RU2487520C1 - Устройство для предпосевной обработки семян - Google Patents

Устройство для предпосевной обработки семян Download PDF

Info

Publication number
RU2487520C1
RU2487520C1 RU2011143188/13A RU2011143188A RU2487520C1 RU 2487520 C1 RU2487520 C1 RU 2487520C1 RU 2011143188/13 A RU2011143188/13 A RU 2011143188/13A RU 2011143188 A RU2011143188 A RU 2011143188A RU 2487520 C1 RU2487520 C1 RU 2487520C1
Authority
RU
Russia
Prior art keywords
radiation
magnetron
magnet
seeds
antenna
Prior art date
Application number
RU2011143188/13A
Other languages
English (en)
Other versions
RU2011143188A (ru
Inventor
Юлия Борисовна Банникова
Владимир Николаевич Хмелёв
Original Assignee
Юлия Борисовна Банникова
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Юлия Борисовна Банникова filed Critical Юлия Борисовна Банникова
Priority to RU2011143188/13A priority Critical patent/RU2487520C1/ru
Publication of RU2011143188A publication Critical patent/RU2011143188A/ru
Application granted granted Critical
Publication of RU2487520C1 publication Critical patent/RU2487520C1/ru

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/14Measures for saving energy, e.g. in green houses

Landscapes

  • Pretreatment Of Seeds And Plants (AREA)
  • Cultivation Of Plants (AREA)

Abstract

Изобретение относится к области растениеводства и может быть использовано для повышения продуктивности растений путем облучения семян одних растений излучением других растений. Устройство содержит рабочую камеру для передачи с концентрацией излучения от излучателя на семена-приемники, выполненную в форме объемной фигуры из проводящего материала. Внутри камеры расположены два объема из радиопрозрачного материала для размещения излучателя и семян-приемников. В качестве излучателя использован источник электромагнитного излучения, выполненный в виде магнетрона 1 с длиной волны излучения 3 мм. Вокруг антенны 2 магнетрона, разнополярно с основным антенным магнитом 3 магнетрона, через изоляционную прокладку располагают дополнительный магнит 4 с осевой намагниченностью не менее 1,2 Т. Магнит 4 выполнен в виде втулки, внутренний диаметр которой вдвое превышает наружный диаметр антенны, а длина в 5 раз больше длины антенного магнита магнетрона. Над торцевой поверхностью дополнительного магнита устанавливают дифракционный фильтр 5, выполненный из немагнитного проводящего материала с отверстиями 6, размеры и количество которых выбирают в зависимости от вида используемых семян-приемников. Изобретение позволяет повысить производительность получения обработанных семян. 3 ил.

Description

Изобретение относится к области растениеводства и может быть использовано для повышения продуктивности растений путем облучения семян одних растений излучением других растений.
Известны устройства [1-3] для лечения широкого спектра заболеваний и омоложения организма, включающие источник колебаний, в качестве которого используют живой или растительный организм, а также устройство фокусирования излучения на другой живой или растительный организм (например, человека). Аналогично можно облучать семена растений одного вида прорастающими семенами растений другого вида или сорта для повышения продуктивности растений или получения новых свойств растений. Например, известно [4] «Устройство для направленной передачи наследственной информации», которое состоит из тонкостенной алюминиевой камеры в форме эллипсоида вращения, в одном из фокусов которого помещен объект-излучатель, а в другом фокусе объекты-приемники. В качестве объекта-излучателя может выступать прорастающее семя растения, свойства которого необходимо передать другим растениям (объектам-приемникам).
Выбор формы камеры в виде эллипсоида вращения обусловлен тем, что излучение, исходящее из одного фокуса эллипса, будет концентрироваться во втором фокусе, обеспечивая, тем самым, достижение максимальной степени облучения.
Устройство для направленной передачи наследственной информации [4] позволяет обрабатывать несколько грамм семян растений в течение нескольких суток. После обработки семян у растений появляются новые свойства (повышается урожайность, устойчивость, содержание полезных веществ и т.п.).
Низкая производительность процесса приводит к необходимости использования большого количества устройств-аналогов или их модификаций [5, 6].
Наиболее близким по технической сущности к предлагаемому (техническому решению является устройство для предпосевной обработки семян [7, прототип].
Устройство для предпосевной обработки семян, принятое за прототип, включает рабочую камеру для передачи с концентрацией излучения от излучателя на семена-приемники, выполненную в форме объемной фигуры из проводящего материала, внутри камеры расположены два объема из радиопрозрачного материала для размещения излучателя и семян-приемников. Камера выполнена в форме объемной фигуры из проводящего материала, имеющей в сечении два одинаковых эллипса, пересекающихся так, что сечения совпадают по одному из фокусов эллипса. Внутри камеры расположены два объема из радиопрозрачного материала для размещения семян-излучателей и семян-приемников, причем один из объемов размещен в общем для двух эллипсов фокусе, а второй выполнен в виде тороида и размещен в области вторых фокусов в камере.
Прототип обладает несколькими недостатками.
1. Малой эффективностью и производительностью обработки, обусловленной малой интенсивностью излучения объектов-излучателей (семян), что обуславливает необходимость длительного облучения прорастающими семенами, эффективность излучения которых изменяется, или их постоянной заменой и приводит к длительному накоплению необходимого материала для посадки.
2. При необходимости облучения семян-приемников несколькими различными видами объектов-излучателей требуется последовательно загружать и подвергать воздействию семена-приемники сначала одним видом объекта-излучателя, потом другим и т.д. При этом теряется достаточно много времени и нет возможности оперативно воздействовать, в определенных комбинациях, несколькими видами объектов-излучателей.
3. Размер объема с объектом-излучателем, расположенный в зоне фокуса имеет ограниченные размеры, что не позволяет поместить большое количество семян-излучателей (для повышения интенсивности излучения), или разместить излучатели, имеющие значительные габаритные размеры (например, человека).
Перечисленные недостатки снижают эффективность и не обеспечивают требуемой производительности получения обработанных семян.
В предлагаемом устройстве для предпосевной обработки; семян решается задача по созданию устройства, предназначенного облучать семена-приемники излучателем, способным обеспечивать излучение высокой интенсивности в частотном диапазоне, перекрывающем частотные диапазоны излучения всех известных живых объектов.
В предлагаемом устройстве для предпосевной обработки семян, включающем рабочую камеру для передачи с концентрацией излучения от излучателя на семена-приемники, выполненную в форме объемной фигуры из проводящего материала, внутри камеры расположены два объема из радиопрозрачного материала для размещения излучателя и семян-приемников, в качестве излучателя использован источник электромагнитного излучения, выполненный в виде магнетрона с длиной волны излучения 3 мм, вокруг антенны магнетрона, разнополярно с основным антенным магнитом магнетрона, через изоляционную прокладку располагают дополнительный магнит с осевой намагниченностью не менее 1,2 Тесла, выполненный в виде втулки, внутренний диаметр которой вдвое превышает наружный диаметр антенны, а длина в 5 раз больше длины антенного магнита магнетрона, при этом над торцевой поверхностью дополнительного магнита устанавливают дифракционный фильтр, выполненный из немагнитного проводящего материала с отверстиями, размеры и количество которых выбирают в зависимости от вида используемых семян-приемников.
Предлагаемое техническое решение поясняется Фиг.1, на которой схематично представлен основной элемент предлагаемого устройства для предпосевной обработки семян-излучатель. Излучатель состоит из источника электромагнитного излучения, выполненного в виде магнетрона 1 с длиной волны излучения 3 мм, вокруг антенны 2 магнетрона 1, разнополярно с основным антенным магнитом 3 магнетрона, через изоляционную прокладку располагают дополнительный магнит 4 с осевой намагниченностью не менее 1,2 Тесла, выполненный в виде втулки, внутренний диаметр которой вдвое превышает наружный диаметр антенны, а длина в 5 раз больше длины антенного магнита магнетрона, при этом над торцевой поверхностью дополнительного магнита 4 устанавливают дифракционный фильтр 5, выполненный из немагнитного проводящего материала с отверстиями 6, размеры и количество которых выбирают в зависимости от вида используемых семян-приемников.
Излучатель помещен в электропроводящий латунный корпус 7 и имеет диэлектрическое изолирующее покрытие 8.
Предлагаемое техническое устройство можно использовать для облучения любых семян-приемников излучением широкого спектра рабочих частот, соответствующих различным сортам семян-излучателей, или для облучения приемников - живых организмов излучением, имитирующим излучение живых организмов (в т.ч. человека).
Принцип действия предлагаемого устройства полностью аналогичен принципу действия прототипа и основан на использовании электромагнитной информационной стимуляции с помощью устройства, включающего в свой состав излучатель, оказывающей острорезонансное воздействие одновременно на многих частотах во всем частотном диапазоне, характеризующим жизнедеятельность растительных и живых объектов. Последние приобретают новые наследственные признаки (большое количество стеблей, колосьев, початков, гигантский рост и т.д.), которые и определяют резкое повышение их продуктивности [7].
Создание предложенного устройства стало возможным благодаря информации о спектральном составе различных семян, растительных и живых объектов, резонансные значения интенсивности излучения которых выявлены в результате измерения интенсивности излучения живых организмов (электромагнитное излучение, сопровождающее митотическую и биохимическую активность клеточных и внутриклеточных структур живого организма) при поочередной замене согласующих (просветляющих) пластин различной толщины на окне приемника микроволнового излучения.
Измеренные спектры излучения различных живых объектов представлены на Фиг.2 и Фиг.3, где на Фиг.2а представлены частотные спектры излучения однодольных и двухдольных семян, на Фиг.2б представлены частотные спектры излучения семян различных сельскохозяйственных объектов, на Фиг.3а представлены частотные спектры излучения растений, а на Фиг.3б представлен частотный спектр излучения человека.
Как это следует из анализа приведенных на Фиг.2, Фиг.3 спектральных зависимостей, излучение как растительных объектов, так человека осуществляется в диапазоне 0,8-5 мм. Кроме того, очевидна частотная близость линий спектра растительных объектов и человека.
Принцип работы излучателя предложенного устройства заключается в следующем: вращение магнитного поля дополнительного магнита, имеющего магнитную индукцию не менее 1,2 Тесла, а длину в 5 раз более длины антенного магнита магнетрона, производится с переменной скоростью по длине камеры магнетрона, в соответствии с этим магнетрон изменяет частоту излучения. Поскольку средняя длина волны спектра излучения всех живых объектов соответствует 2,5-3,0 мм используется магнетрон, обеспечивающий излучение с длиной волны излучения 3 мм. Изменяя (увеличивая) скорость вращения магнитного поля дополнительного магнита в 2 раза, увеличиваем частоту и обеспечиваем излучение с длиной волны 0,3 мм. Таким образом, обеспечивается излучение электромагнитных волн с длинами от 3-х до 0,3 мм. Изменяя (уменьшая) скорость вращения магнитного поля дополнительного магнита в 2 раза, уменьшаем частоту и обеспечиваем излучение с длиной волны до 6 мм. Суммарные и разностные частоты излучения таким образом будут обеспечивать излучение с длинами волн от 6 мм до 0,3 мм.
Возможность изменения магнитной индукции дополнительного магнита в пределах от -1,2 Тесла до +1,2 Тесла, при его длине, превышающей в 5 раз длину антенного магнита магнетрона обеспечивает изменение частоты излучения в требуемых пределах.
Обеспечив прохождение определенных частот через дифракционный фильтр, обеспечивается излучение колебаний, соответствующих излучению любого живого объекта или получается усиленный спектр человека. Как показала практика, мощность излучения на выходе дифракционного фильтра составляет не менее 0,125 от мощности магнетрона, а мощность самого магнетрона изменяется известными устройствами.
Для обеспечения излучения колебаний определенного спектра дифракционный фильтр выполняется для пропускания частот заданного спектра. Например, для реализации дифракционного фильтра, соответствующего излучательному спектру человека, фильтр выполняется в виде пластины из алюминиевого сплава с отверстиями. Пропускание излучения всех линий спектра человека обеспечивают отверстия в пластине, имеющие следующие размеры, в мм: 0,2; 0,3; 0,32; 0,33; 0,35; 0,66; 0,34; 0,37; 0,43; 0,48; 0,55; 0,57; 0,6; 0,64; 0,65; 0,67; 0,91; 1,1; 1,2; 2,0, причем подчеркнутые значения отверстий, из приведенного перечня размеров отверстий, по количеству выполняют вдвое больше, чем количество любого другого размера отверстия. Остальные отверстия выполняют в одинаковых количествах.
Отличительная особенность предложенного устройства, заключается в возможности, благодаря явлению резонанса и частотной близости спектров живых и растительных объектов, возбуждать мощное спектральное излучение растений, мощность которого превышает мощность излучения самого излучателя до двух раз. Это обусловлено тем, что любое устройство, обладающее энергией излучения, возбуждается и начинает излучать свой спектр при облучении его излучением с близким спектром излучения. Для практического подтверждения предварительно была измерена мощность излучателя при иммитации спектра человека (1,2 Вт), после чего на выходной дифракционный фильтр наложены части свежесрезанных растений (веточки боярышника с листьями). При этом мощность суммарного излучения возросла более чем в два раза до 3,3 Вт. Поскольку известно, что максимальная мощность спектрального излучения семян, растительных и живых организмов не превышает 10-7 Вт, предложенное техническое решение пригодно для применения в биологии, медицине для создания высокоурожайных культур, для биолечения людей и животных.
Для практической реализации была использована камера с длиной большей оси равной 200 мм, расстоянием между фокусами 160 мм, высотой 100 мм. Таким образом, общий диаметр камеры составил 360 мм. Такое устройство обеспечило одновременную обработку не менее 5 кг семян пшеницы в течении нескольких минут (для прототипа не более 200 грамм, которые были облучены проростками ржи в течении 10 суток). В 1 результате от каждого семени была получена многостеблевая пшеница с числом стеблей от 6 до 37 и полновесные колосья.
Технический результат изобретения выражается в увеличении производительности установки в несколько раз, по сравнению с прототипом, что позволяет использовать ее не только для экспериментов, но и для повсеместного использования в сельском хозяйстве.
В настоящее ведется подготовка к серийному производству созданного устройства. Планируется начать мелкосерийное производство в 2012 году.
Список литературы, используемой при составлении заявки:
1. Патент РФ №2044550.
2. Патент РФ №2090613.
3. Патент РФ №2117044.
4. Патент РФ №2069949.
5. Патент РФ №2108028.
6. Патент РФ №2090062.
7. Патент РФ №2285385 (прототип).

Claims (1)

  1. Устройство для предпосевной обработки семян, включающее рабочую камеру для передачи с концентрацией излучения от излучателя на семена-приемники, выполненную в форме объемной фигуры из проводящего материала, внутри камеры расположены два объема из радиопрозрачного материала для размещения излучателя и семян-приемников, отличающееся тем, что в качестве излучателя использован источник электромагнитного излучения, выполненный в виде магнетрона с длиной волны излучения 3 мм, вокруг антенны магнетрона, разнополярно с основным антенным магнитом магнетрона, через изоляционную прокладку расположен дополнительный магнит с осевой намагниченностью не менее 1,2 Тл, выполненный в виде втулки, внутренний диаметр которой вдвое превышает наружный диаметр антенны, а длина в 5 раз больше длины антенного магнита магнетрона, при этом над торцевой поверхностью дополнительного магнита устанавлен дифракционный фильтр, выполненный из немагнитного проводящего материала с отверстиями, размеры и количество которых выбирают в зависимости от вида используемых семян-приемников.
RU2011143188/13A 2011-10-25 2011-10-25 Устройство для предпосевной обработки семян RU2487520C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2011143188/13A RU2487520C1 (ru) 2011-10-25 2011-10-25 Устройство для предпосевной обработки семян

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011143188/13A RU2487520C1 (ru) 2011-10-25 2011-10-25 Устройство для предпосевной обработки семян

Publications (2)

Publication Number Publication Date
RU2011143188A RU2011143188A (ru) 2013-04-27
RU2487520C1 true RU2487520C1 (ru) 2013-07-20

Family

ID=48790973

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011143188/13A RU2487520C1 (ru) 2011-10-25 2011-10-25 Устройство для предпосевной обработки семян

Country Status (1)

Country Link
RU (1) RU2487520C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2684566C1 (ru) * 2018-04-16 2019-04-09 Александр Петрович Ишков Устройство для предпосевной магнитной обработки семян перед посевом и способ его применения

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU94029859A (ru) * 1994-08-09 1996-08-10 Б.С. Котов Способ получения новых культур растений и устройство для направленной передачи наследственной информации
RU2069949C1 (ru) * 1991-03-04 1996-12-10 Научно-производственное объединение "Алтай" Устройство для направленной передачи наследственной информации
RU2108029C1 (ru) * 1996-07-11 1998-04-10 Всероссийский научно-исследовательский институт электрификации сельского хозяйства Способ оптимизации параметров, режимов работы устройств и технологий, основанных на ритмических принципах
RU2192728C1 (ru) * 2001-06-05 2002-11-20 Общество с ограниченной ответственностью "Агентство Системного Дизайна "АСД" Способ предпосевной обработки сельскохозяйственных культур и вегетирующих растений и устройство для его осуществления
US6615538B2 (en) * 1999-03-15 2003-09-09 Seed-Tech Temed Ltd Process and apparatus for promoting the germination of plant seeds and the production of agricultural crops
RU2285385C1 (ru) * 2005-03-25 2006-10-20 Государственное образовательное учреждение высшего профессионального образования "Алтайский государственный технический университет им. И.И. Ползунова" (АлтГТУ) Устройство для предпосевной обработки семян

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2069949C1 (ru) * 1991-03-04 1996-12-10 Научно-производственное объединение "Алтай" Устройство для направленной передачи наследственной информации
RU94029859A (ru) * 1994-08-09 1996-08-10 Б.С. Котов Способ получения новых культур растений и устройство для направленной передачи наследственной информации
RU2108029C1 (ru) * 1996-07-11 1998-04-10 Всероссийский научно-исследовательский институт электрификации сельского хозяйства Способ оптимизации параметров, режимов работы устройств и технологий, основанных на ритмических принципах
US6615538B2 (en) * 1999-03-15 2003-09-09 Seed-Tech Temed Ltd Process and apparatus for promoting the germination of plant seeds and the production of agricultural crops
RU2192728C1 (ru) * 2001-06-05 2002-11-20 Общество с ограниченной ответственностью "Агентство Системного Дизайна "АСД" Способ предпосевной обработки сельскохозяйственных культур и вегетирующих растений и устройство для его осуществления
RU2285385C1 (ru) * 2005-03-25 2006-10-20 Государственное образовательное учреждение высшего профессионального образования "Алтайский государственный технический университет им. И.И. Ползунова" (АлтГТУ) Устройство для предпосевной обработки семян

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2684566C1 (ru) * 2018-04-16 2019-04-09 Александр Петрович Ишков Устройство для предпосевной магнитной обработки семян перед посевом и способ его применения

Also Published As

Publication number Publication date
RU2011143188A (ru) 2013-04-27

Similar Documents

Publication Publication Date Title
US20030169132A1 (en) Generator of electric and magnetic fields, a corresponding field detector, and a sample analyzer and treatment apparatus incorporating the field generator and/or field detector
Skrivervik Implantable antennas: The challenge of efficiency
DE3110915A1 (de) Therapiegeraet zur behandlung von wasser und/oder biologischen systemen mit magnetfeldern und/oder elektromagnetischen strahlungen und/oder elektrischen stroemen
Alzabidi et al. Optimization of UWB Vivaldi antenna for tumor detection
CN107441626A (zh) 电磁波治疗装置及其使用方法
RU2487520C1 (ru) Устройство для предпосевной обработки семян
US20210060350A1 (en) Photodynamic therapy devices, systems and methods
Guragain et al. Impact of non-thermal plasma treatment on the seed germination and seedling development of carrot (Daucus carota sativus L.)
JP7149628B2 (ja) 成長促進方法及び成長促進システム
Misek et al. New radiofrequency exposure system with real telecommunication signals
RU2344590C2 (ru) Способ свч-обработки семян
Morozov et al. Microwave technology for treatment seed
US20030000132A1 (en) Method and devices for treatment of a biological material with a magnetic field
RU2652185C2 (ru) Способ предпосевной обработки семян
Vorobyov et al. Folded loop antenna as a promissing solution for a cochlear implant
RU2192728C1 (ru) Способ предпосевной обработки сельскохозяйственных культур и вегетирующих растений и устройство для его осуществления
Nizam-Uddin et al. Towards wideband hyperthermia treatment system
CN107167671A (zh) 基于手机监控的动物电磁辐射测试装置
RU2285385C1 (ru) Устройство для предпосевной обработки семян
Kotchapradit et al. Analysis and design of microwave dielectric heating with curved plate applicator for deep hyperthermia in breast cancer treatment
WO1995003850A1 (en) A method and device for measuring the electromagnetic field generated by living organisms and nonliving bodies, for generating such a field, and also for producing an effect on (treatment of) bodies with the help of such a field
KR102134963B1 (ko) 외부 환경의 변화에 따른 식물의 상태를 전자기적/전기화학적 방법으로 분석하는 방법 및 장치
Sheta et al. A compact antenna for microwave imaging and hyperthermia treatment of brain tumor
WO2021126015A2 (ru) Способ обработки семян и устройство его осуществления
RU2657476C1 (ru) Способ стимулирования роста растений на ранних стадиях развития воздействием электромагнитного поля крайневысокой частоты

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20141026