법
Zong et al. Effects of graphene additive on microstructure and properties of MAO ceramic coatings formed on AA7050
Dzepina et al. The aqueous electrophoretic deposition (EPD) of diamond–diamond laminates
Marchewka et al. Characterization of electrochemical deposition of copper and copper (I) oxide on the carbon nanotubes coated stainless steel substrates
RU2471021C1 (ru) Способ получения нанокомпозитных покрытий
Liang et al. Effects of Rare Earth Metal Oxide Doping on Micromorphology and Corrosion Behavior of Hydroxyapatite-Graphene Oxide Composite Coating Fabriacted on AZ91 magnesium alloy
RU2353713C1 (ru) Электролит кадмирования и способ нанесения кадмиевых покрытий на металлические изделия
CN106637334A (zh) 一种调控阀金属阳极氧化物薄膜中杂质元素比例和化学性质的方法及其产品
Serrano et al. Innovation in the electrophoretic deposition of TiO2 using different stabilizing agents and zeta potential
Cannio et al. Electrophoretic deposition: An effective technique to obtain functionalized nanocoatings
Neirinck et al. Aqueous electrophoretic deposition at high electric fields
Lau et al. EFFECT OF ELECTROPHORETIC DEPOSITION PARAMETERS ON COATING THICKNESS AND DEPOSIT YIELD OF NON-COLLOIDAL GRAPHITE PARTICLES

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20140512