RU2488961C2 - Устройство определения синфазного сигнала в сети высокочастотной связи по линии электропередачи - Google Patents

Устройство определения синфазного сигнала в сети высокочастотной связи по линии электропередачи Download PDF

Info

Publication number
RU2488961C2
RU2488961C2 RU2011110433/07A RU2011110433A RU2488961C2 RU 2488961 C2 RU2488961 C2 RU 2488961C2 RU 2011110433/07 A RU2011110433/07 A RU 2011110433/07A RU 2011110433 A RU2011110433 A RU 2011110433A RU 2488961 C2 RU2488961 C2 RU 2488961C2
Authority
RU
Russia
Prior art keywords
line
common
determining
mode signal
impedance
Prior art date
Application number
RU2011110433/07A
Other languages
English (en)
Other versions
RU2011110433A (ru
Inventor
Андреас ШВАГЕР
Вернер БЕШЛИН
Original Assignee
Сони Корпорейшн
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сони Корпорейшн filed Critical Сони Корпорейшн
Publication of RU2011110433A publication Critical patent/RU2011110433A/ru
Application granted granted Critical
Publication of RU2488961C2 publication Critical patent/RU2488961C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines
    • H04B3/56Circuits for coupling, blocking, or by-passing of signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/30Reducing interference caused by unbalanced currents in a normally balanced line
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2203/00Indexing scheme relating to line transmission systems
    • H04B2203/54Aspects of powerline communications not already covered by H04B3/54 and its subgroups
    • H04B2203/5462Systems for power line communications
    • H04B2203/5466Systems for power line communications using three phases conductors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2203/00Indexing scheme relating to line transmission systems
    • H04B2203/54Aspects of powerline communications not already covered by H04B3/54 and its subgroups
    • H04B2203/5462Systems for power line communications
    • H04B2203/5483Systems for power line communications using coupling circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Dc Digital Transmission (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Small-Scale Networks (AREA)
  • Communication Control (AREA)

Abstract

Использование: в области электротехники. Технический результат - повышение точности. Предложено устройство (100, 200, 300) для определения синфазного сигнала в сети высокочастотной связи по линии электропередачи. Устройство (100, 200, 300) содержит первую линию (102), вторую линию (104) и третью линию (106), подключенные соответственно к первому контакту (110), второму контакту (112) и третьему контакту (114). Первый, второй и третий контакты (110, 112, 114) выполнены с возможностью соединения, соответственно, с фазовой линией (P), нейтральной линией (N) и защитной линией (PE) заземления сети высокочастотной связи по линии электропередачи. Устройство (100, 200, 300) дополнительно содержит дроссель (120) синфазного сигнала, выполненный с возможностью выводить синфазный сигнал из первой, второй и третьей линий (102, 104, 106), при этом дроссель (120) синфазного сигнала соединен с выходным полным сопротивлением (122), которое больше по величине полного сопротивления сети высокочастотной связи по линии электропередачи. 11 з.п. ф-лы, 5 ил.

Description

Область техники
Изобретение относится к устройству определения синфазного сигнала в сети высокочастотной связи по линии электропередачи.
Уровень техники
Высокочастотная связь по линии электропередачи (PLC), также называемая связью по сети электроснабжения, передачей по линии электропередачи или телекоммуникацией по линии электропередачи (PLT), широкополосной линией электропередачи (BPL), широкополосной передачей данных по сети или передачей данных по сети с использованием линии электропередачи (PLN) - это термин, описывающий несколько различных систем, использующих провода распределения электрической энергии для одновременного распределения данных. Несущая частота может осуществлять передачу голоса и данных при наложении аналогового сигнала на стандартный переменный ток (АС) с частотой 50 или 60 Гц. Для применения внутри помещений оборудование PLC может использовать бытовую электрическую сеть в качестве среды передачи данных. Эта технология используется, например, в домашней компьютерной сети или в домашней автоматизации для дистанционного управления освещением и устройствами без размещения дополнительных проводов.
В стандартных системах PLC сигналы передаются и принимаются в режиме дифференциального сигнала (DM). Режим дифференциального сигнала является способом передачи информации по паре проводов. В этом режиме дифференциального сигнала один провод переносит сигнал, а другой провод переносит инверсный сигнал, так что сумма напряжений относительно земли на двух проводах всегда предполагается равной нулю. Поэтому модемы PLC вводят дифференциальный сигнал между нейтральной линией и фазовой линией розетки бытовой сети электропитания для целей коммуникации. Другой модем PLC может принимать такие дифференциальные сигналы на другой розетке, и использовать дифференциальный сигнал для управления устройством, связанным с принимающим модемом PLC.
В бытовых электрических сетях между фазовой линией и нейтральной линией существуют асимметричные элементы, подобные, например, разомкнутому выключателю света, токовой шине и электрошкафу с плавкими предохранителями, групповым цепям и т.д. На этих асимметричных элементах дифференциальные сигналы, введенные модемами PLC, преобразуются в синфазные сигналы. Модемы PLC с множеством входов и множеством выходов (MIMO) могут использовать различные каналы, в частности также синфазные сигналы, для того чтобы увеличить зону действия систем PLC.
Поэтому существует необходимость в усовершенствованном устройстве для определения синфазного сигнала в сети высокочастотной связи по линии электропередачи.
Раскрытие изобретения
Задачей изобретения является обеспечение устройства определения синфазного сигнала в сети высокочастотной связи по линии электропередачи с улучшенной способностью определять синфазные сигналы.
Эта задача решается с помощью устройства согласно п.1 формулы изобретения.
Дополнительные детали изобретения станут более понятными при рассмотрении чертежей и последующего описания.
Краткое описание чертежей
Сопроводительные чертежи включены сюда, чтобы обеспечить дополнительное понимание вариантов осуществления изобретения, а также вставлены в описание и являются составной частью этого описания. Чертежи иллюстрируют варианты осуществления изобретения и вместе с описанием служат для объяснения принципов действия вариантов осуществления изобретения. Другие варианты осуществления изобретения и многие предполагаемые преимущества вариантов осуществления изобретения будут легко оценены, поскольку они станут более понятными на основании последующего подробного описания. Элементы чертежей необязательно масштабированы по отношению друг к другу. Аналогичные цифровые ссылки обозначают соответствующие подобные части.
Фиг.1 показывает схематическую принципиальную схему варианта осуществления изобретения.
Фиг.2 показывает схематическую принципиальную схему дополнительного варианта осуществления изобретения.
Фиг.3 показывает схематическую принципиальную схему дополнительного варианта осуществления изобретения.
Фиг.4 показывает схематическую принципиальную схему дополнительного варианта осуществления изобретения.
Фиг.5 показывает схематическую диаграмму для объяснения приема сигналов с множеством входов и множеством выходов в соответствии с вариантом осуществления изобретения.
Осуществление изобретения
В дальнейшем описываются варианты осуществления изобретения. Важно отметить, что все описанные варианты осуществления изобретения в дальнейшем могут быть скомбинированы любым способом, т.е. не существует ограничения на то, что определенные описанные варианты осуществления изобретения не могут быть скомбинированы с другими вариантами. Кроме того, следует заметить, что одинаковые цифровые обозначения на всех фигурах обозначают одинаковые или подобные элементы.
Должно быть понятно, что могут быть использованы другие варианты осуществления изобретения, при этом структурные или логические изменения могут быть сделаны, не выходя за рамки объема изобретения. Поэтому последующее подробное описание не должно рассматриваться в ограничивающем смысле, и объем настоящего изобретения определяется прилагаемой формулой изобретения.
Также должно быть понятно, что признаки различных вариантов осуществления изобретения, описанные здесь, могут комбинироваться друг с другом до тех пор, пока не отмечено противоположное.
На фиг.1 изображена упрощенная принципиальная схема устройства 100 для определения синфазного сигнала в сети высокочастотной связи по линии электропередачи. Устройство 100 может быть, например, пробником для определения входа синфазного сигнала в систему линии электропитания с дифференциальным сигналом. Устройство 100 также может быть частью модема линии электропитания, которая принимает сигналы линии электропитания.
Устройство 100 содержит первую линию 102, вторую линию 104 и третью линию 106, которые присоединяются, соответственно, к первому контакту 110, второму контакту 112 и третьему контакту 114. Линия Р фазы может быть присоединена к первому контакту 110, нейтральная линия может быть присоединена ко второму контакту 112, а защитная линия РЕ заземления может быть присоединена к третьему контакту 114.
Устройство 100 включает в себя дроссель 120 синфазного сигнала, конфигурация которого выбрана такой, чтобы выводить синфазный сигнал из первой линии 102, второй линии 104 и третьей линии 106.
Дроссель 120 синфазного сигнала присоединяется к выходному полному сопротивлению 122, которое выше полного сопротивления сети высокочастотной связи по линии электропередачи. Сеть высокочастотной связи по линии электропередачи включает в себя все линии, приборы и устройства, подключенные к фазовой линии Р, нейтральной линии N и защитной линии РЕ заземления.
При использовании входного сопротивления 122 с высоким полным сопротивлением, например выше полного сопротивления сети высокочастотной связи по линии электропередачи, дифференциальные сигналы, передаваемые по фазовой линии P, нейтральной линии N и защитной линии PE заземления, а также, соответственно, по первой линии 102, второй линии 104 и третьей линии 106, подвержены меньшему влиянию помех, чем при использовании выходного сопротивления со значительно более низким полным сопротивлением, например согласованным с полным сопротивлением сети высокочастотной связи по линии электропередачи, например, от 50 до 150 Ом.
На фиг.2 изображена принципиальная схема дополнительного устройства 200 для определения синфазного сигнала. Первая линия 102, вторая линия 104 и третья линия 106 присоединяются, соответственно, к первому контакту 110, второму контакту 112 и третьему контакту 114 с помощью разделительных конденсаторов С. Разделительный конденсатор С служит для изолирования устройства 200 от прямого токового сигнала на фазовой линии Р, нейтральной линии N и защитной линии РЕ заземления.
Дроссель 120 синфазного сигнала наматывается вокруг первой линии 102, второй линии 104 и третьей линии 106 и присоединяется к выходному сопротивлению 122, полное сопротивление которого более высокое, чем полное сопротивление сети высокочастотной связи по линии электропередачи.
Первая линия 102 соединяется через первый трансформатор 202 с землей, вторая линия 104 соединяется через второй трансформатор 204 с землей, третья линия 106 соединяется через третий трансформатор 206 с землей. Первый вывод 212 присоединяется к первому трансформатору 202 (полное сопротивление), второй вывод 214 присоединяется ко второму трансформатору 204 (полное сопротивление) и третий вывод 216 присоединяется к третьему трансформатору 206 (полное сопротивление). Первый вывод 212, второй вывод 214 и третий вывод 216 оканчиваются выходными сопротивлениями 222, 224, 226, полное сопротивление каждого из которых может быть согласованным с полным сопротивлением сети связи по линии электропередачи (например, 50 Ом). Первый вывод 212, второй вывод 214 и третий вывод 216 используются для того, чтобы вывести дифференциальные сигналы, которые передаются по первой линии 102, второй линии 104 и третьей линии 106.
Четвертый вывод 218 присоединяется к дросселю 120 синфазного сигнала. Четвертый вывод 218 конфигурирован таким образом, чтобы вывести синфазный сигнал, проходящий по первой линии 102, второй линии 104 и третьей линии 106.
Выходное сопротивление 122 может быть реализовано как входное сопротивление аналого-цифрового преобразователя, присоединенного к дросселю 120 синфазного сигнала. Входным сопротивлением аналого-цифрового преобразователя можно управлять с помощью затвора КМОП (комплементарный металлооксидный полупроводник) транзистора. Величина такого входного сопротивления должна быть максимальной и обычно может находиться в пределах между 1 кОм и 3 кОм.
Конфигурация, показанная на фиг.2, также известна как топология типа "звезда". Однако также возможно использовать топологию типа «треугольник».
На фиг.3 изображена следующая принципиальная схема устройства 300 для определения синфазного сигнала. В устройстве 300 определение дифференциальных сигналов осуществляется первым усилителем 302, вторым усилителем 304 и третьим усилителем 306.
Один из входов первого усилителя 302, второго усилителя 304 и третьего усилителя 306 соединяется с землей. Другой вход первого усилителя 302 присоединяется к первой линии 102 между дросселем 120 синфазного сигнала и первым полным сопротивлением 312. Второй вход второго усилителя 304 присоединяется ко второй линии 104 между дросселем 120 синфазного сигнала и вторым полным сопротивлением 314. Второй вход третьего усилителя 306 присоединяется к третьей линии 106 между дросселем 120 синфазного сигнала и третьим полным сопротивлением 316. Выходы первого усилителя 302, второго усилителя 304 и третьего усилителя 306 присоединяются, соответственно, к первому выходу 222, второму выходу 224 и к третьему выходу 226.
С помощью этих усилителей можно определять дифференциальные сигналы на первой линии 102, второй линии 104 и третьей линии 106 на первом выходе 222, втором выходе 224 и третьем выходе 226. Первый усилитель 302, второй усилитель 304 и третий усилитель 306 расположены как топология "звезда". Однако также возможно расположение в виде топологии «треугольник».
На фиг.4 изображена измерительная установка для определения влияния величины выходного полного сопротивления 122 на изоляцию или расхождение дифференциальных сигналов на первой линии 102, второй линии 104 и третьей линии 106. Генератор 400 с источником Ес тока или напряжения и с внутренним полным сопротивлением 50 Ом дополнительно содержит четвертое полное сопротивление 402 в 75 Ом, являющееся общим для фазовой линии P, нейтральной линии N и защитной линии PE заземления, а также пятое полное сопротивление 404, шестое полное сопротивление 406 и седьмое полное сопротивление 407 по 50 Ом каждое, при этом пятое полное сопротивление 404 расположено на фазовой линии P, шестое полное сопротивление 406 расположено на нейтральной линии N и седьмое полное сопротивление 407 расположено на защитной линии PE заземления. Таким образом, генератор 400 имеет предполагаемое полное сопротивление 100 Ом для дифференциального режима, и полное сопротивление 150 Ом для синфазного сигнала составляет (если контакт защитной линии PE заземления остается незамкнутым).
Проверка с помощью сетевого анализатора показала, что в том случае, когда выходное полное сопротивление 122 составляет только 50 Ом, между сигналами на первой линии 102 и третьей линии 106 имеется лишь небольшая изоляция. Однако изоляция между дифференциальными сигналами на различных линиях 102, 104, 106 более высокая, и таким образом, связь более слабая, если выходное полное сопротивление является более высоким, например, 1 кОм или бесконечно большое.
На фиг.5 изображена схема, показывающая возможности подачи сигналов и возможности приема сигналов в схеме с множеством входов и множеством выходов. Первый модем 500 высокочастотной связи по линии электропередачи передает сигналы ко второму модему 502 высокочастотной связи по линии электропередачи по сети 504 высокочастотной связи по линии электропередачи. Существуют три возможности для сигналов питания в сети 504 высокочастотной связи по линии электропередачи.
Дифференциальный сигнал может быть подан между фазовой линией Р и нейтральной линией N, также дифференциальный сигнал может быть подан между фазовой линией P и защитной линией PE заземления, кроме того, дифференциальный сигнал может быть подан между нейтральной линией N и защитной линией PE заземления. В соответствии с законами Кирхгофа возможны только два независимых пути. Целесообразно использовать две наилучшие возможности в отношении, например помех, для того чтобы подавать сигналы в сеть 504 высокочастотной связи по линии электропередачи.
На стороне приема существуют четыре возможности для приема сигналов. Возможно определение дифференциального сигнала между фазовой линией P и нейтральной линией N, определение дифференциального сигнала между фазовой линией Р и защитной линией PE заземления, а также определение дифференциального сигнала между нейтральной линией N и защитной линией РЕ заземления. Кроме того, возможно определение синфазного сигнала СМ при использовании, например, дросселя 120 для синфазного сигнала.
При использовании предложенного устройства для определения синфазного сигнала и сети высокочастотной связи по линии электропередачи больше не существует потерянной изоляции между тремя сигналами при дифференциальном включении (сбалансированными или симметричными) между линиями.
Сигналы связи с множеством входов и множеством выходов (MIMO) подаются или принимаются симметрично или сбалансированными между фазовой линией P и нейтральной линией N, фазовой линией P и защитной линией PE заземления, и/или нейтральной линией N и защитной линией PE заземления. Технологии с системами с множеством входов и множеством выходов (MIMO) показывают максимальный коэффициент передачи по сравнению со схемами: входной сигнал - выходной сигнал, если отдельные сигналы обеспечивают максимальное расхождение.
При использовании предложенного устройства уменьшается взаимодействие между отдельными дифференциальными сигналами, таким образом увеличивается эффективность технологии MIMO.
Хотя здесь были проиллюстрированы и описаны отдельные варианты осуществления изобретения, специалисты в данной области техники оценят, что разнообразие альтернативных и/или эквивалентных применений может быть заменено для отдельных показанных и описанных вариантов осуществления изобретения, не выходя за рамки объема описанных вариантов осуществления изобретения. Предполагается, что объем притязаний охватывает любые переделки вариаций отдельных вариантов осуществления изобретения, обсуждаемых здесь. Поэтому предполагается, что это изобретение будет ограничено только пунктами формулы изобретения и их эквивалентом.

Claims (12)

1. Устройство определения синфазного сигнала в сети высокочастотной связи по линии электропередачи, содержащее: первую линию, вторую линию и третью линию, подключенные соответственно к первому контакту, второму контакту и третьему контакту, при этом первый, второй и третий контакты выполнены с возможностью соединения соответственно с фазовой линией, нейтральной линией и защитной линией заземления сети высокочастотной связи по линии электропередачи; дроссель синфазного сигнала, выполненный с возможностью выводить синфазный сигнал из первой, второй и третьей линий, причем дроссель синфазного сигнала соединен с выходным полным сопротивлением, которое больше полного сопротивления сети высокочастотной связи по линии электропередачи.
2. Устройство определения синфазного сигнала по п.1, в котором дроссель синфазного сигнала намотан вокруг первой линии, второй линии и третьей линии.
3. Устройство определения синфазного сигнала по п.1 или 2, в котором выходное полное сопротивление является входным полным сопротивлением аналого-цифрового преобразователя, соединенного с дросселем синфазного сигнала.
4. Устройство определения синфазного сигнала по п.1 или 2, в котором выходное полное сопротивление является максимальным.
5. Устройство определения синфазного сигнала по п.1 или 2, характеризующееся тем, что выполнено с возможностью определять сигналы из синфазных сигналов и дифференциальных сигналов.
6. Устройство для определения синфазного сигнала по п.5, характеризующееся тем, что выполнено с возможностью принимать дифференциальные сигналы и синфазные сигналы по схеме с множеством входов и множеством выходов (MIMO).
7. Устройство определения синфазного сигнала по п.5, дополнительно содержащее трансформаторы для вывода дифференциальных сигналов.
8. Устройство определения синфазного сигнала по п.7, в котором трансформаторы расположены по топологии «треугольник».
9. Устройство определения синфазного сигнала по п.7, в котором трансформаторы расположены по топологии «звезда».
10. Устройство определения синфазного сигнала по п.5, дополнительно содержащее усилители для вывода дифференциальных сигналов.
11. Устройство определения синфазного сигнала по п.7, в котором усилители расположены по топологии «треугольник».
12. Устройство определения синфазного сигнала по п.7, в котором усилители расположены по топологии «звезда».
RU2011110433/07A 2008-08-20 2009-05-08 Устройство определения синфазного сигнала в сети высокочастотной связи по линии электропередачи RU2488961C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP08014781.2 2008-08-20
EP08014781A EP2157704B1 (en) 2008-08-20 2008-08-20 Device for determining a common-mode signal in a power line communication network
PCT/EP2009/003302 WO2010020298A1 (en) 2008-08-20 2009-05-08 Device for determining a common-mode signal in a power line communication network

Publications (2)

Publication Number Publication Date
RU2011110433A RU2011110433A (ru) 2012-09-27
RU2488961C2 true RU2488961C2 (ru) 2013-07-27

Family

ID=40262232

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011110433/07A RU2488961C2 (ru) 2008-08-20 2009-05-08 Устройство определения синфазного сигнала в сети высокочастотной связи по линии электропередачи

Country Status (10)

Country Link
US (3) US9112590B2 (ru)
EP (1) EP2157704B1 (ru)
KR (1) KR101532466B1 (ru)
CN (1) CN102132500B (ru)
AT (1) ATE543266T1 (ru)
AU (1) AU2009284446B2 (ru)
BR (1) BRPI0916897B8 (ru)
ES (1) ES2378585T3 (ru)
RU (1) RU2488961C2 (ru)
WO (1) WO2010020298A1 (ru)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008135982A2 (en) 2007-05-02 2008-11-13 Coppergate Communications Ltd. Multiple input, multiple output (mimo) communication system over in-premises wires
KR101711235B1 (ko) 2009-10-26 2017-02-28 소니 주식회사 전력선 통신 시스템에서 사용을 위한 장치 및 전력선 통신 시스템
US8520696B1 (en) 2010-07-30 2013-08-27 Qualcomm Incorporated Terminal selection diversity for powerline communications
GB2486436B (en) * 2010-12-14 2017-10-25 Gigle Networks Ltd Module for powerline communication transmission
EP2485406B1 (en) 2011-02-07 2017-03-15 Sony Corporation Power line communication apparatus including ac power socket
EP2676376B1 (en) 2011-02-15 2015-04-29 Sigma Designs Israel S.D.I Ltd. System for coupling a power line communication device to a power line network
EP2525503B1 (en) * 2011-05-16 2018-03-07 Sony Corporation Power line communication modem, power line communication system, power line communication method
DE102011105392B4 (de) * 2011-06-20 2017-01-26 Devolo Ag Vorrichtung, Verfahren und System zur Bewertung von Störspannungen bei Modems
JP5853189B2 (ja) * 2011-08-11 2016-02-09 パナソニックIpマネジメント株式会社 分岐器
US8958487B2 (en) * 2011-12-22 2015-02-17 Landis+Gyr Technologies, Llc Power line communication transmitter with amplifier circuit
AT512668B1 (de) * 2012-04-04 2013-12-15 Siemens Ag Oesterreich Anordnung zur Übertragung von Daten in einem Stromversorgungsnetz
US9001926B2 (en) 2012-08-01 2015-04-07 Qualcomm Incorporated Common mode signal reduction in powerline communication devices
US9130658B2 (en) 2013-05-06 2015-09-08 Qualcomm Incorporated Selection diversity in a powerline communication system
US20150116054A1 (en) * 2013-10-31 2015-04-30 SunEdison Inc. Apparatus and systems for filtering for power line communication
CN105024732B (zh) * 2014-04-22 2017-07-11 芯迪半导体科技(上海)有限公司 一种应用电力线传输的mimo收发系统及通信方法
CN106411329B (zh) * 2015-07-31 2019-02-22 深圳友讯达科技股份有限公司 双模模拟组网单元及多层次双模模拟组网系统
US10177702B2 (en) 2015-08-12 2019-01-08 Samsung Electronics Co., Ltd. Conduction noise filtering circuit, inverting device, and compressor
CN107134916B (zh) * 2017-06-15 2020-01-10 中国电子科技网络信息安全有限公司 一种交流电源传导电磁信息泄漏防护装置及方法
US10763917B1 (en) * 2019-02-19 2020-09-01 Maxlinear, Inc. Method and system for multiple-input multiple-output power line communication coupling
KR102149599B1 (ko) 2019-03-29 2020-08-31 주식회사 퀀텀솔루션 2중 회선 기반 경로 우회 기술이 적용된 네트워크 시스템

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2239270C1 (ru) * 2003-03-31 2004-10-27 Общество с ограниченной ответственностью "Алгоритм" Устройство для подавления излучения, возникающего при передаче информации по линиям электропередачи
WO2005101771A2 (en) * 2004-04-16 2005-10-27 Matsushita Electric Industrial Co., Ltd. Common mode detecting apparatus
EP1858174B1 (en) * 2006-05-19 2010-12-15 Sony Deutschland Gmbh Diversity receiver using common mode and differential mode

Family Cites Families (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4065763A (en) * 1975-12-08 1977-12-27 Westinghouse Electric Corporation Distribution network power line communication system
US4402028A (en) * 1981-08-17 1983-08-30 Electric Power Research Institute, Inc. Protective relay methods and apparatus
US4999594A (en) * 1988-12-09 1991-03-12 Condor, Inc. AC line filter with tapped balun winding
US4943886A (en) * 1989-02-10 1990-07-24 Etta Industries, Inc. Circuitry for limiting current between power inverter output terminals and ground
US5717685A (en) * 1989-04-28 1998-02-10 Abraham; Charles Transformer coupler for communication over various lines
US5257006A (en) * 1990-09-21 1993-10-26 Echelon Corporation Method and apparatus for power line communications
EP0529949B1 (en) * 1991-08-27 1996-06-26 AT&T Corp. Common mode voltage surge protection circuitry
US5490030A (en) * 1994-01-31 1996-02-06 Taylor; Harold L. Electromagnetic and radio frequency interference suppression for ground fault circuit interrupters
GB9417359D0 (en) * 1994-08-26 1994-10-19 Norweb Plc A power transmission network and filter therefor
US5666255A (en) * 1995-06-05 1997-09-09 Powervar, Inc. Transformerless conditioning of a power distribution system
US5703438A (en) * 1996-01-22 1997-12-30 Valmont Industries, Inc. Line current filter for less than 10% total harmonic distortion
US5671110A (en) * 1996-01-23 1997-09-23 Oneac Corporation Ground skew protection method and apparatus
US5969583A (en) * 1996-12-23 1999-10-19 Acuson Corporation Common-mode EMI filter with a separately wound ground winding
JPH10294633A (ja) * 1997-04-18 1998-11-04 Sony Corp Acラインフィルタ
US6064253A (en) * 1998-04-20 2000-05-16 Endgate Corporation Multiple stage self-biasing RF transistor circuit
US6177849B1 (en) * 1998-11-18 2001-01-23 Oneline Ag Non-saturating, flux cancelling diplex filter for power line communications
US6122183A (en) * 1998-11-24 2000-09-19 Lucent Technologies Inc. Two-stage, three-phase boost converter with reduced total harmonic distortion
US6690230B2 (en) * 2001-05-17 2004-02-10 International Rectifier Corporation Active common mode filter connected in A-C line
WO2002097945A2 (en) * 2001-05-25 2002-12-05 Davison, Gary, H. Method and apparatus for managing energy in plural energy storage units
JP3713477B2 (ja) * 2001-11-19 2005-11-09 Tdk株式会社 電力線通信システム
JP2003244039A (ja) * 2002-02-20 2003-08-29 Alps Electric Co Ltd 配電盤及び該配電盤を用いた有線式通信ネットワークシステム
US6771083B1 (en) * 2002-03-19 2004-08-03 Sandia Corporation Poole-frenkel piezoconductive element and sensor
US7064654B2 (en) 2002-12-10 2006-06-20 Current Technologies, Llc Power line communication system and method of operating the same
US7136270B2 (en) * 2003-01-28 2006-11-14 Gateway Inc. Surge protector including data pass-through
US6856169B2 (en) * 2003-05-09 2005-02-15 Rambus, Inc. Method and apparatus for signal reception using ground termination and/or non-ground termination
US6995658B2 (en) * 2003-06-11 2006-02-07 The Boeing Company Digital communication over 28VDC power line
CN1826736A (zh) 2003-07-18 2006-08-30 皇家飞利浦电子股份有限公司 用于在电力线通信系统中减少共模信号的方法和设备
US7430291B2 (en) * 2003-09-03 2008-09-30 Thunder Creative Technologies, Inc. Common mode transmission line termination
US7315592B2 (en) * 2003-09-08 2008-01-01 Aktino, Inc. Common mode noise cancellation
EP1619768A1 (en) * 2004-07-23 2006-01-25 Schaffner Emv Ag Filter with virtual shunt nodes
JP4231857B2 (ja) * 2005-03-31 2009-03-04 Tdk株式会社 ノイズ抑制回路
JP4527151B2 (ja) * 2005-04-14 2010-08-18 三菱電機株式会社 モデム装置
US8115444B2 (en) * 2006-05-31 2012-02-14 Honeywell International, Inc. Common mode filter for motor controllers
US7456588B2 (en) * 2006-06-05 2008-11-25 Osram Sylvania Inc. Arrangement and method for providing power line communication from an AC power source to a circuit for powering a load, and electronic ballasts therefor
US7609492B2 (en) * 2006-06-30 2009-10-27 Hamilton Sundstrand Corporation Ground fault interrupts for solid state power controllers
EP1892843B1 (en) * 2006-08-24 2014-10-01 Sony Deutschland GmbH Method for transmitting a signal on a power line network, transmitting unit, receiving unit and system
US7276859B1 (en) * 2006-09-28 2007-10-02 Osram Sylvania Inc. Three-phase electronic ballast with improved three-phase EMI filter
JP2008172372A (ja) * 2007-01-09 2008-07-24 Mitsubishi Materials Corp コモンモード電流検出器及び電力線通信装置
JP2008236817A (ja) * 2007-03-16 2008-10-02 Yaskawa Electric Corp コモンモードトランスとコモンモードフィルタおよびフィルタ装置
WO2008135982A2 (en) * 2007-05-02 2008-11-13 Coppergate Communications Ltd. Multiple input, multiple output (mimo) communication system over in-premises wires
JP5141216B2 (ja) * 2007-05-16 2013-02-13 サンケン電気株式会社 能動フィルタ装置及び電力変換装置
EP2019496B1 (en) * 2007-07-23 2017-06-07 Sony Corporation Method for transmitting a signal between a transmitter and a receiver in a power line network, transmitter, receiver, power line communication modem and powerline communication system
EP2028769B1 (en) * 2007-08-22 2016-05-04 Sony Corporation Method for transmitting a signal via a power line network, transmitter, receiver, power line communication modem and power line communication system
US8094034B2 (en) * 2007-09-18 2012-01-10 Georgia Tech Research Corporation Detecting actuation of electrical devices using electrical noise over a power line
EP2056487B1 (en) * 2007-10-30 2017-04-12 Sony Corporation Testing device and method for determining a common mode signal of an electrical telecommunication
EP2109231B1 (en) * 2007-11-14 2017-01-04 Sony Corporation Improved alamouti encoding and decoding
KR100911726B1 (ko) * 2007-11-23 2009-08-10 한국전기연구원 고압 배전선로에서 고속 전력선 통신을 위한 임피던스 정합트랜스포머와 전송모드 제어회로를 내장한 신호 결합장치
EP2073398B1 (en) * 2007-12-20 2017-03-29 Sony Corporation Improved transmit power allocation for adaptive multi-carrier multiplexing MIMO systems
US7880681B2 (en) * 2008-02-26 2011-02-01 Navcom Technology, Inc. Antenna with dual band lumped element impedance matching
US8265197B2 (en) * 2009-08-03 2012-09-11 Texas Instruments Incorporated OFDM transmission methods in three phase modes

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2239270C1 (ru) * 2003-03-31 2004-10-27 Общество с ограниченной ответственностью "Алгоритм" Устройство для подавления излучения, возникающего при передаче информации по линиям электропередачи
WO2005101771A2 (en) * 2004-04-16 2005-10-27 Matsushita Electric Industrial Co., Ltd. Common mode detecting apparatus
EP1858174B1 (en) * 2006-05-19 2010-12-15 Sony Deutschland Gmbh Diversity receiver using common mode and differential mode

Also Published As

Publication number Publication date
US20130142233A1 (en) 2013-06-06
BRPI0916897B1 (pt) 2020-09-29
ES2378585T3 (es) 2012-04-16
CN102132500A (zh) 2011-07-20
AU2009284446B2 (en) 2015-05-14
CN102132500B (zh) 2015-06-24
US20140167499A1 (en) 2014-06-19
KR20110050642A (ko) 2011-05-16
EP2157704A1 (en) 2010-02-24
US20110206140A1 (en) 2011-08-25
BRPI0916897A2 (pt) 2016-02-10
ATE543266T1 (de) 2012-02-15
EP2157704B1 (en) 2012-01-25
US9112590B2 (en) 2015-08-18
AU2009284446A1 (en) 2010-02-25
BRPI0916897B8 (pt) 2020-11-03
RU2011110433A (ru) 2012-09-27
WO2010020298A1 (en) 2010-02-25
KR101532466B1 (ko) 2015-06-29
US9866275B2 (en) 2018-01-09

Similar Documents

Publication Publication Date Title
RU2488961C2 (ru) Устройство определения синфазного сигнала в сети высокочастотной связи по линии электропередачи
KR100755145B1 (ko) 전력 전송 케이블로의 데이터 신호 유도 커플링
EP2800285B1 (en) Method for transmitting a signal on a power line network, transmitting unit, receiving unit and system
US7307512B2 (en) Power line coupling device and method of use
JP2008245202A (ja) 電力線搬送通信用ブリッジ回路および電力線搬送通信用ネットワーク機器
US10056943B2 (en) System for transmitting and receiving a power line communication signal over the power bus of a power electronic converter
EA005560B1 (ru) Подключение широкополосных модемов к линиям электропитания
JP2010526469A (ja) 建物内多重入出力(mimo)通信システム
Antoniali et al. Measurement and characterization of load impedances in home power line grids
JPWO2011129104A1 (ja) インピーダンス安定化装置
US20120313764A1 (en) System for coupling a power line communication device to a power line network
JP2007129687A (ja) 電力線搬送通信の伝送機器、コンセントプラグ、コンセントプラグボックス、テーブルタップ、結合装置、通信装置、及び通信システム
Ercan et al. Power line communication channel for smart grid
Kikkert Power transformer modelling and MV PLC coupling networks
Ali et al. Design of bidirectional coupling circuit for broadband power-line communications
Kikkert Coupling
WO2014207296A1 (en) A method and device for transmitting' electrical power and data
Mahmood et al. Study of the most important factors affecting on efficiency of power line communication systems
Tsuzuki et al. One wire PLC system for inter-floor connectivity
KR101680063B1 (ko) 전력선 통신기술을 응용한 케이블 식별 시스템 및 그 방법
Ajibade et al. Theoretical Analysis of Transmission Parameters and Interference Issues in Power Line Communication Systems
JP2010074632A (ja) 高周波信号供給装置
CN117375667A (zh) 一种通信装置、通信控制方法、及通信系统
Ashari Development of power line communication systems with low electromagnetic radiation
SE523612C2 (sv) Kopplingsarrangemang