RU2482438C1 - Способ испытаний осколочных боеприпасов и стенд для его реализации - Google Patents
Способ испытаний осколочных боеприпасов и стенд для его реализации Download PDFInfo
- Publication number
- RU2482438C1 RU2482438C1 RU2012100042A RU2012100042A RU2482438C1 RU 2482438 C1 RU2482438 C1 RU 2482438C1 RU 2012100042 A RU2012100042 A RU 2012100042A RU 2012100042 A RU2012100042 A RU 2012100042A RU 2482438 C1 RU2482438 C1 RU 2482438C1
- Authority
- RU
- Russia
- Prior art keywords
- fragments
- inputs
- elements
- outputs
- sensors
- Prior art date
Links
- 238000006062 fragmentation reaction Methods 0.000 title claims description 20
- 238000005259 measurement Methods 0.000 claims description 25
- 230000014509 gene expression Effects 0.000 claims description 15
- 230000001960 triggered Effects 0.000 claims description 12
- 239000011159 matrix material Substances 0.000 claims description 11
- 239000000463 material Substances 0.000 claims description 6
- 238000010998 test method Methods 0.000 claims description 3
- 238000010276 construction Methods 0.000 claims description 2
- 238000005474 detonation Methods 0.000 claims description 2
- 230000004044 response Effects 0.000 claims 2
- 239000000126 substance Substances 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 4
- 238000004880 explosion Methods 0.000 description 3
- 238000005422 blasting Methods 0.000 description 2
- 230000000875 corresponding Effects 0.000 description 2
- 210000003491 Skin Anatomy 0.000 description 1
- 230000000254 damaging Effects 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
Images
Abstract
Изобретения относятся к полигонным испытаниям боеприпасов. При проведении испытаний применяют два неконтактных датчика, определяют координаты движения осколков снаряда на основе информации о пространственном положении сработавших чувствительных элементов линеек фотоприемников, определяют скорость движения осколков, определяют геометрические размеры осколков снаряда, определяют массу осколков, фиксируют изменения координат движения осколков относительно первого и второго датчиков и на основе полученных данных определяют координаты векторов движения осколков снаряда. Повышается оперативность обработки экспериментальных данных. 2 н. и 1 з.п. ф-лы, 7 ил.
Description
Изобретение относится к способам испытания боеприпасов, а более конкретно к способам испытания осколочных боеприпасов естественного дробления с круговыми полями.
Для расчета эффективности действия осколочных боеприпасов по различным целям необходимо знать распределение чисел осколков и их начальных скоростей по угловым секторам разлета, а внутри угловых секторов - распределение осколков по массе.
Известен способ испытания осколочного боеприпаса с круговым полем разлета осколков, заключающийся в установке боеприпаса в центре щитовой мишенной обстановки, выполненной в виде полуцилиндрической вертикальной стенки, размещении боеприпаса в горизонтальном положении на стойке с высотой, равной половине высоты стенки, совмещении оси боеприпаса с прямой, соединяющей вертикальные торцы стенки, нанесении на внутренней поверхности обшивки контуров проекции части сферы, ограниченной двумя меридиональными сечениями с углом между ними, а также линии границ угловых секторов с шагом, регистрации пробоин после подрыва в каждом секторе обшивки, измерении размеров и площадей пробоин, осуществлении их пересчета на массу осколка, определении распределения осколков по углам ("Авиационные боеприпасы" под ред. В.А.Кузнецова изд. ВВИА им. Жуковского, 1968 г., стр.303).
Известен стенд испытания осколочного боеприпаса с круговым полем разлета осколков, состоящий из щитовой мишенной обстановки, выполненной в виде полуцилиндрической вертикальной стенки, обшитую листовым материалом, при пробитии которого осколком образуется пробоина с четкими очертаниями ("Авиационные боеприпасы" под ред. В.А.Кузнецова изд. ВВИА им. Жуковского, 1968 г., стр.303).
Недостатком данного способа и устройства является низкая оперативность.
Технической задачей изобретения является повышение оперативности.
Достижения технической задачи достигаются тем, что в способе испытания осколочного боеприпаса, заключающимся в установке боеприпаса в центре щитовой мишенной обстановки, выполненной в виде полуцилиндрической вертикальной стенки, размещении боеприпаса в горизонтальном положении на стойке с высотой, равной половине высоты стенки, совмещении оси боеприпаса с прямой, соединяющей вертикальные торцы стенки, нанесении на внутренней поверхности обшивки контуров проекции части сферы, ограниченной двумя меридиональными сечениями с углом между ними, а также линии границ угловых секторов с шагом, регистрации пробоин после подрыва в каждом секторе обшивки, измерении размеров и площадей пробоин, осуществлении их пересчета на массу осколка, определении распределения осколков по углам, дополнительно вводят два неконтактных датчика, которые размещают на заданном расстоянии между собой и выполняют в виде полуцилиндрических вертикальных стенок, состоящих из N-секторов, выполненных в виде перпендикулярно размещенных линеек фотоприемников и излучателей, определяют скорости движения осколков в каждом угловом секторе, за счет фиксации моментов времени и количеств последовательных срабатываний элементов фотоприемников первого и второго датчиков в процессе движения осколков снаряда к мишени, определяют количество эшелонов осколков на основе анализа количества последовательных срабатываний чувствительных элементов линеек фотоприемников, определяют временные интервалы движения осколков относительно первого и второго датчиков, фиксируют пространственные положения сработавших чувствительных элементов линеек фотоприемников в трех плоскостях, осуществляют запись полученных данных в блок памяти, осуществляют передачу данных по линии неконтактной связи на микроЭВМ, осуществляют оперативное определение координат движения осколков на основе информации о пространственных положениях сработавших чувствительных элементов линеек фотоприемников, осуществляют оперативное определение скорости движения осколков в виде выражения , где dni - расстояние между осколками относительно первого и второго датчиков , Δti - время движения осколков относительно первого и второго датчиков, x2i, x1i, , y1i, z2i, z1i - координаты осколков относительно первого и второго датчиков в трех плоскостях, осуществляют оперативное определение геометрических размеров осколков в виде выражений lxi=ini, lyi=jnj, lzi=knk, где ni, nj, nz - количества одновременно сработавших элементов в трех плоскостях, i, j, k - линейные размеры чувствительных элементов линеек фотоприемников в трех плоскостях, осуществляют оперативное определение массы осколков в виде выражения mi=ρ*(ini*jnj*knk), где ρ - плотность материала корпуса боевой части, осуществляют оперативное определение изменений координат движения осколков относительно первого и второго датчиков и на основе полученных данных определяют координаты Xi,Yi,Zi векторов движения осколков боевой части в виде выражения Xi=x1i-x2i, Yi=y1i-y2i, Zi=z1i-z2i, осуществляют оперативное определение углов подхода осколков к мишени в виде выражений , , осуществляют оперативное построение гистограмм и дифференциального закона распределения осколков по направлениям разлета, осуществляют оперативное определение распределения осколков по геометрическим размерам, массе и скорости.
Реализация предлагаемого способа осуществляется на основе стенда испытания осколочного боеприпаса с круговым полем разлета осколков, состоящим из щитовой мишенной обстановки, выполненной в виде полуцилиндрической вертикальной стенки, обшитую листовым материалом, при пробитии которого осколком образуется пробоина с четкими очертаниями, в который дополнительно введены первый и второй неконтактные датчики, которые размещают на заданном расстоянии между собой и выполняют в виде полуцилиндрических вертикальных стенок, состоящих из N-секторов, выполненных в виде перпендикулярно размещенных линеек фотоприемников и излучателей, N-1 блоков измерений, аналого-цифровой преобразователь, блок памяти, передающее устройство, приемное устройство, устройство сопряжения, микроЭВМ, при этом первый и второй датчики выполнены в виде трех перпендикулярно расположенных линеек излучающих диодов и линеек фотоприемников, блок измерений содержит первый и второй блок логики, первый, второй, третий, четвертый, пятый и шестой элементы ИЛИ, первый, второй и третий устройства измерений, выходы каждого из N-1 секторов первого и второго датчика соединены соответственно с первыми, вторыми, третьими, четвертыми, пятыми и шестыми входами блоков измерений, седьмой вход которого соединен с выходом кнопки «Пуск», первая, вторая, третья группа входов блока измерений являются соответственно первыми, вторыми, третьим группами входов первого блока логики и входами первого, второго и третьего элементов ИЛИ, четвертая, пятая, шестая, группа входов блока измерений являются соответственно первыми, вторыми, третьим группами входов второго блока логики и входами четвертого, пятого и шестого элементов ИЛИ, седьмой вход блока измерений является четвертым входом первого и второго блоков логики, выходы первого, второго и третьего элементов ИЛИ соединены с первыми входами первого, второго и третьего измерительных устройств, вторые входы которых соединены соответственно с выходами четвертого, пятого и шестого элементов ИЛИ, выходы первого, второго и третьего измерительных устройств, первого и второго блоков логики являются соответственно первым, вторым, третьим, n-четвертыми и n-пятыми выходами блока измерений, выходы которого соединены с входами аналого-цифрового преобразователя, выход которого соединен с входом блока памяти, выход которого через передающее устройство, приемное устройство, согласующее устройство соединен с входом микроЭВМ.
Кроме того, блоки логики состоят из квадратной матрицы n-порядка элементов И, из квадратной матрицы n-порядка триггеров, первого и второго элементов ИЛИ, дифференцирующей цепи, причем первые, вторые и третьи входы блока логики являются соответственно первыми, вторыми и третьими входами квадратной матрицы n-порядка элементов И, выходы которых соединены соответственно с первыми входами триггеров, вторые входы которых соединены с выходом дифференцирующей цепи, вход которой соединен с выходом второго элемента ИЛИ, второй вход которого является выходом первого элемента ИЛИ, входы которого соединены с выходами триггеров, четвертый вход блока логики является первым входом второго элемента ИЛИ, выходы триггеров являются выходами блока логики.
Изобретение поясняется чертежами.
На фиг.1 приведена схема стенда испытания осколочного боеприпаса, на фиг.2 - структурная схема измерения характеристик осколочного боеприпаса в одном из секторов первого и второго датчика, на фиг.3 - структурная схема одного из блоков измерений, на фиг.4 - структурная схема блока логики, на фиг.5 - гистограмма и кривая распределения осколков по направлениям разлета, на фиг.6 приведена таблица распределения осколков по скоростям, на фиг.7 приведена таблица распределения осколков по массе.
Стенд испытаний осколочного боеприпаса содержит пульт 1 управления подрывом, стойку (штатив) 2 для установки подрываемого боеприпаса 3 с электродетонатором 4, первый 5 и второй 6 датчики, полуцилиндрическую стенку 7, n-блоков 8 измерений, аналого-цифровой преобразователь 9, блок 10 памяти, передающее устройство 11, приемное устройство 12, согласующее устройство 13, микроЭВМ 14.
Первый 5 и второй 6 датчики выполнены в виде трех перпендикулярно расположенных линеек излучающих диодов 15 и линеек фотоприемников 16, источника 17 питания.
Блок 8 измерений содержит первый 18 и второй 19 блок логики, первый 20, второй 21, третий 22, четвертый 23, пятый 24, шестой 25 элементы ИЛИ, первый 26, второй 27 и третий 28 измерительные устройства. Блоки (18, 19) логики состоят из матрицы элементов И 29, из матрицы триггеров 30, первого 31 и второго 32 элементов ИЛИ, дифференцирующей цепи 33.
Описание работы устройства
Осуществляют подрыв боевой части (БЧ) в специальной мишенной обстановке, представляющей собой полуцилиндр, улавливающий часть осколков, летящих в направлении, определяемом двугранным углом Δθ. Щиты полуцилиндра устанавливаются на одинаковом расстоянии R от центра БЧ (фиг.1). Угол φ разбивается на угловые секторы шириной Δφj=φj-φj-1 (j=1, 2, …, n), границы которых на щитах обозначены вертикальными линиями. Линии пересечения полуцилиндра плоскостями двугранного угла вместе с вертикальными линиями образуют площадки, улавливающие осколки, летящие в направлениях, ограниченных углами Δθ и Δφj. При взрыве БЧ в щитах образуются пробоины, число Δnj которых подсчитывается в каждой площадке. Число Δnj увеличивается в раз и тем самым определяется количество осколков ΔNj, летящих в угловом секторе Δφj, примыкающем к углу φj.
В момент выдачи команды «Пуск» на детонатор 4 боеприпаса, происходит подрыв осколочного боеприпаса и, кроме того, сигнал поступает на пятые входы блоков 8 измерений, для обнуления триггеров (30) блоков логики (18, 19).
При пролете осколочного поля боеприпаса относительно первого 5 датчика происходит срабатывание чувствительных элементов линеек фотоприемников (16), расположенных в трех плоскостях, и сигналы выдаются на первые, вторые и третьи входы одного из блоков 8 измерений.
При пролете осколочного поля боеприпаса относительно второго 6 датчика происходит срабатывание чувствительных элементов линеек фотоприемников (16), расположенных в трех плоскостях, и сигналы выдаются на четвертые, пятые и шестые входы одного из блоков 8 измерений.
Блоки 8 измерений определяют скорость движения осколков и координаты его движения на основе информации о временном интервале между моментами срабатывания датчиков (5, 6) и комбинации сработавших чувствительных элементов фотоприемников (16) (фиг.3).
Это происходит следующим образом.
В момент пролета осколков относительно первого 5 датчика происходит срабатывание определенной комбинации чувствительных элементов (16) линеек фотоприемника в соответствии с координатами пролета осколков в пространстве.
Сигналы с выходов датчика 5 поступают на первые, вторые и третьи входы первого 18 блока логики, входы первого 20, второго 21 и третьего 22 элементов ИЛИ, с выходов которых поступают на первые входы первого 18, второго 19 и третьего измерительных устройств (фиг.3).
В момент пролета осколков относительно второго 6 датчика происходит срабатывание определенной комбинации чувствительных элементов 16 датчика, соответствующих координатам пролета осколков в пространстве. Сигналы с выходов второго 6 датчика на первые, вторые и третьи входы второго 19 блока логики, входы четвертого 23, пятого 24 и шестого 25 элементов ИЛИ, с выходов которых поступают на вторые входы первого 26, второго 27 и третьего 28 измерительных устройств (фиг.3).
Коды сигналов, поступающих на первые, вторые и третьи входы блока логики (18, 19), соответствуют координатам движения осколков и обеспечивают срабатывание определенной комбинации матрицы элементов И 29, сигналы с выхода которых обеспечивают срабатывание комбинации матрицы триггеров 30, сигналы с выхода которых поступают на входы первого 31 элемента ИЛИ, с выхода которого поступают на второй вход второго 32 элемента ИЛИ, с выхода которого поступают на вход дифференцирующей цепи 33, с выхода которой поступают на входы обнуления матрицы триггеров 31 (фиг.4).
Дифференцирующая цепь 33 обеспечивает обнуления триггеров в момент подачи команды «Пуск» и в момент прохода эшелона осколков.
Сигналы с выходов блока логики 18 (19) соответствуют координатам пролета осколков и являются одновременно n-четвертыми и n-пятыми выходами блока 8 измерений. Сигналы с первого, второго, третьего, n-четвертых и n-пятых выходов блока 8 измерений поступают на входы аналого-цифрового преобразователя 9 (фиг.1).
Сигналы с выхода аналого-цифрового преобразователя 9 поступают на вход блока 10 памяти, с выхода которого через передающее устройство 11, приемное устройство 12, согласующее устройство 13 поступают на вход микроЭВМ 14.
Координаты движения осколков снаряда определяются на основе информации о пространственных положениях сработавших чувствительных элементов линеек фотоприемников.
Скорость движения осколков снаряда определяется в виде выражения , где dni - расстояние между осколками относительно первого и второго датчиков , Δti - время движения осколков снаряда относительно первого и второго датчиков, x2i, x1i, , y1i, z2i, z1i - координаты осколков относительно первого и второго датчиков в трех плоскостях.
Геометрические размеры осколков снаряда определяются в виде выражений lxi=ini, lyi=jnj, lzi=knk, где ni, nj, nz - количества одновременно сработавших элементов в трех плоскостях, i, j, k - линейные размеры чувствительных элементов линеек фотоприемников в трех плоскостях.
Масса осколков определяется в виде выражения mi=ρ*(ini*jnj*knk), где ρ - плотность материала корпуса снаряда. Определяют углы подхода осколков к мишени путем фиксации изменений координат движения осколков относительно первого и второго датчиков и в виде выражений ,
где Xi, Yi - координаты векторов движения осколков снаряда, равные отношениям Xi=x1i-x2i, Yi=y1i-y2i.
МикроЭВМ на основе алгоритмов определяет дифференциальный закон распределения осколков по направлениям разлета, распределения осколков по скорости, геометрическим размерам и массе.
Алгоритм определения гистограммы и дифференциального закона распределения осколков по направлениям разлета заключается в том, что в направлении разлета осколков выбираются угловые сектора шириной Δφj=φj-φj-1 (j=1, 2, …, n), определяется количество осколков Δnj в каждом угловом секторе неконтактных датчиков в момент взрыва боевой части, определяется общее число осколков в секторах, находится относительное число осколков и рассчитывается соответствующая высота столбца гистограммы в соответствии с выражением:
Примерный вид гистограммы, а также сглаживающая кривая приведены на фиг.5.
Начальная скорость разлета осколков V0 является важнейшей характеристикой, позволяющей определить абсолютную начальную скорость движения осколков V01 в условиях реального взрыва и тем самым решать целый ряд задач по определению поражающего действия боевых частей или оценки безопасности их применения. Экспериментально скорость V0 находится путем подрыва авиационного боеприпаса и регистрации времени пролета осколков Δτ некоторой базы ΔL. Время измеряется различными хронометрами (в данном случае неконтактными датчиками). Средняя скорость движения осколка затем приводится к начальной скорости осколка V0 с помощью уравнения движения его центра массы.
Затем начальные скорости заносятся в таблицу по угловым секторам Δφ (фиг.6).
Закон распределения осколков по массе определяется экспериментально с помощью стенда углового улавливания. Результаты эксперимента позволяют построить двумерную матрицу Nij, где Nij - число осколков i-й массовой группы в j-й угловой зоне. Ширина угловой зоны Δφ обычно принимается в пределах 2…5° (фиг.7).
Таким образом, предлагаемый способ испытаний осколочных боеприпасов и стенд для его реализации позволяют обеспечить оперативную обработку экспериментальных данных.
Claims (3)
1. Способ испытания осколочного боеприпаса, заключающийся в установке боеприпаса в центре щитовой мишенной обстановки, выполненной в виде полуцилиндрической вертикальной стенки, размещении боеприпаса в горизонтальном положении на стойке с высотой, равной половине высоты стенки, совмещении оси боеприпаса с прямой, соединяющей вертикальные торцы стенки, нанесении на внутренней поверхности обшивки контуров проекции части сферы, ограниченной двумя меридиональными сечениями с углом между ними, а также линии границ угловых секторов с шагом, регистрации пробоин после подрыва в каждом секторе обшивки, измерении размеров и площадей пробоин, осуществлении их пересчета на массу осколка, определении распределения осколков по углам, отличающийся тем, что дополнительно вводят два неконтактных датчика, которые размещают на заданном расстоянии между собой и выполняют в виде полуцилиндрических вертикальных стенок, состоящих из N-секторов, выполненных в виде трех перпендикулярно размещенных линеек фотоприемников и излучателей, определяют скорости движения осколков в каждом угловом секторе за счет фиксации моментов времени и количеств последовательных срабатываний элементов фотоприемников первого и второго датчиков в процессе движения осколков, определяют эшелоны осколков на основе анализа количества последовательных срабатываний чувствительных элементов линеек фотоприемников, определяют временные интервалы движения осколков относительно первого и второго датчиков, фиксируют пространственные положения сработавших чувствительных элементов линеек фотоприемников в трех плоскостях, осуществляют запись полученных данных в блок памяти, осуществляют передачу данных по линии неконтактной связи на микроЭВМ, осуществляют оперативное определение координат движения осколков на основе информации о пространственных положениях сработавших чувствительных элементов линеек фотоприемников, осуществляют оперативное определение скорости движения осколков в виде выражения
где dni - расстояние между осколками относительно первого и второго датчиков Δti - время движения осколков относительно первого и второго датчиков, x2i, x1i, y2i, y1i, z2i, z1i -
координаты осколков относительно первого и второго датчиков в трех плоскостях, осуществляют оперативное определение геометрических размеров осколков в виде выражений lxi=ini, lyi=jnj, lzi=knk где ni, nj, nk - количества одновременно сработавших элементов в трех плоскостях, i, j, k - линейные размеры чувствительных элементов линеек фотоприемников в трех плоскостях, осуществляют оперативное определение массы осколков в виде выражения mi=ρ·(ini·jnj·knk), где ρ - плотность материала корпуса боевой части, осуществляют оперативное определение изменений координат движения осколков относительно первого и второго датчиков и на основе полученных данных определяют координаты Xi, Yi, Zi; векторов движения осколков боевой части в виде выражения Xi=x1i-x2i, Yi=y1i-y2i, Zi=z1i-z2i, осуществляют оперативное определение углов подхода осколков к мишени в виде выражений , ,
осуществляют оперативное построение гистограмм и дифференциального закона распределения осколков по направлениям разлета, осуществляют оперативное определение распределения осколков по геометрическим размерам, массе и скорости.
где dni - расстояние между осколками относительно первого и второго датчиков Δti - время движения осколков относительно первого и второго датчиков, x2i, x1i, y2i, y1i, z2i, z1i -
координаты осколков относительно первого и второго датчиков в трех плоскостях, осуществляют оперативное определение геометрических размеров осколков в виде выражений lxi=ini, lyi=jnj, lzi=knk где ni, nj, nk - количества одновременно сработавших элементов в трех плоскостях, i, j, k - линейные размеры чувствительных элементов линеек фотоприемников в трех плоскостях, осуществляют оперативное определение массы осколков в виде выражения mi=ρ·(ini·jnj·knk), где ρ - плотность материала корпуса боевой части, осуществляют оперативное определение изменений координат движения осколков относительно первого и второго датчиков и на основе полученных данных определяют координаты Xi, Yi, Zi; векторов движения осколков боевой части в виде выражения Xi=x1i-x2i, Yi=y1i-y2i, Zi=z1i-z2i, осуществляют оперативное определение углов подхода осколков к мишени в виде выражений , ,
осуществляют оперативное построение гистограмм и дифференциального закона распределения осколков по направлениям разлета, осуществляют оперативное определение распределения осколков по геометрическим размерам, массе и скорости.
2. Стенд испытания осколочного боеприпаса, содержащий щитовую мишенную обстановку, выполненную в виде полуцилиндрической вертикальной стенки, обшитую листовым материалом, отличающийся тем, что дополнительно введены первый и второй неконтактные датчики, N-1 блоки измерений, аналого-цифровой преобразователь, блок памяти, передающее устройство, приемное устройство, устройство сопряжения, микроЭВМ, при этом первый и второй датчики размещены на заданном расстоянии между собой и выполнены в виде полуцилиндрических вертикальных стенок, состоящих из N-секторов, которые выполнены в виде трех перпендикулярно размещенных линеек фотоприемников и излучателей, блок измерений содержит первый и второй блоки логики, первый, второй, третий, четвертый, пятый и шестой элементы ИЛИ, первый, второй и третий устройства измерений, выходы каждого из N-1 секторов первого и второго датчиков соединены соответственно с первыми, вторыми, третьими, четвертыми, пятыми и шестыми входами блоков измерений, седьмой вход которого соединен с выходом кнопки «Пуск», первая, вторая, третья группы входов блока измерений являются соответственно первыми, вторыми, третьими группами входов первого блока логики и входами первого, второго и третьего элементов ИЛИ, четвертая, пятая, шестая группы входов блока измерений являются соответственно первыми, вторыми, третьими группами входов второго блока логики и входами четвертого, пятого и шестого элементов ИЛИ, седьмой вход блока измерений является четвертым входом первого и второго блоков логики, выходы первого, второго и третьего элементов ИЛИ соединены с первыми входами первого, второго и третьего измерительных устройств, вторые входы которых соединены соответственно с выходами четвертого, пятого и шестого элементов ИЛИ, выходы первого, второго и третьего измерительных устройств, первого и второго блоков логики являются соответственно первым, вторым, третьим, n-четвертыми и n-пятыми выходами блока измерений, выходы которого соединены с входами аналого-цифрового преобразователя, выход которого соединен с входом блока памяти, выход которого через передающее устройство, приемное устройство, согласующее устройство соединен с входом микроЭВМ.
3. Стенд испытания осколочного боеприпаса по п.2, отличающийся тем, что блоки логики состоят из квадратной матрицы n-порядка элементов И, из квадратной матрицы n-порядка триггеров, первого и второго элементов ИЛИ, дифференцирующей цепи, причем первые, вторые и третьи входы блока логики являются соответственно первыми, вторыми и третьими входами квадратной матрицы n-порядка элементов И, выходы которых соединены соответственно с первыми входами триггеров, вторые входы которых соединены с выходом дифференцирующей цепи, вход которой соединен с выходом второго элемента ИЛИ, второй вход которого является выходом первого элемента ИЛИ, входы которого соединены с выходами триггеров, четвертый вход блока логики является первым входом второго элемента ИЛИ, выходы триггеров являются выходами блока логики.
Publications (1)
Publication Number | Publication Date |
---|---|
RU2482438C1 true RU2482438C1 (ru) | 2013-05-20 |
Family
ID=
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2745889C1 (ru) * | 2020-03-24 | 2021-04-02 | Федеральное государственное казенное военное образовательное учреждение высшего образования "Военная академия материально-технического обеспечения имени генерала армии А.В. Хрулёва" | Способ оценки стойкости боеприпаса к опасным внешним воздействиям |
CN115060123A (zh) * | 2022-05-07 | 2022-09-16 | 中国人民解放军国防科技大学 | 一种活性破片综合威力测试装置及测试方法 |
CN115355774A (zh) * | 2022-07-28 | 2022-11-18 | 中国人民解放军63856部队 | 一种小口径步兵榴弹破片空间分布试验方法 |
RU2784843C1 (ru) * | 2022-06-07 | 2022-11-30 | Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт химии и механики" (ФГУП "ЦНИИХМ") | Способ испытания осесимметричного осколочного боеприпаса с неосесимметричным полем разлета осколков |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2745889C1 (ru) * | 2020-03-24 | 2021-04-02 | Федеральное государственное казенное военное образовательное учреждение высшего образования "Военная академия материально-технического обеспечения имени генерала армии А.В. Хрулёва" | Способ оценки стойкости боеприпаса к опасным внешним воздействиям |
CN115060123A (zh) * | 2022-05-07 | 2022-09-16 | 中国人民解放军国防科技大学 | 一种活性破片综合威力测试装置及测试方法 |
RU2784843C1 (ru) * | 2022-06-07 | 2022-11-30 | Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт химии и механики" (ФГУП "ЦНИИХМ") | Способ испытания осесимметричного осколочного боеприпаса с неосесимметричным полем разлета осколков |
CN115355774A (zh) * | 2022-07-28 | 2022-11-18 | 中国人民解放军63856部队 | 一种小口径步兵榴弹破片空间分布试验方法 |
RU2801193C1 (ru) * | 2022-11-08 | 2023-08-03 | Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт химии и механики" (ФГУП "ЦНИИХМ") | Способ испытаний осесимметричного осколочного боеприпаса с осесимметричным полем разлета осколков на аэроудар |
RU2806863C1 (ru) * | 2023-01-16 | 2023-11-08 | Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт химии и механики" (ФГУП "ЦНИИХМ") | Способ испытаний осесимметричного осколочного боеприпаса с осесимметричным полем разлета осколков |
RU2803984C1 (ru) * | 2023-03-20 | 2023-09-25 | Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт химии и механики" (ФГУП "ЦНИИХМ") | Способ испытания осесимметричного осколочно-фугасного боеприпаса с неосесимметричным полем разлета осколков |
RU2809031C1 (ru) * | 2023-05-11 | 2023-12-06 | Акционерное общество "Государственный научно-исследовательский институт машиностроения имени В.В. Бахирева" (АО "ГосНИИмаш") | Стенд регистрации скоростей поражающих элементов для осесимметричных осколочных боеприпасов |
RU2814055C1 (ru) * | 2023-07-10 | 2024-02-21 | Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт химии и механики" (ФГУП "ЦНИИХМ") | Способ комплексных испытаний осесимметричного осколочно-фугасного боеприпаса с осесимметричным полем разлета осколков |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20090102129A1 (en) | Shooting target system for automatic determination of the point of impact | |
WO2009085361A2 (en) | Acoustic detection of weapons near transportation centers | |
CN102175149A (zh) | 一种飞行弹丸空间炸点三维坐标光电测量装置及测量方法 | |
RU2442104C1 (ru) | Способ оперативной оценки эффективности поражающего действия боеприпаса и устройство для его осуществления | |
RU2482440C1 (ru) | Способ определения характеристик осколочного поля снаряда и устройство для его осуществления | |
RU2470252C1 (ru) | Способ определения координат положения в пространстве и во времени пуль и снарядов | |
CN106814368A (zh) | 基于激光测距原理的弹丸着靶坐标测量装置及测量方法 | |
RU2482438C1 (ru) | Способ испытаний осколочных боеприпасов и стенд для его реализации | |
RU2482439C1 (ru) | Способ испытаний осколочных боеприпасов и стенд для его реализации | |
RU2498317C1 (ru) | Способ определения характеристик осколочного поля снаряда и устройство для его осуществления | |
RU2395102C1 (ru) | Способ измерения скорости снаряда и устройство для его осуществления | |
Li et al. | Object location fire precision test technology by using intersecting photoelectric detection target | |
RU2576333C1 (ru) | Способ определения баллистических характеристик снарядов и информационно-вычислительная система для его осуществления | |
RU2593523C2 (ru) | Способ определения координат падения боеприпасов | |
RU2661069C1 (ru) | Способ определения зависимости баллистических характеристик снаряда от условий стрельбы и информационно-вычислительная система для его осуществления | |
RU2498318C1 (ru) | Способ определения характеристик осколочного поля снаряда в динамике и устройство для его осуществления | |
RU2610908C2 (ru) | Способ определения местоположения стрелка по звуку выстрела | |
RU2562871C1 (ru) | Мишенная обстановка для испытания боеприпасов с круговым осколочным полем | |
RU2470310C1 (ru) | Способ определения характеристик осколочного поля снаряда и устройство для его осуществления | |
RU2484419C1 (ru) | Способ управления характеристиками поля поражения осколочно-фугасной боевой части ракеты и устройство для его осуществления | |
RU2608349C1 (ru) | Способ определения траекторий полета снарядов и устройство для его осуществления | |
KR101914266B1 (ko) | 근접신관의 지상 공간 폭발위치 측정장치 | |
RU2519617C1 (ru) | Способ определения характеристик осколочного поля боеприпасов и устройство для его осуществления | |
RU2519611C1 (ru) | Способ определения характеристик осколочного поля боеприпасов и устройство для его осуществления | |
RU2502947C2 (ru) | Способ определения характеристик поля поражения снаряда и устройство для его осуществления |