RU2493556C1 - Способ и устройство для определения концентрации оксида азота(no) в газовой среде - Google Patents

Способ и устройство для определения концентрации оксида азота(no) в газовой среде Download PDF

Info

Publication number
RU2493556C1
RU2493556C1 RU2012105701/04A RU2012105701A RU2493556C1 RU 2493556 C1 RU2493556 C1 RU 2493556C1 RU 2012105701/04 A RU2012105701/04 A RU 2012105701/04A RU 2012105701 A RU2012105701 A RU 2012105701A RU 2493556 C1 RU2493556 C1 RU 2493556C1
Authority
RU
Russia
Prior art keywords
chemiluminescent
concentration
ozone
solid
sensor
Prior art date
Application number
RU2012105701/04A
Other languages
English (en)
Other versions
RU2012105701A (ru
Inventor
Владимир Петрович Челибанов
Леонид Николаевич Исаев
Леонид Николаевич Новиков
Original Assignee
Владимир Петрович Челибанов
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Владимир Петрович Челибанов filed Critical Владимир Петрович Челибанов
Priority to RU2012105701/04A priority Critical patent/RU2493556C1/ru
Publication of RU2012105701A publication Critical patent/RU2012105701A/ru
Application granted granted Critical
Publication of RU2493556C1 publication Critical patent/RU2493556C1/ru

Links

Images

Landscapes

  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

Изобретение относится к способам и средствам контроля концентрации оксида азота (NO) в газовых средах, а также в воздушной атмосфере. Предложено концентрацию оксида азота в анализируемой газовой среде определять по уменьшению концентрации активной формы кислорода, например озона (O3), взятого в избытке к концентрации оксида азота, содержащегося в анализируемой газовой среде, введенной в реакционную камеру, в которую, одновременно с потоком анализируемой газовой среды подают газовую смесь, содержащую известное количество озона, при этом химическую реакцию взаимодействия оксида азота с озоном доводят до полного перехода оксида азота в диоксид азота и по убыли концентрации озона в полученной газовой смеси, определенной гетерогенным хемилюминесцентным способом путем обдува указанной газовой смесью твердотельного хемилюминесцентного датчика (O3), расположенного в активной зоне фотоэлектронного умножителя, определяют концентрацию оксида азота в анализируемой газовой среде. Твердотельный хемилюминесцентный датчик (O3) выполняют в виде подложки, на рабочую поверхность которой наносят сухой слой хемилюминесцентной селективной композиции в составе полифенола и арилметанового красителя, растворенных в смеси этанола и этиленгликоля в равных пропорциях, при концентрации 0,05-0,07 Моль/л и 0,0003 Моль/л, соответственно, а после нанесения на подложку твердотельного хемилюминесцентного датчика (O3) хемилюминесцентной селективной композиции хемилюминесцентную селективную композицию сушат до остаточного постоянного веса твердотельного хемилюминесцентного датчика (O3). Предложено также устройство для осуществления заявленного способа определения. Технический результат - повышенная равномерность люминесцентного свечения по площади твердотельного хемилюминесцентного датчика (O3) в зоне гетерогенной реакции в каждый момент времени измерения концентрации озона в пробе газовой смеси, повышающая точность определения концентрации оксида азота (NO) в газовой среде. 2 н. и 9 з.п. ф-лы, 4 ил.

Description

Изобретение относится к приборостроительной промышленности, а именно к способам и средствам контроля концентрации оксида азота (NO) в газовых средах, а также в воздушной атмосфере.
Оксид азота (NO) обладает относительно большим временем жизни, при этом проявляет высокую реакционную способность при взаимодействии со многими органическими соединениями. Оксид азота играет существенную роль в загрязнении городской атмосферы, участвует в образовании вторичных загрязнителей в атмосферном воздухе, в жизненных процессах растений и животных, является важнейшим реагентом в процессах метаболизма на клеточном уровне. Большая часть оксида азота в приземном слое атмосферы воздуха появляется в результате выхлопов двигателей внутреннего сгорания.
Известен способ определения концентрации оксида азота (NO) в смеси газов, например в воздухе, по патенту US №7045359, МПК G01N 31/00, опубл. 16.05.2006 г. В известном способе концентрацию оксида азота определяют по убыли озона в исследуемой пробе газа. Метод включает в себя этап смешивания исследуемой пробы с газом, имеющим известную концентрацию озона, в результате чего озон и оксид азота вступают в реакцию с образованием O2 и NO2, при этом создаются условия для полного протекания реакции между озоном и оксидом азота за счет заведомого избытка озона в газе. Далее измеряют концентрацию озона в полученной смеси продукта, с использованием метода ультрафиолетовой абсорбции. В известном способе исследуемую пробу газа пропускают через реакционную камеру, полость которой просвечивают ультрафиолетовым лучом, при этом ультрафиолетовый луч, прошедший через исследуемую пробу газа, направляют на фотоумножитель. Количественное определение концентрации оксида азота в вышеуказанной испытательной пробе производят на основе расчета разницы содержания озона в вышеуказанном газе с известной концентрацией озона и в вышеуказанной пробе, полученной путем смешивания исследуемой пробы с этим газом.
Недостатком известного согласно изобретению по патенту US №7045359 способа определения концентрации оксида азота (NO) в смеси газов, например в воздухе, является недостаточная чувствительность, а также недостаточная селективность определения концентрации оксида азота в исследуемой газовой среде и, как следствие, недостаточная точность определения концентрации оксида азота. Это вызвано, прежде всего, низкой селективностью оптического способа определения концентрации озона с применением метода ультрафиолетовой абсорбции, который сильно зависит от наличия углеводородов в анализируемом газе, например в воздухе, а также концентрации ртути, аэрозолей, которые присутствуют в городской воздушной среде.
Известен также способ определения концентрации диоксида азота (NO2) в газовой среде, описанный в статье «Analytical Techniques for Atmospheric Measurement. Edited by. Dwayne E. Heard. University of Leeds. Blackwell Publishing», принятый в качестве ближайшего аналога, в котором применяют метод гетерогенной хемилюминесценции для определения концентрации диоксида азота в газовой среде. В известном способе анализируемый газ, например воздух, содержащий в своем составе диоксид азота (NO2), посредством насоса подают в хемилюминесцентный пустотелый проточный реактор, в котором установлен датчик, выполненный из нетканого пористого материала. Указанный датчик в процессе анализа постоянно смачивают раствором люминола, который подают в хемилюминесцентный пустотелый проточный реактор посредством перистальтического насоса. При взаимодействии диоксида азота, содержащегося в анализируемом газе, с поверхностью датчика, смачиваемого люминолом, возникает люминесценция, которую регистрируют мультищелочным катодом фотоэлектронного умножителя. При этом интенсивность люминесценции пропорциональна концентрации диоксида азота в анализируемом газе. При использовании скруббера NO2 и конвертера NO в NO2 данный способ используется также для определения концентрации оксида азота (NO). Таким образом, с учетом коэффициента конверсии интенсивность люминесценции при использовании конвертера пропорциональна также концентрации оксида азота в том же анализируемом газе.
В способе определения концентрации диоксида азота в газовой среде, принятом в качестве ближайшего аналога, применение метода гетерогенной хемилюминесценции повысило чувствительность измерений.
Основным недостатком способа определения концентрации диоксида азота (NO2) в газовой среде, описанного в статье «Analytical Techniques for Atmospheric Measurement. Edited by. Dwayne E. Heard. University of Leeds. Blackwell Publishing», принятого в качестве ближайшего аналога, является относительная неравномерность распределения потока жидкого реагента по площади поверхности датчика, а именно потока люминола, которым смачивается пористый датчик, и, как следствие, неравномерность люминесцентного свечения в зоне гетерогенной реакции, в каждый момент времени измерения, что приводит к недостаточной точности определения концентрации диоксида азота в газовой среде, а с учетом коэффициента конверсии, и концентрации оксида азота.
Перед заявляемым способом определения концентрации оксида азота (NO) в анализируемой газовой среде поставлена задача повысить точность, определения концентрации оксида азота в газовой среде, в том числе в окружающей атмосфере.
Согласно изобретению способ определения концентрации оксида азота (NO) в газовой среде заключается в том, что концентрацию оксида азота определяют опосредованно, по уменьшению концентрации активной формы кислорода, например озона (O3), в результате взаимодействия с оксидом азота; при этом концентрация озона берется в избытке к концентрации оксида азота, содержащегося в анализируемой газовой среде, введенной в реакционную камеру, в которую, одновременно с потоком анализируемой газовой среды, подают газовую смесь, содержащую озон, при этом химическую реакцию взаимодействия оксида азота с озоном, а именно NO+O3=NO2+O3, доводят до полного перехода оксида азота в диоксид азота, и по убыли концентрации озона в полученной газовой смеси определяют концентрацию оксида азота в анализируемой газовой среде, для чего в реакционную камеру попеременно подают анализируемую газовую среду, свободную от оксида азота и озона, смешанную с газом, насыщенным озоном с фиксированной концентрацией, а также анализируемую газовую среду, свободную от озона, смешанную с газом, насыщенным озоном, с упомянутой фиксированной концентрацией, при этом убыль концентрации озона в газовой смеси, полученной в реакционной камере, определяют селективным гетерогенным хемилюминесцентным способом путем обдува указанной газовой смесью твердотельного хемилюминесцентного датчика (O3), который располагают в активной зоне фотоэлектронного умножителя, а для получения твердотельного хемилюминесцентного датчика (O3) на его подложку, наносят хемилюминесцентную селективную композицию в составе полифенола и арилметанового красителя, растворенных в смеси этанола и этиленгликоля, при этом растворители берут в равных пропорциях, при концентрации 0,05-0,07 Моль/л и 0,0003 Моль/л, соответственно, а после нанесения на подложку твердотельного хемилюминесцентного датчика (O3) хемилюминесцентной селективной композиции, хемилюминесцентную селективную композицию сушат до остаточного постоянного веса твердотельного хемилюминесцентного датчика (O3).
В состав хемилюминесцентной селективной композиции в качестве полифенола могут брать 3,4,5-триоксибензол, а в качестве арилметанового красителя могут вводить Родамин 6Ж.
В состав хемилюминесцентной селективной композиции в качестве полифенола могут брать оксибензойную кислоту, а в качестве арилметанового красителя могут вводить Родамин 6Ж.
Подложку твердотельного хемилюминесцентного датчика (O3) могут выполнять из синтетического нетканого пористого материала и пропитывать смесью латексов Акронал 35Д и Акронал 230В.
Функцию преобразования твердотельного хемилюминесцентного датчика (O3) (градуировку) могут устанавливать от концентраций, задаваемых фотохимическим генератором активных форм кислорода, например озона, в исследуемой газовой среде.
Техническим результатом изобретения является достигнутая более высокая равномерность люминесцентного свечения по площади твердотельного хемилюминесцентного датчика (O3) в зоне гетерогенной реакции в каждый момент времени измерения концентрации озона в пробе газовой смеси, что повысило точность определения концентрации оксида азота (NO) в анализируемой газовой среде.
Известно устройство для определения концентрации оксида азота (NO) в газовой среде по патенту US №7045359, МПК G01N 31/00, опубл. 16.05.2006 г., которое содержит продольную детекторную камеру, на одном конце которой установлена ультрафиолетовая лампа. Излучение ультрафиолетовой лампы попадает в полость продольной детекторной камеры через опционную линзу и прозрачное для ультрафиолета окно. На другом конце детекторной камеры установлены окно, также прозрачное для ультрафиолета, опционный оптический фильтр и фотодиод. К полости детекторной камеры с одного конца подключен насос для прокачивания исследуемой пробы газа через детекторную камеру, а к входу детекторной камеры присоединены реакционная камера с параллельным обходным каналом, к которым через общий клапан присоединены вход исследуемого газа и генератор озона. В известном устройстве определяют концентрацию оксида азота по убыли озона в исследуемой пробе газа. При этом концентрацию озона в исследуемой пробе газа определяют с использованием техники ультрафиолетовой абсорбции, применяя детекторную камеру, в которой луч от ультрафиолетовой лампы пропускают сквозь исследуемую пробу газа.
Известное устройство по патенту US №7045359 обладает недостаточной чувствительностью и недостаточной селективностью и, как следствие, недостаточной точностью при определении концентрации оксида азота в анализируемой газовой среде. Это связано с низкой селективностью оптической схемы, применяющей технику ультрафиолетовой абсорбции при определении концентрации озона в исследуемой пробе газа, в которой содержатся углеводороды и другие загрязнения, что снижает точность определения концентрации оксида азота в анализируемой газовой среде.
Также известно устройство для определения концентрации диоксида азота (NO2) в газовой среде, описанное в статье «Analytical Techniques for Atmospheric Measurement. Edited by. Dwayne E. Heard. University of Leeds. Blackwell Publishing», принятое в качестве ближайшего аналога и содержащее хемилюминесцентный пустотелый проточный реактор, в котором расположен датчик, выполненный из нетканого пористого материала, а также установлен фотоэлектронный умножитель, ориентированный на плоскую поверхность датчика и связанный с микроконтроллером и монитором. К полости реактора подключен перистальтический насос и емкость, заполняемая раствором люминола. Анализируемый газ, например, воздух, содержащий в своем составе диоксид азота (NO2) подают посредством насоса через патрубок в хемилюминесцентный пустотелый проточный реактор. В пустотелом проточном реакторе датчик, выполненный из нетканого пористого материала, постоянно смачивают раствором люминола из емкости, посредством перистальтического насоса. Слив отработанного раствора люминола осуществляют в специальную приемную емкость. В процессе исследования смачиваемый люминолом датчик обдувают анализируемым газом. При взаимодействии диоксида азота, содержащегося в анализируемом газе, с поверхностью датчика, смоченного люминолом, возникает люминесценция, которая регистрируется фотоэлектронным умножителем, и после усиления сигнал попадает на микроконтроллер, а результат измерения высвечивается далее на ЖК-мониторе. Градуировку устройства осуществляют по дополнительному внешнему генератору поверочных газовых смесей с известной концентрацией диоксида азота. Наличие в известном устройстве хемилюминесцентного датчика, смачиваемого люминолом, позволило повысить чувствительность определения концентрации диоксида азота в газовой среде, однако получена недостаточная точность. Недостаточная точность определения концентрации диоксида азота в исследуемой газовой среде вызвана, главным образом, относительной неравномерностью распределения по площади поверхности датчика потока жидкого реагента, а именно люминола, которым смачивают пористый датчик, и, как следствие, неравномерностью люминесцентного свечения в зоне гетерогенной реакции в каждый момент времени измерения.
Основным недостатком известного устройства для определения концентрации диоксида азота в газовой среде, описанного в статье «Analytical Techniques for Atmospheric Measurement. Edited by. Dwayne E. Heard. University of Leeds. Blackwell Publishing», принятого в качестве ближайшего аналога, является относительная неравномерность по площади поверхности хемилюминесцентного датчика потока жидкого реагента, а именно люминола, которым смачивают хемилюминесцентный датчик, и, как следствие, недостаточная равномерность по площади поверхности хемилюминесцентного датчика люминесцентного свечения в зоне гетерогенной реакции, в каждый момент времени измерения, что приводит к недостаточной точности определения концентрации диоксида азота в газовой среде.
Кроме этого, при эксплуатации известного устройства требуется большой расход реагента - люминола, что приводит к усложнению устройства.
Перед заявляемым устройством поставлена задача повысить точность определения концентрации оксида азота в исследуемой газовой среде.
Сущность заявляемого устройства для определения концентрации оксида азота (NO) в газовой среде заключается в том, что устройство содержит хемилюминесцентный модуль, включающий в себя хемилюминесцентный реактор, выполненный в виде пустотелого проточного корпуса, в котором расположены хемилюминесцентный датчик (O3) и ориентированный на его рабочую поверхность фотоэлектронный умножитель, к которому подключена контрольно-измерительная аппаратура, вместе с тем к полости корпуса хемилюминесцентного реактора присоединена реакционная камера, а к реакционной камере подключены параллельно скруббер (NO, O3) и скруббер (O3) через трехходовой электропневмоклапан, насос и узел газовой развязки, а также к реакционной камере через упомянутый узел газовой развязки подключен генератор озона, при этом хемилюминесцентный датчик (O3) выполнен твердотельным в виде подложки с нанесенным на ее рабочей поверхности сухим слоем хемилюминесцентной селективной композиции.
Сухой слой хемилюминесцентной селективной композиции, нанесенный на пористую подложку твердотельного хемилюминесцентного датчика (O3), может быть выполнен в составе полифенола и арилметанового красителя, растворенных в смеси этанола и этиленгликоля, при этом растворители взяты в равных пропорциях, при концентрации 0,05-0,07 Моль/л и 0,0003 Моль/л, соответственно, а после нанесения на подложку твердотельного хемилюминесцентного датчика (O3) хемилюминесцентной селективной композиции, хемилюминесцентная селективная композиция была высушена до остаточного постоянного веса твердотельного хемилюминесцентного датчика (O3).
В состав сухого слоя хемилюминесцентной селективной композиции твердотельного хемилюминесцентного датчика (O3) в качестве полифенола может быть взят 3,4,5-триоксибензол, а в качестве арилметанового красителя может быть взят Родамин 6Ж.
В состав сухого слоя хемилюминесцентной селективной композиции твердотельного хемилюминесцентного датчика (O3) в качестве полифенола может быть взята оксибензойная кислота, а в качестве арилметанового красителя может быть введен Родамин 6Ж.
Подложка твердотельного хемилюминесцентного датчика (O3), на рабочей поверхности которой нанесен сухой слой хемилюминесцентной селективной композиции, может быть выполнена из синтетического нетканого пористого материала и пропитана смесью латексов Акронал 35Д и Акронал 230В.
Хемилюминесцентный модуль может быть дополнительно снабжен встроенным генератором озона, который является калибратором хемилюминесцентного модуля.
Техническим результатом изобретения является достигнутая более высокая равномерность люминесцентного свечения по площади твердотельного хемилюминесцентного датчика (O3) в зоне гетерогенной реакции в каждый момент времени измерения концентрации озона в газовой смеси, что повысило точность определения концентрации оксида азота (NO) в анализируемой газовой среде.
Кроме достигнутой более высокой равномерности люминесцентного свечения по площади твердотельного хемилюминесцентного датчика (O3) в зоне гетерогенной реакции в каждый момент времени измерения концентрации озона в газовой смеси и повышения точности определения концентрации оксида азота в газовой среде, улучшена компактность устройства за счет исключения необходимости применения жидких реагентов для получения люминесцентного свечения при взаимодействии газовой среды с твердотельным хемилюминесцентным датчиком (O3), у которого на рабочей поверхности расположен сухой, не разрушаемый слой хемилюминесцентной селективной композиции.
На фиг.1 приведена схема устройства для определения концентрации оксида азота в газовой среде;
на фиг.2 приведен график показаний измерительной аппаратуры;
на фиг.3 приведены характеристики погрешностей определения диоксида азота и оксида азота в газовой фазе аналогами и изобретением;
на фиг.4 приведены данные, отражающие линейность функции преобразования изобретения.
Устройство для определения концентрации оксида азота (NO) в газовой среде содержит хемилюминесцентный модуль, включающий в себя хемилюминесцентный реактор 1 (фиг.1), выполненный в виде пустотелого проточного корпуса 2, в котором расположены твердотельный хемилюминесцентный датчик (O3) 3 и ориентированный на его рабочую поверхность 4 фотоэлектронный умножитель 5. К фотоэлектронному умножителю 5 подключена контрольно-измерительная аппаратура, включающая микроконтроллер 6, ЖКИ монитор 7 и клавиатуру 8. К полости 9 пустотелого проточного корпуса 2 хемилюминесцентного реактора 1 присоединена реакционная камера 10, а к реакционной камере 10 подключены параллельно скруббер (O3, NO) 11 и скруббер (O3) 12 через трехходовой электропневмоклапан 13, насос 14 и узел 15 газовой развязки. К реакционной камере 10 через упомянутый узел 15 газовой развязки также подключен генератор (O3) 16. При этом твердотельный хемилюминесцентный датчик (O3) 3 выполнен в виде синтетической нетканой пористой подложки 17 с нанесенным на ее поверхность сухим слоем 18 хемилюминесцентной селективной композиции, с формированием рабочей поверхности 4 твердотельного хемилюминесцентного датчика (O3) 3. Сухой слой 18 хемилюминесцентной селективной композиции, нанесенный на синтетическую нетканую пористую подложку 17 твердотельного хемилюминесцентного датчика (O3) 3, выполнен в виде сухой эмульсии в составе полифенола и арилметанового красителя, растворенных в смеси этанола и этиленгликоля, при этом растворители взяты в равных пропорциях, при концентрации 0,05-0,07 Моль/л и 0,0003 Моль/л, соответственно, а после нанесения на подложку твердотельного хемилюминесцентного датчика (O3) хемилюминесцентной композиции, хемилюминесцентная композиция была высушена до остаточного постоянного веса твердотельного хемилюминесцентного датчика (O3). При этом предложено две равноценных модификации состава сухого слоя 18 хемилюминесцентной селективной композиции, а именно в первом случае в качестве полифенола взят 3,4,5-триоксибензол, в качестве арилметанового красителя взят Родамин 6Ж, а во втором случае в качестве полифенола взята оксибензойная кислота, в качестве арилметанового красителя введен Родамин 6Ж. Синтетическая нетканая пористая подложка 17 твердотельного хемилюминесцентного датчика (O3) 3, на которой нанесен сухой слой 18 хемилюминесцентной селективной композиции, пропитана смесью латексов Акронал 35Д и Акронал 230В. К полости 9 пустотелого проточного корпуса 2 хемилюминесцентного реактора 1 присоединен генератор (O3) 19, который также связан с реакционной камерой 10 через скруббер (O3) 20 и трехходовой электропневмоклапан 21, соединяющий реакционную камеру 10 с полостью 9 пустотелого проточного корпуса 2 хемилюминесцентного реактора 1. К полости 9 присоединен вытяжной насос 22 через ротаметр 23. Трехходовой электропневмоклапан 13 и трехходовой электропневмоклапан 21 каждый в отдельности имеет электронную связь с микроконтроллером 6.
Способ определения концентрации оксида азота (NO) в газовой среде осуществляют на заявляемом устройстве следующим образом. Сначала через скруббер (O3, NO) 11 пробу анализируемой газовой среды, свободную от озона и оксида азота, потоком F1 направляют через трехходовой электропневмоклапан 13, насос 14 и узел 15 газовой развязки в реакционную камеру 10. В то же время в реакционную камеру 10 через узел 15 газовой развязки из генератора (O3) 16 потоком F2 подают воздух, насыщенный озоном фиксированной концентрации, например 500 мкг/м3. Смесь двух потоков F1+F2, содержащую озон и свободную от оксида азота, подают в хемилюминесцентный реактор 1 с твердотельным хемилюминесцентным датчиком (O3) 3. В хемилюминесцентном реакторе 1 смесь двух потоков F1+F2 при контакте с сухим слоем 18 хемилюминесцентной селективной композиции твердотельного хемилюминесцентного датчика (O3) 3 вызывает люминесцентное свечение, которое регистрирует фотоэлектронный умножитель 5, фиксируя, таким образом, концентрацию озона, которая в суммарном потоке F1+F2 составляет:
500F 2 F 1 + F 2 мкг/м 3
Figure 00000001
и отображается на ЖКИ мониторе 7, как показатель U1, который заносят на график (фиг.2). Затем через трехходовой электропневмоклапан 13, насос 14 и узел 15 газовой развязки из скруббера (O3) 12 потоком F3 пробу анализируемой газовой среды, свободную от озона, но не очищенную от оксида азота, подают в реакционную камеру 10, в то же время в реакционную камеру 10 через узел 15 газовой развязки из генератора (O3) 16 подают поток F 2 *
Figure 00000002
воздуха, насыщенного озоном с концентрацией озона так же, как и на первом этапе, например 500 мкг/м3, при этом в реакционной камере 10 некоторая часть озона вступает в реакцию с оксидом азота, а именно NO+O3=NO2+O2. Далее из реакционной камеры 10 суммарный поток F 3 + F 2 *
Figure 00000003
с обедненной концентрацией озона подают в хемилюминесцентный реактор 1 с твердотельным хемилюминесцентным датчиком (O3) 3, в котором определяют концентрацию озона, при этом концентрация озона в суммарном потоке F 3 + F 2 *
Figure 00000004
составляет:
( 500 X ) F 2 * F 3 + F 2 * мкг/м 3
Figure 00000005
и отображается на ЖКИ мониторе 7, как показатель Ux, который заносят на график (фиг.2),
где Х - убыль концентрации озона в результате его взаимодействия с оксидом азота в реакционной камере 10.
При этом допускается, что потоки F2 и F 2 *
Figure 00000006
содержат одинаковую концентрацию озона, а поток F1 равен потоку F3 и поток F2 равен потоку F 2 *
Figure 00000006
соответственно. По величине разности показателей U1-Ux определяют количественную убыль озона, израсходованного на образование диоксида азота (NO2) в результате упомянутой выше реакции NO+O3=NO2+O2, а это позволяет утверждать, что величина разности показателей U1-Ux соответствует концентрации оксида азота в анализируемой газовой среде. На графике, приведенном на фиг.2, зафиксированы показатели одного из замеров U1-Ux. Вытяжной насос 22 через ротаметр 23 удаляет из полости 9 хемилюминесцентного реактора 1 каждую порцию анализируемой газовой смеси, прошедшей анализ на концентрацию озона. Посредством генератора (O3) 19, снабженного скруббером (O3) 20 и связанного с одной стороны через трехходовой электропневмоклапан 21 с реакционной камерой 10, а с другой стороны с полостью 9 пустотелого проточного корпуса 2 хемилюминесцентного реактора 1, калибруют хемилюминесцентаый модуль устройства для определения концентрации оксида азота (NO) в газовой среде.
Благодаря тому что твердотельный хемилюминесцентаый датчик (O3) 3 хемилюминесцентного реактора 1 имеет на своей рабочей поверхности 4 сухой, не разрушаемый слой 18 хемилюминесцентной селективной композиции, повышена равномерность люминесцентного свечения по площади твердотельного хемилюминесцентного датчика (O3) 3 в зоне гетерогенной реакции в каждый момент времени измерения концентрации озона в пробе газовой смеси, что повысило точность определения концентрации оксида азота (NO) в анализируемой газовой среде.
Для подтверждения факта повышения точности определения концентрации оксида азота (NO) в газовой среде, благодаря техническому результату, полученному изобретением, на фиг.3 приведены сравнительные характеристики по погрешности выполнения измерений концентрации диоксида азота (NO2) в процентах относительно измеряемой концентрации NO2, в мкг/м3 способами:
- Первый способ определения концентрации диоксида азота (NO2) в газовой среде, описанный в статье «Analytical Techniques for Atmospheric Measurement. Edited by. Dwayne E, Heard. University of Leeds. Blackwell Publishing», принятый в качестве ближайшего аналога, в котором применяют метод гетерогенной хемилюминесценции. В известном способе анализируемый газ, например воздух, содержащий в своем составе диоксид азота (NO2) посредством насоса подают в хемилюминесцентный пустотелый проточный реактор, в котором установлен датчик, выполненный из нетканого пористого материала. Указанный датчик в процессе анализа постоянно смачивают раствором люминола. При взаимодействии диоксида азота, содержащегося в анализируемом газе, с поверхностью датчика, смачиваемого люминолом, возникает люминесценция, которую регистрируют мультищелочным катодом фотоэлектронного умножителя (на Фиг.3 координаты точек измерений обозначены треугольниками).
- Второй анализируемый способ, принят в качестве аналога по данной заявке, а именно определения концентрации оксида азота (NO) в смеси газов, например в воздухе, по патенту US №7045359, МПК G01N 31/00, опубл. 16.05.2006 г. В известном способе исследуемую пробу газа пропускают через реакционную камеру, полость которой просвечивают ультрафиолетовым лучом и концентрацию оксида азота (NO) определяют по расходу озона (O3), используемого на титрование оксида азота по ультрафиолетовому поглощению (на фиг.3 координаты точек измерений обозначены квадратами).
- Третий, сравниваемый способ определения концентрации оксида азота (NO) в газовой среде, является заявляемым изобретением, в котором концентрацию оксида азота в газовой среде определяют по расходу озона на титрование оксида азота, при этом измерение концентрации озона в пробе газовой смеси осуществляют путем обдува указанной газовой смесью твердотельного хемилюминесцентного датчика (O3), который располагают в активной зоне фотоэлектронного умножителя. Для получения твердотельного хемилюминесцентного датчика (O3) на пористую подложку, выполненную из синтетического нетканого материала, пропитанного смесью латексов, наносят хемилюминесцентную композицию с последующей ее сушкой (на фиг.3 координаты точек измерений обозначены кружками).
Сравнительный анализ данных, приведенных на фиг.3, показывает, что точность измерения, выполненного методом контроля убыли озона твердотельной хемилюминесценцией, с помощью твердотельного хемилюминесцентного датчика (O3), оказывается выше, чем у известных методов и средств измерений, принятых в качестве аналогов изобретения. На графике фиг.3 видно, что погрешность определения концентрации NO либо NO2 заявляемым изобретением, не превышает величину 10 процентов от измеряемого значения.
На фиг.4 приведены данные, отражающие линейность функции преобразования заявляемым устройством для определения концентрации оксида азота (NO) в газовой среде при измерении убыли концентрации озона в области малых значений концентрации оксида азота. Заявляемое устройство включает твердотельный хемилюминесцентный датчик (O3), выполненный в виде синтетической нетканой пористой подложки с нанесенным на ее рабочей поверхности сухим слоем хемилюминесцентной селективной композиции.
Представленный график на фиг.4 отражает данные для диапазона концентраций оксида азота от 0 до 200 мкг/м3. Кроме высокой линейности функции преобразования заявляемого устройства для определения концентрации оксида азота (NO) в газовой среде отмечается относительно высокая чувствительность, которая позволяет производить измерение концентрации оксида азота в газовой среде в диапазоне от 0,01 до 200 мкг/м3.
Техническим результатом изобретения является повышенная равномерность люминесцентного свечения по площади твердотельного хемилюминесцентного датчика (O3) 3 в зоне гетерогенной реакции в каждый момент времени измерения концентрации озона в пробе газовой смеси, что повысило точность определения концентрации оксида азота (NO) в анализируемой газовой среде.
Вместе с этим значительно улучшена компактность заявляемого устройства для определения концентрации оксида азота в газовой среде, в том числе в окружающей атмосфере, за счет исключения необходимости применения жидких реагентов для получения люминесцентного свечения при взаимодействии анализируемой газовой среды с твердотельным хемилюминесцентным датчиком (O3) 3, у которого на рабочей поверхности 4 расположен сухой, не разрушаемый слой 18 хемилюминесцентной селективной композиции.

Claims (11)

1. Способ определения концентрации оксида азота (NO) в газовой среде, заключающийся в том, что концентрацию оксида азота в анализируемой газовой среде определяют опосредованно, по уменьшению концентрации активной формы кислорода, например озона (O3), взятого в избытке к концентрации оксида азота, содержащегося в анализируемой газовой среде, введенной в реакционную камеру, в которую, одновременно с потоком анализируемой газовой среды, подают озон, при этом химическую реакцию взаимодействия оксида азота с озоном, а именно NO+O3=NO2+O2 доводят до полного перехода оксида азота в диоксид азота (NO2) и по убыли концентрации озона в полученной газовой смеси определяют концентрацию оксида азота в анализируемой газовой среде, для чего в реакционную камеру попеременно подают пробу анализируемой газовой среды, свободную от оксида азота и озона, смешанную с газом, насыщенным озоном с фиксированной концентрацией озона, а также анализируемую газовую среду, свободную от озона, смешанную с газом, насыщенным озоном, с упомянутой фиксированной концентрацией озона, при этом концентрацию озона в газовой смеси, полученной в реакционной камере, в обоих случаях определяют хемилюминесцентным способом путем обдува указанной газовой смесью хемилюминесцентного датчика (O3), который располагают в активной зоне фотоэлектронного умножителя, отличающийся тем, что хемилюминесцентный датчик (O3) выполняют твердотельным, для чего на рабочую поверхность подложки твердотельного хемилюминесцентного датчика (O3), обращенную в сторону фотоэлектронного умножителя, предварительно наносят хемилюминесцентную селективную композицию в составе полифенола и арилметанового красителя, растворенных в смеси этанола и этиленгликоля, при этом растворители берут в равных пропорциях при концентрации 0,05-0,07 Моль/л и 0,0003 Моль/л соответственно, а после нанесения на подложку твердотельного хемилюминесцентного датчика (O3) хемилюминесцентной селективной композиции хемилюминесцентную селективную композицию сушат до остаточного постоянного веса твердотельного хемилюминесцентного датчика (O3).
2. Способ по п.1, отличающийся тем, что в состав хемилюминесцентной селективной композиции в качестве полифенола берут 3,4,5-триоксибензол, а в качестве арилметанового красителя вводят Родамин 6Ж.
3. Способ по п.1, отличающийся тем, что в состав хемилюминесцентной селективной композиции в качестве полифенола берут оксибензойную кислоту, а в качестве арилметанового красителя вводят Родамин 6Ж.
4. Способ по п.1, отличающийся тем, что подложку твердотельного хемилюминесцентного датчика (O3) выполняют из синтетического нетканого пористого материала и пропитывают смесью латексов Акронал 35Д и Акронал 230В.
5. Способ по п.1, отличающийся тем, что функцию преобразования твердотельного хемилюминесцентного датчика (O3) (градуировку) устанавливают от концентраций, задаваемых встроенным фотохимическим генератором активных форм кислорода, например озона в исследуемой газовой среде.
6. Устройство для определения концентрации оксида азота (NO) в газовой среде, содержащее хемилюминесцентный модуль, включающий в себя хемилюминесцентный реактор, выполненный в виде пустотелого проточного корпуса, в котором расположены хемилюминесцентный датчик (O3) и ориентированный на его рабочую поверхность фотоэлектронный умножитель, к которому подключена контрольно-измерительная аппаратура, при этом к полости пустотелого проточного корпуса хемилюминесцентного реактора присоединена реакционная камера, а к реакционной камере подключены параллельно скруббер (NO, O3) и скруббер (O3) через трехходовой клапан, насос и узел развязки, а также к реакционной камере через упомянутый узел развязки подключен генератор озона, отличающееся тем, что хемилюминесцентный датчик (O3) выполнен твердотельным в виде подложки с нанесенным на ее рабочей поверхности сухим слоем хемилюминесцентной селективной композиции.
7. Устройство по п.6, отличающееся тем, что сухой слой хемилюминесцентной селективной композиции твердотельного хемилюминесцентного датчика (O3) нанесен из эмульсии в составе полифенола и арилметанового красителя, растворенных в смеси этанола и этиленгликоля, при этом растворители взяты в равных пропорциях при концентрации 0,05-0,07 Моль/л и 0,0003 Моль/л соответственно, а после нанесения на подложку твердотельного хемилюминесцентного датчика (O3) хемилюминесцентной композиции хемилюминесцентная композиция была высушена до остаточного постоянного веса твердотельного хемилюминесцентного датчика (O3).
8. Устройство по п.7, отличающееся тем, что в состав сухого слоя хемилюминесцентной селективной композиции твердотельного хемилюминесцентного датчика (O3) в качестве полифенола взят 3,4,5-триоксибензол, а в качестве арилметанового красителя взят Родамин 6Ж.
9. Устройство по п.7, отличающееся тем, что в состав сухого слоя хемилюминесцентной селективной композиции твердотельного хемилюминесцентного датчика (O3) в качестве полифенола взята оксибензойная кислота, а в качестве арилметанового красителя введен Родамин 6Ж.
10. Устройство по п.6, отличающееся тем, что подложка твердотельного хемилюминесцентного датчика (O3), на рабочей поверхности которой нанесен сухой слой хемилюминесцентной селективной композиции, выполнена из синтетического нетканого пористого материала и пропитана смесью латексов Акронал 35Д и Акронал 230В.
11. Устройство по п.6, отличающееся тем, что хемилюминесцентный модуль дополнительно снабжен встроенным генератором озона, который является калибратором хемилюминесцентного модуля.
RU2012105701/04A 2012-02-10 2012-02-10 Способ и устройство для определения концентрации оксида азота(no) в газовой среде RU2493556C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012105701/04A RU2493556C1 (ru) 2012-02-10 2012-02-10 Способ и устройство для определения концентрации оксида азота(no) в газовой среде

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012105701/04A RU2493556C1 (ru) 2012-02-10 2012-02-10 Способ и устройство для определения концентрации оксида азота(no) в газовой среде

Publications (2)

Publication Number Publication Date
RU2012105701A RU2012105701A (ru) 2013-08-20
RU2493556C1 true RU2493556C1 (ru) 2013-09-20

Family

ID=49162599

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012105701/04A RU2493556C1 (ru) 2012-02-10 2012-02-10 Способ и устройство для определения концентрации оксида азота(no) в газовой среде

Country Status (1)

Country Link
RU (1) RU2493556C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020112570A1 (de) 2020-05-08 2021-11-11 Analytik Jena Gmbh Vorrichtung zur Chemolumineszenzanalyse

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2570236C1 (ru) * 2014-06-17 2015-12-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Самарский государственный университет" Способ получения градуировочных смесей фотохимической реакцией карбоксилатоуранилатов калия и устройство для его осуществления
DE102017213980A1 (de) * 2017-08-10 2019-02-14 Siemens Aktiengesellschaft Gasanalysator zur Messung von Stickoxiden und mindestens einer weiteren Komponente eines Abgases

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU1778644C (ru) * 1990-08-21 1992-11-30 Всесоюзный научно-исследовательский институт аналитического приборостроения Хемилюминесцентный газоанализатор окислов азота
US20040018630A1 (en) * 2002-07-26 2004-01-29 Birks John W. Method and apparatus to detect a gas by measuring ozone depletion
EP1710563B1 (en) * 2005-04-04 2011-02-16 Horiba, Ltd. Method of measuring the concentration of nitrogen oxide and nitrogen oxide analyzer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU1778644C (ru) * 1990-08-21 1992-11-30 Всесоюзный научно-исследовательский институт аналитического приборостроения Хемилюминесцентный газоанализатор окислов азота
US20040018630A1 (en) * 2002-07-26 2004-01-29 Birks John W. Method and apparatus to detect a gas by measuring ozone depletion
EP1710563B1 (en) * 2005-04-04 2011-02-16 Horiba, Ltd. Method of measuring the concentration of nitrogen oxide and nitrogen oxide analyzer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020112570A1 (de) 2020-05-08 2021-11-11 Analytik Jena Gmbh Vorrichtung zur Chemolumineszenzanalyse

Also Published As

Publication number Publication date
RU2012105701A (ru) 2013-08-20

Similar Documents

Publication Publication Date Title
Villena et al. Interferences of commercial NO 2 instruments in the urban atmosphere and in a smog chamber
US5424217A (en) Process for the detection of sulfur
Crider Hydrogen flame emission spectrophotometry in monitoring air for sulfur dioxide and sulfuric acid aerosol
Stutz et al. Simultaneous DOAS and mist-chamber IC measurements of HONO in Houston, TX
Spindler et al. Wet annular denuder measurements of nitrous acid: laboratory study of the artefact reaction of NO2 with S (IV) in aqueous solution and comparison with field measurements
Ray et al. Fast chemiluminescent method for measurement of ambient ozone
Liu et al. In situ monitoring of atmospheric nitrous acid based on multi-pumping flow system and liquid waveguide capillary cell
CN109001364B (zh) 一种双通道采样大气hono测定系统及方法
RU2493556C1 (ru) Способ и устройство для определения концентрации оксида азота(no) в газовой среде
Hlavay et al. Detection of hydrogen chloride gas in ambient air with a coated piezoelectric quartz crystal
WO2003091724A1 (fr) Procede de mesure de la concentration en formaldehyde d'un gaz et instrument de mesure
Lao et al. A portable, robust, stable, and tunable calibration source for gas-phase nitrous acid (HONO)
Miyazaki et al. A new technique for the selective measurement of atmospheric peroxy radical concentrations of HO 2 and RO 2 using a denuding method
Eipel et al. Determination of ozone in ambient air with a chemiluminescence reagent film detector
US5889195A (en) Measuring arrangement for determining the concentration of gases from liquid media
CN110487781A (zh) 一种氮氧化物的检测方法
CN205484057U (zh) 一种二氧化硫分析仪
Tian et al. Determination of nitric oxide using light-emitting diode–based colorimeter with tubular porous polypropylene membrane cuvette
Shepherd et al. Determination of carbon monoxide in air pollution studies
CN207816810U (zh) 长程差分吸收光谱空气质量监测仪的校准装置
Lai et al. Piezoelectric quartz crystal detection of ammonia using pyridoxine hydrochloride supported on a polyethoxylate matrix
Papenbrock et al. Measurement of gaseous nitric acid by a laser-photolysis fragment-fluorescence (LPFF) method in the black forest and at the North Sea cost
CN101498670A (zh) 测量卷烟侧流烟气中氮氧化物的方法
Ohira et al. In situ gas generation for micro gas analysis system
KR100411237B1 (ko) 수질조사 키트