RU2489744C1 - Коллиматор - Google Patents

Коллиматор Download PDF

Info

Publication number
RU2489744C1
RU2489744C1 RU2011153051/28A RU2011153051A RU2489744C1 RU 2489744 C1 RU2489744 C1 RU 2489744C1 RU 2011153051/28 A RU2011153051/28 A RU 2011153051/28A RU 2011153051 A RU2011153051 A RU 2011153051A RU 2489744 C1 RU2489744 C1 RU 2489744C1
Authority
RU
Russia
Prior art keywords
test object
conductors
lens
collimator
field
Prior art date
Application number
RU2011153051/28A
Other languages
English (en)
Other versions
RU2489744C9 (ru
RU2011153051A (ru
Inventor
Геннадий Иванович Федченко
Сергей Иванович Щеглов
Original Assignee
Открытое акционерное общество "Красногорский завод имени С.А. Зверева"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Красногорский завод имени С.А. Зверева" filed Critical Открытое акционерное общество "Красногорский завод имени С.А. Зверева"
Priority to RU2011153051/28A priority Critical patent/RU2489744C9/ru
Publication of RU2011153051A publication Critical patent/RU2011153051A/ru
Publication of RU2489744C1 publication Critical patent/RU2489744C1/ru
Application granted granted Critical
Publication of RU2489744C9 publication Critical patent/RU2489744C9/ru

Links

Images

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

Изобретение может использоваться для измерения или настройки параллельности визирных осей двух или более оптических систем. Коллиматор содержит объектив, тест-объект, расположенный в фокальной плоскости объектива, и систему подсветки тест-объекта. Тест-объект - система проводников, подключенных к источнику стабилизированного тока и образующих, по меньшей мере, одно перекрестие в поле зрения. Система подсветки - прозрачная пластина с матированной центральной зоной, расположенной непосредственно за тест-объектом и подсвеченной источником излучения видимого диапазона, например, светодиодом. Перекрестие в поле зрения выступает за границы матированной зоны. Каждый из проводников тест-объекта может быть подключен к собственной секции источника стабилизированного тока, которые не имеют гальванической связи. Технический результат - обеспечение необходимой спектральной яркости тест-объекта в сильно разнесенных спектральных диапазонах, повышение точности настройки или контроля параллельности двух или более систем, объединенных в приборный комплекс. 1 з.п. ф-лы, 4 ил.

Description

Изобретение относится к области оптической контрольно-измерительной техники, а именно к коллиматорам, используемым для измерения или настройки параллельности визирных осей двух или более оптических систем, по меньшей мере, одна из которых является тепловизионной.
Известно устройство (патент Франции №2391482, G02B 27/30, публ. 1978 г.) для настройки параллельности нескольких оптических систем, по меньшей мере, одна из которых имеет максимальную чувствительность в инфракрасном диапазоне частот и может формировать тепловое изображение. Названное устройство содержит источник излучения, который излучает видимый свет и излучение инфракрасного диапазона. Источник расположен в фокальной плоскости зеркального объектива, фактически является тест-объектом и изображается как бесконечно удаленный предмет контролируемыми оптическими системами, имеющими в своем составе устройства для настройки направления их оптических осей по отношению к отсчетному направлению. При настройке добиваются, чтобы изображение источника, сформированное каждым каналом системы, занимало требуемое положение в фокальной плоскости канала, что, с определенной точностью, соответствует параллельности каналов. Данное устройство характеризуется наличием полосовых фильтров, ограничивающих спектральный состав излучения в диапазоне вблизи 10 мкм, причем полоса пропускания фильтров, работающих в инфракрасном диапазоне частот, составляет 1-2 мкм, а спектральная яркость используемого источника света, преимущественно лампы накаливания, достаточна для формирования как видимого, так и инфракрасного контрольного изображения всеми системами, параллельность которых контролируется или настраивается. Однако источник излучения, используемый в данном случае как тест-объект, должен выполнять противоречивые требования: обеспечивать необходимую спектральную яркость в сильно разнесенных спектральных диапазонах - в видимом и, как правило, в «дальнем» инфракрасном (обычно 8…14 мкм). Необходимое при этом дополнительное ограничение этих диапазонов полосовыми фильтрами усложняет контролирующую систему и связано со значительными бесполезными потерями мощности излучателя. Кроме того, для точного определения направления на изображение излучателя потоки его излучения необходимо формировать не только по спектральному составу, но и геометрически (например, точечными или другими диафрагмами), что создает дополнительные потери мощности.
В качестве средства для настройки или контроля параллельности оптико-электронных систем с разными рабочими диапазонами спектра может использоваться зеркальный коллиматор (RU, патент на полезную модель №31284, G02B 27/30, G01B 11/26, публ. 2003 г.), по совокупности признаков наиболее близкий к заявляемому изобретению, включающий оптически связанные зеркальный объектив, тест-объект, расположенный в фокальной плоскости зеркального объектива, и систему подсветки тест-объекта, причем тест-объект снабжен системой подогрева и выполнен в виде оптической пластины с полированными рабочими поверхностями, на первую из которых, обращенную к зеркальному объективу, нанесено металлическое покрытие, в котором выполнены прозрачные штрихи, образующие рисунок тест-объекта. При этом тест-объект зеркального коллиматора имеет один и тот же рисунок (прозрачные штрихи) как для видимого, так и для инфракрасного диапазона спектра, а на завершающей стадии настройки параллельности двух или более систем обычно наблюдают в едином поле зрения два или более двух идентичных изображений одинакового масштаба, расположенных близко друг к другу вплоть до касания, и их дальнейшее совмещение до желаемой точности затрудняется в связи с частичным взаимным перекрытием изображений тест-объекта, что затрудняет оценку или измерение их относительного смещения. Кроме того, контраст рисунка тест-объекта на созданном таким способом тепловом фоне понижен в связи с тем, что при подогреве всего тест-объекта спектральная яркость возрастает как в пределах штрихов, образующих рисунок тест-объекта, так и в зонах, непосредственно окружающих названные штрихи, причем контраст трудно заранее определить или установить его желаемое значение перед проведением измерений, например, с учетом температуры окружающей среды.
Задачей заявляемого изобретения является создание коллиматора с улучшенными эксплуатационными характеристиками.
Технический результат - создание коллиматора для контроля и настройки параллельности оптических осей нескольких оптических систем с экономичным обеспечением необходимой спектральной яркости тест-объекта в сильно разнесенных спектральных диапазонах, повышение точности настройки или контроля параллельности двух или более систем, объединенных в приборный комплекс.
Это достигается тем, что в коллиматоре, содержащем объектив, тест-объект, расположенный в фокальной плоскости объектива, и систему подсветки тест-объекта, тест-объект выполнен в виде системы проводников, подключенных к источнику стабилизированного тока и образующих, по меньшей мере, одно перекрестие в поле зрения, система подсветки выполнена в виде прозрачной пластины с матированной центральной зоной, расположенной непосредственно за тест-объектом и подсвеченной источником излучения видимого диапазона, например, светодиодом, перекрестие в поле зрения выполнено выступающим за границы матированной зоны.
Кроме того, в коллиматоре каждый из проводников тест-объекта может быть подключен к собственной секции источника стабилизированного тока, причем названные секции не имеют гальванической связи.
Конструкция предлагаемого коллиматора иллюстрируется чертежами, где на фиг.1 представлена оптическая схема, на фиг.2 - конструкция фокального узла, а на фиг.3 и 4 - примеры изображений, наблюдаемых при контроле или настройке параллельности каналов контролируемой системы. В фокальной плоскости объектива коллиматора 1 расположен тест-объект, а именно система проводников 2. Энергетическая яркость каждого проводника определяется пропускаемым через него стабилизированным током. Хорошим конкретным исполнением тест-объекта является перекрестие из двух проводников с большим удельным сопротивлением, каждый из которых подключен к самостоятельной секции источника стабилизированного тока, что практически исключает изменение теплового режима проводников при их касании. За фокальной плоскостью объектива коллиматора 1 и за системой проводников 2 расположена система подсветки, выполненная в виде прозрачной пластины 3 с матированной центральной зоной, подсвеченной источником видимого излучения 4 (предпочтителен светодиод как доступный и эффективный излучатель). Входные зрачки контролируемых оптических устройств 5 и 6 расположены в тепловых и световых потоках, отраженных зеркалом объектива 1 и формирующих тепловое и видимое изображения перекрестия.
Описанное устройство работает следующим образом.
При подаче электропитания на систему проводников 2 и источник видимого излучения 4 на объектив коллиматора 1 падает инфракрасное излучение нагретых током проводников тест-объекта и более коротковолновое излучение от матированной центральной зоны прозрачной пластины, подсвеченной источником видимого излучения. При этом в поле зрения коллиматора проводники являются излучающими объектами в инфракрасной области и «темными» объектами на фоне подсвеченной матированной центральной зоны прозрачной пластины в видимой области спектра. Объектив коллиматора формирует бесконечно удаленные (или расположенные на конечном расстоянии) изображения проводников тест-объекта в инфракрасной области спектра и имеющие меньшую протяженность изображения тех же проводников в более коротковолновой (обычно - видимой) области. Различие протяженности инфракрасного и видимого изображений проводников обусловлено размером матированной зоны пластины источника подсветки (в видимой области наблюдается только часть проводника, соответствующая его геометрической проекции на матированную центральную зону).
Входные зрачки контролируемых систем располагаются в потоках излучения, идущих от объектива коллиматора (предполагается, что объектив имеет достаточный диаметр для того, чтобы заполнить световыми или инфракрасными потоками зрачки всех контролируемых систем, связанных между собой элементами конструкции).
Видимые и преобразованные в видимые инфракрасные изображения, сформированные контролируемыми системами, обычно объединяются контролирующей системой в едином поле зрения для контроля параллельности визирных линий, направленных на изображения проводников тест - объекта. При этом в поле зрения контролирующей системы (например, фотокамеры) может наблюдаться картина, подобная изображению на фиг.3, где в виде темного перекрестия наблюдаются проводники тест-объекта на светлом фоне матированной центральной зоны, а смещенное на величину ΔГ по горизонтали и ΔВ по вертикали светлое перекрестие соответствует преобразованному инфракрасному изображению проводников тест-объекта (части этого изображения, показанные на фиг.3 пунктирными линиями, могут «подавляться» яркостью матированной центральной зоны). Взаимное смещение перекрестий говорит о непараллельности визирных линий светового и инфракрасного каналов контролируемой системы, что обусловлено технологическими отклонениями, устраняемыми при настройке соответствующих узлов системы. За счет этого может быть получена картина, показанная на фиг.4, где нежелательное смещение уменьшено до касания и частичного перекрытия изображений перекрестий. Непараллельность визирных линий при этом может быть все еще недопустимой. Дальнейшая регулировка должна вестись при наблюдении смещения перекрестий в зонах, обозначенных на фиг.4 пунктирными линиями, где обеспечивается повышенная точность совмещения за счет принципа «нониусного совмещения», что не осуществимо, когда совмещаются видимое и инфракрасное изображения, геометрически одинаковые (как в прототипе).
Таким образом, в результате предложенного решения обеспечено получение технического результата - создан коллиматор для контроля и настройки параллельности оптических осей нескольких оптических систем с экономичным обеспечением необходимой спектральной яркости тест-объекта в сильно разнесенных спектральных диапазонах, повышение точности настройки или контроля параллельности двух или более систем, объединенных в приборный комплекс.

Claims (2)

1. Коллиматор, содержащий объектив, тест-объект, расположенный в фокальной плоскости объектива, и систему подсветки тест-объекта, отличающийся тем, что тест-объект выполнен в виде системы проводников, подключенных к источнику стабилизированного тока и образующих, по меньшей мере, одно перекрестие в поле зрения, а система подсветки выполнена в виде прозрачной пластины с матированной центральной зоной, расположенной непосредственно за тест-объектом и подсвеченной источником излучения видимого диапазона, например светодиодом, причем перекрестие в поле зрения выполнено выступающим за границы матированной зоны.
2. Коллиматор по п.1, отличающийся тем, что каждый из проводников тест-объекта подключен к собственной секции источника стабилизированного тока, причем названные секции не имеют гальванической связи.
RU2011153051/28A 2011-12-27 2011-12-27 Коллиматор RU2489744C9 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2011153051/28A RU2489744C9 (ru) 2011-12-27 2011-12-27 Коллиматор

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011153051/28A RU2489744C9 (ru) 2011-12-27 2011-12-27 Коллиматор

Publications (3)

Publication Number Publication Date
RU2011153051A RU2011153051A (ru) 2013-07-10
RU2489744C1 true RU2489744C1 (ru) 2013-08-10
RU2489744C9 RU2489744C9 (ru) 2013-11-10

Family

ID=48787192

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011153051/28A RU2489744C9 (ru) 2011-12-27 2011-12-27 Коллиматор

Country Status (1)

Country Link
RU (1) RU2489744C9 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2391482A1 (fr) * 1977-05-20 1978-12-15 Messerschmitt Boelkow Blohm Dispositif d'alignement parallele des axes de plusieurs appareils optiques
RU31284U1 (ru) * 2002-01-17 2003-07-27 Открытое Акционерное Общество "Пеленг" Зеркальный коллиматор
RU69985U1 (ru) * 2007-02-19 2008-01-10 Открытое Акционерное Общество "Пеленг" Устройство для контроля непараллельности тепловизионного и визуального каналов комбинированных прицелов
CN102168988A (zh) * 2010-12-28 2011-08-31 哈尔滨工业大学 双波段平行光管目标模拟器
RU108653U1 (ru) * 2011-04-15 2011-09-20 Открытое акционерное общество "Научно-производственное объединение "Государственный институт прикладной оптики" (ОАО "НПО ГИПО") Инфракрасный коллиматор

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2391482A1 (fr) * 1977-05-20 1978-12-15 Messerschmitt Boelkow Blohm Dispositif d'alignement parallele des axes de plusieurs appareils optiques
RU31284U1 (ru) * 2002-01-17 2003-07-27 Открытое Акционерное Общество "Пеленг" Зеркальный коллиматор
RU69985U1 (ru) * 2007-02-19 2008-01-10 Открытое Акционерное Общество "Пеленг" Устройство для контроля непараллельности тепловизионного и визуального каналов комбинированных прицелов
CN102168988A (zh) * 2010-12-28 2011-08-31 哈尔滨工业大学 双波段平行光管目标模拟器
RU108653U1 (ru) * 2011-04-15 2011-09-20 Открытое акционерное общество "Научно-производственное объединение "Государственный институт прикладной оптики" (ОАО "НПО ГИПО") Инфракрасный коллиматор

Also Published As

Publication number Publication date
RU2489744C9 (ru) 2013-11-10
RU2011153051A (ru) 2013-07-10

Similar Documents

Publication Publication Date Title
US10267622B2 (en) Confocal displacement sensor
TW200533884A (en) Telescopic sight with laser rangefinder
CN106990052A (zh) 光学特性测定装置以及光学系统
CN103776548A (zh) 红外测温仪以及用于测量能量区域的温度的方法
CN101922968B (zh) 一种距离误差自动校正亮度计
KR20120066500A (ko) 조명 광학계와 결상 광학계가 통합된 광학계 및 이를 포함하는 3차원 영상 획득 장치
RU2489744C9 (ru) Коллиматор
RU2535584C1 (ru) Устройство для контроля положения линии визирования прицелов на стрелковом оружии
CN104536148B (zh) 一种实现镜面定位仪光束快速对准装置及对准方法
RU2531555C2 (ru) Автоколлимационный способ измерения фокусного расстояния
TWM629084U (zh) 自動對焦及取像系統、顯微鏡
US9445718B2 (en) Optical system and measurement method thereof
RU2622239C1 (ru) Устройство для бесконтактного измерения температуры объекта
RU159203U1 (ru) Устройство для настройки и контроля лазерного дальномера
TWI743473B (zh) 外科手術攝影系統
RU2567445C1 (ru) Окулярное устройство
RU2536570C1 (ru) Устройство для контроля положения линии визирования прицелов на стрелковом оружии
RU197841U1 (ru) Телевизионный прицел с лазерным дальномером
RU2437051C1 (ru) Дальномерно-визирный приборный комплекс
CN104613817A (zh) 瞄准器的亮度调节系统和瞄准器
TWI813173B (zh) 自動對焦及取像系統及其方法、顯微鏡
KR101257749B1 (ko) 적외선 방사 온도계 관측시스템
KR101584455B1 (ko) 부품의 내부를 촬영하는 촬영 모듈 및 이를 이용한 촬영 시스템
RU135107U1 (ru) Устройство для контроля положения линии визирования прицелов на стрелковом оружии
RU2273824C2 (ru) Лазерный дальномер (варианты)

Legal Events

Date Code Title Description
TH4A Reissue of patent specification
QA4A Patent open for licensing

Effective date: 20191217