RU2494483C1 - Способ иммобилизации жидких высокорадиоактивных отходов в стеклокерамику - Google Patents

Способ иммобилизации жидких высокорадиоактивных отходов в стеклокерамику Download PDF

Info

Publication number
RU2494483C1
RU2494483C1 RU2012113885/07A RU2012113885A RU2494483C1 RU 2494483 C1 RU2494483 C1 RU 2494483C1 RU 2012113885/07 A RU2012113885/07 A RU 2012113885/07A RU 2012113885 A RU2012113885 A RU 2012113885A RU 2494483 C1 RU2494483 C1 RU 2494483C1
Authority
RU
Russia
Prior art keywords
glass
porous
solution
glass ceramic
ceramic
Prior art date
Application number
RU2012113885/07A
Other languages
English (en)
Inventor
Юрий Степанович Федоров
Борис Евгеньевич Бураков
Марина Алексеевна Петрова
Юлия Петровна Ипатова
Original Assignee
Федеральное государственное унитарное предприятие "Научно-производственное объединение "Радиевый институт имени В.Г. Хлопина"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное унитарное предприятие "Научно-производственное объединение "Радиевый институт имени В.Г. Хлопина" filed Critical Федеральное государственное унитарное предприятие "Научно-производственное объединение "Радиевый институт имени В.Г. Хлопина"
Priority to RU2012113885/07A priority Critical patent/RU2494483C1/ru
Application granted granted Critical
Publication of RU2494483C1 publication Critical patent/RU2494483C1/ru

Links

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

Изобретение относится к радиохимической технологии переработки жидких высокоактивных отходов. Способ иммобилизации ВАО в пористую стеклокерамическую матрицу, получаемую путем вспенивания расплава утилизированного лампового стекла. Иммобилизация и фиксация радионуклидов в пористую стеклокерамику осуществляется при проведении следующих процессов: пропитка стеклокерамики, насыщение, сушка, нагревание с отгонкой газообразных продуктов, прокалка при 1000°С. Изобретение позволяет использовать доступный, дешевый сорбент с высоким значением открытой пористости (до 90%). 5 з.п. ф-лы.

Description

Изобретение относится к области радиохимической технологии и может быть использовано для иммобилизации жидких высокорадиоактивных отходов (ВАО) в твердотельную матрицу, изготовленную на основе легкоплавкого пористого стекла.
Известно несколько способов отверждения жидких радиоактивных отходов и перевода их в устойчивую к условиям хранения форму:
1. Остекловывание концентрированных РАО.
2. Перевод упаренных жидких отходов в керамику, в которой РАВ включены в состав устойчивых кристаллических фаз.
3. Перевод отходов в стеклокерамику. Эта технология близка к остекловыванию, но при ее осуществлении происходит частичная раскристаллизация стеклянной матрицы с образованием некоторого количества кристаллических фаз.
4. Иммобилизация РАО с помощью адсорбционного механизма; при этом адсорбентами могут быть силикагели, битумы, цементы, пористые матрицы.
Технология перевода жидких РАО в стекло заключается в смешивании содержимого РАО с компонентами стекла (боросиликатного, алюмосиликатного, фосфатного или свинцового), варке такого стекла усложненного состава при температурах 1050-1400°C и его застывании. При этом для достижения химической и механической прочности, а также малого значения выщелачивания элементов РАО в воду проводят тщательные исследования оптимального соотношения всех исходных соединений, режимов варки, допустимости перехода некоторых компонентов стекла в кристаллическую фазу (Holland D., Parkinson B.C., Islam M.M., Duddridge A., Roderick J.M., Howes A.P., Scales Ch.R. «NMRR Investigation of Cation Distribution in HLW Wasteform Glass», Proc. of sympos. "Sci. Basis for Nucl. Waste Management XXXI", 2007, vol.1107, p.p.199-206 // Алой А.С., Трофименко А.В., Исхакова О.А., Колычева Т.И. «Разработка состава матрицы для остекловывания концентрата Sr и Cs из ВАО» «Радиохимия», 1997, т.39, №6, стр.562-568).
Пористые матрицы также используются для иммобилизации РАО. Известен способ использования для таких целей пенокорунда (Козарь А.А. «Использование пористых материалов в качестве матриц-носителей радионуклидов для иммобилизации и трансмутации радиоактивных отходов», автореферат канд. диссерт., Москва, 1994). После пропитки пенокорундовой матрицы раствором имитатора РАО она прокаливалась при температурах 700-900°C, при этом элементы РАО переходили в оксидные соединения, прочно закрепляясь на стенках пор. Известны материалы с хорошими характеристиками на основе пористых стеклянных матриц. В изобретении (патент US 4224177, G21F 9/16, G21F 9/30, 1980) иммобилизацию РАО осуществляли инкапсуляцией жидких и газообразных радионуклидов в пористое стекло, которое по принципу "молекулярной начинки" использовалось в паре с непористым стеклом. При нагревании до высоких температур поры в таком стекле заплавлялись, и радионуклиды оказывались как бы в двойной изоляции. Известны пористые стеклокерамические матрицы различного состава (Патент RU 2059308, G21F 9/16, 1996// Патент RU 2196119, C04B 38/08, C03C 11/00, 2003 // Патент RU 2165110, C04B 38/08, G21F 9/16, 1999 // Зыкова И.Д. "Полуфункциональные пористые стеклокристаллические материалы на основе ценосфер энергетических зол для иммобилизации радиоактивных отходов", автореферат канд. диссерт., Красноярск, 2007).
Все перечисленные выше пористые материалы были специально разработаны для иммобилизации опасных отходов и изготавливались из химических реагентов по сложной многоступенчатой технологии. Так как в задачу предлагаемого изобретения входило использование дешевой пористой матрицы, являющейся изначально побочным продуктом производства, то наиболее близким к заявляемому можно считать способ, описанный в патенте RU 2190890, G21F 9/16, 2002. В указанном патенте предложен метод отверждения жидких РАО в пористых стеклокерамических блоках, сформированных из полых стеклокристаллических микросфер, выделенных из летучих зол от сжигания каменных углей. Такие блоки обладают высокой термоустойчивостью, большим значением открытой пористости, надежной фиксацией радионуклидов внутри блоков после кальцинации. Скорость выщелачивания радионуклидов из керамизированных блоков была не больше положенной по ГОСТу.
Процедура насыщения блоков жидкими отходами и дальнейшая их обработка с целью фиксации нуклидов не связаны с какими-нибудь технологическими трудностями. Но процесс изготовления самих блоков является довольно трудоемким. Сначала из летучей золы получают ценосферы, потом проводят их сортировку по размерам и магнитным свойствам, степени перфорации стенок, затем отобранные ценосферы переводят в блоки путем консолидации со связующим веществом, прессования, сушки и спекания.
Задачей изобретения является надежная иммобилизация ВАО в дешевый и нетрудоемкий материал.
В предлагаемом способе предусмотрено использование готовых стеклокерамических блоков, получаемых при утилизации бытового лампового стекла. Блоки по составу близки к обычному алюмосиликатному стеклу (SiO2+Na2O+Al2O3+CaO + незначительные добавки Fe2O3, K2O, MgO), из которого изготавливают ламповые баллоны, с добавлением материалов, входящих в полную сборку лампы. Технология изготовления пористых, имеющих структуру губки, блоков предусматривает переплавку боя лампового стекла с добавлением графита и применением воздушно-кислородной продувки. Такие блоки используются в качестве теплоизоляционного материала. В способе использовали стеклокерамические блоки, получаемые при утилизации галогенных ламп. Они обладают большим значением открытой пористости (от 50 до 90%). Значение кажущейся плотности таких блоков составляет 0,2 г/см3. Для их пропитки использовался раствор - имитатор реального рафината с общей концентрацией элементов отходов 100 г/л. Содержание лантанидов в растворе составляло 50 г/л, цезия - 13 г/л, бария - 8 г/л, кобальта - 7 г/л, стронция - 5 г/л, железа - 3 г/л. Никель, хром и рубидий, находились в рафинате в концентрациях меньших, чем 1 г/л.
Поставленная задача по фиксации жидких РАО в пористых стеклоблоках была решена в предлагаемом способе, предусматривающем осуществление следующих операций:
1. Взвешенные пористые стеклокерамические блоки, имеющие структуру губки, целиком погружались во взвешенный рафинатный раствор. Пропитка и насыщение осуществлялись в течение 3-4 дней.
2. В некоторых опытах губка, пропитанная раствором рафината, подвергалась 2-х-5-кратному насыщению для достижения большей степени заполнения пор, в другой части опытов губка погружалась в упаренный на 1/3 исходный раствор, и насыщение проводилось в более концентрированной среде.
3. Губку с адсорбированными компонентами рафината высушивали при 80-100°C и удаляли из нее газообразные продукты путем постепенного нагревания до 400°C.
4. Высушенная и обезгаженная губка подвергалась прокаливанию при 1000°C. При этом происходило расплавление исходной матрицы и ее уплотнение.
5. В некоторых опытах проплавленные блоки с включенными элементами РАО засыпались стеклянной фриттой и оплавлялись; таким образом осуществлялось дополнительное капсулирование радионуклидов, перешедших в стеклокерамику.
6. Проверялась полнота фиксации элементов рафината в стеклокерамической губке, подвергаемой насыщению с одновременным полным упариванием раствора рафината. После осуществления операций, описанных в пунктах 1-4, прокаленная при 1000°C губка не достигала стадии плавления, а выглядела плотным керамическим спеком.
7. Плавленый материал и керамические спеки исследовались методами оптической микроскопии и зондового микроанализа.
Представленный способ является простым и малозатратным по сравнению с другими, в которых для иммобилизации РАО используются пористые матрицы, специально разрабатываемые для этой цели. При его осуществлении не требуется применения технологических операций, связанных с сортировкой, использованием связующих материалов, пропиткой пор металлосодержащими соединениями, горячим прессованием, высокотемпературным спеканием, как описано в прототипе. Использовались готовые пористые блоки, изготовленные из продуктов утилизации галогенных ламп, уже нашедшие применение в качестве теплоизоляционного материала. Причем, в отличие от вспененного простого стекла, пористое стекло - продукт переработки ламп - имеет хорошие впитывающие свойства. Блоки из него функционируют как впитывающая губка, способная поглощать значительные количества рафинатных растворов. Выбранный режим температурной обработки позволяет получать на выходе плавленые монолиты с включенными РАО в виде устойчивых оксидных соединений. Включение радионуклидов в состав застывшего расплава, а не в прессованную керамику, как это описано в прототипе, способствует более прочной фиксации элементов ВАО в предложенной матрице.
Следующие примеры иллюстрируют варианты применения предлагаемого способа.
Пример 1
Блок исходного пористого стекла погружался в рафинатный раствор. Для полного погружения использовалась крышка - «грузило», так как кажущаяся плотность пористой матрицы 0,2 г/см3. В течение 3-х дней проводилось 2-х-5-кратное насыщение с промежуточной сушкой при 80-100°С. В дальнейшем было показано, что при 5-кратном насыщении впитывающая емкость пористой матрицы увеличивается лишь на 3-4%, по сравнению с 2-х-кратным насыщением. После последней сушки при 80-100°С насыщенный солями блок помещался в термостат, постепенно нагревался до 400°С и выдерживался при этой температуре 1,5-2,0 часа до полного удаления оксидов азота и других летучих продуктов. Далее блок нагревался до 1000°С и выдерживался при этой температуре в течение 3-х часов. Остывший блок представлял собой плавленый монолит. Полученный стеклокерамический блок разрезался на фрагменты, в которых зондовым микроанализом определялись концентрации различных элементов. По данным анализа все элементы, присутствовавшие в рафинате, перешли в стеклокерамическую матрицу, но в разных количественных и фазовых соотношениях. При 30-32%-ной степени заполнения блока оксидными соединениями рафинадных элементов редкоземельные элементы, имитирующие актиниды и адсорбированные из раствора, более чем на 90% закрепились в твердой матрице. Из них ~85% образовали устойчивую кристаллическую фазу, равномерно вкрапленную в стеклянную массу, остальные РЗЭ вошли в состав стекла. Цезий также в большей степени вошел в состав кристаллических фаз (типа поллуцита), но количественно ~40% цезия, первоначально адсорбированного из раствора, сохранилось в плавленой стеклокерамической матрице. Такие элементы как железо, кобальт, никель равномерно вошли в состав стекла. Барий и стронций зафиксировались в матрице в количестве, не превышающем 10% от содержащегося в адсорбированном растворе. Большая доля молибдена вошла в состав стекла, но общее его количество в остеклованной матрице было около 60% от адсорбированного первоначально из раствора. Кальций, не содержащийся в рафинате, но входящий в состав стеклянного пористого блока, в небольших количествах перешел из стекла во вновь образовавшиеся кристаллические фазы.
Пример 2
Рафинатный раствор был сначала упарен при температуре 80-95°C на 1/3 от первоначального объема, затем в него был помещен пористый блок. Далее, используя 2-х кратную пропитку, были повторены все операции, описанные в примере 1. В плавленом после окончательной прокалки монолитном блоке «рафинатных» элементов оказалось - на 1/3 больше, чем в первом примере. Т.е. степень насыщения блока перешедшими в оксидные формы элементами рафината составила 40-42%. Но пропорции зафиксированных в стеклокерамической матрице элементов и их распределение по фазам аналогичны тем, которые были обнаружены в примере 1.
Пример 3
Блок исходного пористого стекла был погружен в рафинатный раствор, после чего раствор был подвергнут полному упариванию. Последующие процессы повторялись в той же последовательности и с соблюдением тех же параметров, как это было описано в примере 1. После прокалки при 1000°C образец превратился в непроплавленный керамический спек с неоднородным распределением кристаллических включений. Т.е. элементы рафината, адсорбированные в большей, чем в примере 2 концентрации (степень заполнения блока оксидными соединениями элементов рафинатного раствора составила 49%), начали вступать в твердофазные реакции как друг с другом, так и с компонентами пористой стеклянной губки. При этом происходило образование тугоплавких кристаллических фаз и, одновременно, расстекловывание самой губки. Этот образец для проверки возможности использования его в качестве пригодной матрицы - фиксатора РАО - был засыпан стеклянной фриттой и, после ее проплавления инкапсулирован в это стекло.
Пример 4
Плавленый после выдержки при 1000°C образец из примера 2, так же, как керамический блок примера 3, засыпался стеклянной фриттой, имеющей температуру плавления 800°C, оплавлялся этим «чистым» стеклом и, таким образом, оказывался дополнительно защищенным такой стеклянной капсулой.
В образцах из второго примера были измерены скорости выщелачивания некоторых элементов. В образцах примеров 3 и 4 (с капсуляцией в стеклянную оболочку) определялись скорости выщелачивания только цезия.
Измеренные скорости выщелачивания (пример 2) составили: для La - 10-3 г/м3·сут, для Се - 6·10-3 г/м2·сут, для Cs - 5·10-1 г/м2·сут, для Sr - 3·10-1 г/м2·сут. Скорость выщелачивания цезия из остеклованного образца примера 3 составила 6-10-2 г/м2·сут, из образца 4, обработанного таким же способом, 0,810-2 г/м2·сут. Определение скоростей выщелачивания проводили по методике МСС-1 в дистиллированной воде при 90°C в течение 90 дней. Измеренные значения скоростей выщелачивания компонентов рафината находятся в соответствии с требованиями ГОСТа [ГОСТ Р50926-96 «Отходы высокоактивные отвержденные. Технические требования»].

Claims (6)

1. Способ иммобилизации жидких высокорадиоактивных отходов (ВАО) в стеклокерамику, включающий многократную пропитку исходного пористого материала раствором ВАО, сушку, ступенчатый нагрев до 1000°С с отгонкой газообразных продуктов, отличающийся тем, что в качестве сорбента используют утилизированное ламповое стекло, специально переработанное в пористое путем вспенивания его расплава.
2. Способ по п.1, отличающийся тем, что пропитку сорбента осуществляют из упаренного на 1/3 исходного раствора ВАО.
3. Способ по п.2, отличающийся тем, что полученный после прокаливания при 1000°С проплавленный монолит капсулируют в стекло.
4. Способ по п.1, отличающийся тем, что насыщение сорбента проводят с одновременным полным упариванием исходного раствора.
5. Способ по п.4, отличающийся тем, что полученный после прокаливания при 1000°С керамический спек капсулируют в стекло.
6. Способ по п.1, отличающийся тем, что из пропитанных исходным раствором и высушенных при 80-100°С стеклокерамических блоков отгоняют газообразные продукты путем постепенного нагревания их до 400°С и выдержки при этой температуре 1,5-2,0 ч.
RU2012113885/07A 2012-04-09 2012-04-09 Способ иммобилизации жидких высокорадиоактивных отходов в стеклокерамику RU2494483C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012113885/07A RU2494483C1 (ru) 2012-04-09 2012-04-09 Способ иммобилизации жидких высокорадиоактивных отходов в стеклокерамику

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012113885/07A RU2494483C1 (ru) 2012-04-09 2012-04-09 Способ иммобилизации жидких высокорадиоактивных отходов в стеклокерамику

Publications (1)

Publication Number Publication Date
RU2494483C1 true RU2494483C1 (ru) 2013-09-27

Family

ID=49254172

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012113885/07A RU2494483C1 (ru) 2012-04-09 2012-04-09 Способ иммобилизации жидких высокорадиоактивных отходов в стеклокерамику

Country Status (1)

Country Link
RU (1) RU2494483C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2604876C1 (ru) * 2015-09-01 2016-12-20 Андрей Владимирович Кисляков Композиция для цементирования жидких радиоактивных отходов

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2165110C2 (ru) * 1999-04-28 2001-04-10 Аншиц Александр Георгиевич Керамическая губка для концентрирования и отверждения жидких особоопасных отходов и способ ее получения
RU2190890C2 (ru) * 2000-10-25 2002-10-10 Научно-исследовательское учреждение СО РАН "Институт химии и химической технологии" Метод отверждения радиоактивных и других опасных отходов
US6472579B1 (en) * 2000-11-27 2002-10-29 The United States Of America As Represented By The Department Of Energy Method for solidification of radioactive and other hazardous waste
RU2251168C2 (ru) * 2002-12-24 2005-04-27 Государственное унитарное предприятие Научно-производственное объединение "Радиевый институт им. В.Г. Хлопина" Способ извлечения радиоактивных элементов из жидких отходов
US20090095041A1 (en) * 2007-10-16 2009-04-16 Ramsey W Gene Method and apparatus using foamed glass filters for liquid purification, filtration, and filtrate removal and elimination

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2165110C2 (ru) * 1999-04-28 2001-04-10 Аншиц Александр Георгиевич Керамическая губка для концентрирования и отверждения жидких особоопасных отходов и способ ее получения
RU2190890C2 (ru) * 2000-10-25 2002-10-10 Научно-исследовательское учреждение СО РАН "Институт химии и химической технологии" Метод отверждения радиоактивных и других опасных отходов
US6472579B1 (en) * 2000-11-27 2002-10-29 The United States Of America As Represented By The Department Of Energy Method for solidification of radioactive and other hazardous waste
RU2251168C2 (ru) * 2002-12-24 2005-04-27 Государственное унитарное предприятие Научно-производственное объединение "Радиевый институт им. В.Г. Хлопина" Способ извлечения радиоактивных элементов из жидких отходов
US20090095041A1 (en) * 2007-10-16 2009-04-16 Ramsey W Gene Method and apparatus using foamed glass filters for liquid purification, filtration, and filtrate removal and elimination

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2604876C1 (ru) * 2015-09-01 2016-12-20 Андрей Владимирович Кисляков Композиция для цементирования жидких радиоактивных отходов

Similar Documents

Publication Publication Date Title
Bao et al. Preparation and properties of hydroceramic waste forms made with simulated hanford low‐activity waste
Taurino et al. Glass–ceramic foams from borosilicate glass waste
Lin et al. Feasibility of recycling waste diatomite and fly ash cosintered as porous ceramics
Xiang et al. Rapid transformation from Cs-geopolymers to Cs-defined ceramics by microwave sintering
CN112466503A (zh) 一种固化含Cs土壤的玻璃陶瓷体制备方法
RU2494483C1 (ru) Способ иммобилизации жидких высокорадиоактивных отходов в стеклокерамику
Li et al. Immobilization of strontium and cesium by aluminosilicate ceramics derived from metakaolin geopolymer-zeolite A composites via 1100 C heating treatment
Omerašević et al. Permanent disposal of Cs ions in the form of dense pollucite ceramics having low thermal expansion coefficient
Chaerun et al. Retention mechanism of cesium in chabazite embedded into metakaolin-based alkali activated materials
Kazantseva et al. Foam glass from mechanoactivated zeolite-poor rock
Wang et al. Preparation of Alkali‐Activated Slag‐Fly Ash‐Metakaolin Hydroceramics for Immobilizing Simulated Sodium‐Bearing Waste
Zhao et al. From bulk to porous structures: Tailoring monoclinic SrAl2Si2O8 ceramic by geopolymer precursor technique
CN113185128A (zh) 一种钙钛锆石玻璃陶瓷固化基材及其制备方法
Zhimalov et al. Use of amorphous siliceous rocks—opokas to obtain foam glass with low foaming temperature
US3116131A (en) Method and materials for disposing of radioactive waste
Selvakumar et al. Simulated studies on optimization and characterization of feed and product of melter for safe disposal of high-level radioactive liquid waste
Chen et al. Immobilization of simulated 137 CsCl using metakaolin based geopolymers obtained by hybrid hydrothermal-sintering processes
Vance et al. Development of geopolymers for nuclear waste immobilisation
CN113436772B (zh) 一种放射性含铯废水的处理方法
RU2361299C1 (ru) Способ иммобилизации изотопов трансурановых элементов радиоактивных отходов (варианты)
Jiang et al. Thermal stability of geopolymer-sr contaminated zeolite a blends
RU2439726C1 (ru) Способ иммобилизации радиоактивных отходов в минералоподобной матрице
RU2165110C2 (ru) Керамическая губка для концентрирования и отверждения жидких особоопасных отходов и способ ее получения
RU2572080C1 (ru) Способ кондиционирования донных отложений содержащих радионуклиды
RU2197763C1 (ru) Способ отверждения жидких радиоактивных отходов и керамический материал для его осуществления

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190410