RU2478739C1 - Способ электрохимического получения композиционного никелевого покрытия с квазикристаллическими частицами - Google Patents

Способ электрохимического получения композиционного никелевого покрытия с квазикристаллическими частицами Download PDF

Info

Publication number
RU2478739C1
RU2478739C1 RU2011150538/02A RU2011150538A RU2478739C1 RU 2478739 C1 RU2478739 C1 RU 2478739C1 RU 2011150538/02 A RU2011150538/02 A RU 2011150538/02A RU 2011150538 A RU2011150538 A RU 2011150538A RU 2478739 C1 RU2478739 C1 RU 2478739C1
Authority
RU
Russia
Prior art keywords
quasicrystalline
coating
electrolyte
nickel
powder
Prior art date
Application number
RU2011150538/02A
Other languages
English (en)
Inventor
Маргарита Николаевна Михеева
Виталий Сергеевич Круглов
Михаил Борисович Цетлин
Александр Андреевич Конарев
Юрий Алексеевич Абузин
Герман Леонидович Платонов
Дмитрий Сергеевич Шайтура
Екатерина Анатольевна Головкова
Алексей Аркадьевич Теплов
Original Assignee
Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" filed Critical Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт"
Priority to RU2011150538/02A priority Critical patent/RU2478739C1/ru
Application granted granted Critical
Publication of RU2478739C1 publication Critical patent/RU2478739C1/ru

Links

Images

Landscapes

  • Electroplating And Plating Baths Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

Изобретение относится к области гальванотехники и может быть использовано для повышения износостойкости инструмента, снижения трения в подшипниках и в качестве защитных несмачиваемых покрытий в различных отраслях промышленности, в частности, для предотвращения обледенения проводов линий электропередач. Способ включает введение в электролит никелирования квазикристаллического порошка состава AlCuFe и нанесение покрытия на поверхность изделий, при этом электроосаждение покрытия осуществляют при температуре 18-22°С и перемешивании электролита в присутствии неионогенных поверхностно-активных веществ (ПАВ) ОС-20 или синтанола АЛМ-10 с использованием никелевых анодов при следующем соотношении компонентов, г/л: NiSO4·7H2O 25-30; NH4Cl 28-30; Na2SO4 16-20; ПАВ 0,013-0,014; квазикристаллический порошок - не выше 70, при этом средний размер частиц квазикристаллического порошка составляет 6,0 мкм. Технический результат: удешевление и упрощение получения несмачиваемых композиционных квазикристаллических покрытий с содержанием квазикристаллов 30-42% в менее коррозионноактивных условиях электролиза. 1 з.п. ф-лы, 1 табл., 4 ил.

Description

Изобретение относится к способу получения квазикристаллических материалов, в частности электрохимических композиционных покрытий состава AlCuFe на основе никеля, которые могут использоваться благодаря своим уникальным свойствам для повышения износостойкости инструмента, снижения трения в подшипниках, применяться в качестве защитных несмачиваемых покрытий в различных отраслях промышленности, в частности, для предотвращения обледенения проводов линий электропередач.
Известны различные способы получения квазикристаллических материалов - пленок состава Al-Cu-Fe. Так, методом послойного магнетронного распыления на переменном токе получают пленки толщиной 300 нм (Klein Т., Symko O.G., // Appl.Phys. Lett. 1994. V.64. №4. P.431), методом электроннолучевого испарения из одного сплавленного катода - пленки 400-900 нм (Yoshioka A., Edagawa K., Kimura K., Takeuchi Sh. // Jpn. J. Appl. Phys. 1995. V.34. №3. P.1606). Для получения квазикристаллической фазы в пленках, полученных этими методами, необходим последующий отжиг, без которого квазикристаллические пленки образуются лишь при распылении на нагретую подложку (Eisenhammer Т., Trampert A. // Phys. Rev. Lett. 1997. V.78. №2. P.262).
Толстые пленки толщиной 50 мкм были получены при распылении с помощью СО2 лазера с последующим лазерным отжигом (Audebert F., Colaco R., Villar R. et al // Scripta Mater. 1999. V.40. №5. P.551).
Более совершенный способ получения квазикристаллических пленок заключается в послойном нанесении материалов методом катодного распыления в ячейке Пенинга (патент РФ №2329333 С23С 14/06, оп. 20.07.2008). Количество секций и материалы катодов ячейки выбирают в соответствии с составом квазикристаллической пленки. Затем наносят защитное покрытие Аl2O3 и проводят вакуумный отжиг. При этом получают квазикристаллические пленки стабильного состава, обладающие высокими технологическими свойствами: электропроводностью, теплопроводностью и твердостью.
Известные способы получения квазикристаллических пленок технологически сложны, трудоемки и требуют дорогостоящего специального оборудования. Поэтому решение этой проблемы состоит в разработке электрохимического способа получения композиционных покрытий на основе квазикристаллов, так как этот способ является технологически простым и дешевым.
Композиционные электрохимические покрытия находят широкое распространение в различных отраслях промышленности, о чем свидетельствует многочисленная научная и патентная литература [Молчанов В.Ф., Аюпов Ф.А., Вандышев В.А., Дзыцюк В.М. Комбинированные электрохимические покрытия. К.: Техника, 1976, 67 с.; Сайфуллин Р.С. Композиционные покрытия и материалы. М.: Химия. 1977. 270 с.; Кузнецова Е.В. //ЖПХ. 1993. Т.66. №5. С.1155-1158; Целуйкин В.И., Соловьева Н.Д. // ЖПХ. 2008. Т.81. №7. С.1106-1107; Чулованец С.А., Парфенов В.И. // ЖПХ. 2007. Т.80. №6. С.982; Тихонов К.И., Буркат и др. //ЖПХ. 2007. Т 80. №7. С.1113 ; авторское свидетельство СССР №1694710. C25D 15/00. 1991; патент РФ №2329337. C25D 15/00. 2008; патент РФ №2339746. C25D 15/00. 2008; патент РФ №2080422. C25D 3/56. 2002; патент РФ №2149927. C25D 3/56; патент РФ №2096535. C25D 15/0]. Композиционные электрохимические покрытия наносят из электролитов - суспензий, модифицированных добавками высокодисперсных порошков, которые при электроосаждении заращиваются металлом, закрепляясь на поверхности изделия (катода) в металлической матрице. В качестве веществ дисперсной фазы применяют бориды, карбиды, силициды, сульфиды, оксиды, графиты, фуллерены, алмазный порошок и т.д., а электролитами служат стандартные электролиты: никелирования, хромирования, меднения, цинкования и т.д. Для обеспечения седиментационной устойчивости дисперсной фазы в электролите применяют различные приемы: осуществляют перемешивание электролита; используют ПАВ [Авторское свидетельство СССР №1636481, C25D 15/00, 1991]; применяют ПАВ с последующей активацией электролита-суспензии в специальном аппарате - дезинтеграторе [Патент РФ №2202007. C25D 15/00. 2003]; обрабатывают электролит - суспензию ультразвуком [Патент РФ №2283373. C25D 15/00. 2006]; используют очищенные и ультрадисперсные порошки [Патент РФ №2156838. C25D 15/00. 2000]; циклически изменяют скорость электролита - суспензии в межэлектродном пространстве в ходе электролиза [Патент РФ №2138583. C25D 15/00. 1999]. Однако литературные данные, касающиеся использования квазикристаллического порошка для получения композиционных электрохимических покрытий, весьма ограничены.
Наиболее близким по технической сущности и достигаемому результату является известный электрохимический способ получения композиционных квазикристаллических покрытий, принятый за прототип (патент США №7309412. 2007). Этот способ заключается в электроосаждении квазикристаллического порошка состава Аl65Cu23Fe12 с размером частиц менее 20 мкм из сульфатного электролита никелирования с концентрацией никеля 5,8 г/л и добавкой гипофосфита натрия на подложку из алюминиевого сплава Аl-3004. Концентрация квазикристаллического порошка в электролите составляет 77 г/л, плотность тока в ходе электролиза изменяют ступенчато с 2,4 до 1,2 А/дм2, а температуру электролита поддерживают 33-50°С. При этом в качестве анода применяют платинированный титан, а покрываемый алюминиевый образец (катод) вращают со скоростью 3 об/мин. Полученное этим способом покрытие имеет толщину 25 мкм, а содержание квазикристаллов в нем составляет около 50%. Угол соприкосновения водных капель воды с покрытием превышает 105°, а коэффициент трения квазикристаллического покрытия составляет 0,2 (для непокрытого алюминиевого сплава - 0,75-0,85). Коэффициент трения и контактный угол воды не изменяются для термически обработанных квазикристаллических покрытий при температуре 425°С в течение 4 часов в бескислородной атмосфере (аргоне). Эти характеристики являются наиболее важными для работоспособности покрытия.
Недостатками прототипа являются: сравнительно высокая рекомендуемая температура электролиза 33-50°С, повышающая коррозионную активность электролита; вращение покрываемого образца (катода), усложняет конструкцию гальванического оборудования; использование платинированного титана в качестве анодного материала приводит к существенному удорожанию процесса электроосаждения квазикристаллического порошка. Кроме того, в известном способе не приводится состав электролита никелирования и вводится в электролит фосфит натрия, обычно используемый при химическом никелировании.
Задачей предлагаемого изобретения является упрощение электрохимического способа получения несмачиваемых композиционных никелевых покрытий с содержанием квазикристаллических частиц 30-42%, в менее коррозионноактивных условиях электролиза.
Техническим результатом является повышение гидрофобности покрытия.
Для этого предложен способ электрохимического получения композиционного никелевого покрытия с квазикристаллическими частицами, включающий введение в электролит никелирования квазикристаллического порошка состава AlCuFe и нанесение покрытия на поверхность изделий, при этом электроосаждение покрытия осуществляют при температуре 18-22°С и перемешивании электролита в присутствии неионогенных поверхностно-активных веществ (ПАВ) ОС-20 или синтанола АЛМ-10 с использованием никелевых анодов при следующем соотношении компонентов, г/л:
NiSO4·7H2O - 25-30,
NH4Cl - 28-30, Na2SO4 - 16-20,
ПВА - 0,013-0,014,
с концентрацией квазикристаллического порошка не выше 70 г/л,
при этом средний размер частиц квазикристаллического порошка составляет 6,0 мкм.
Кроме того, проводят магнитное перемешивание электролита.
Предлагаемый способ осуществляют в обычной гальванической ячейке при температуре 18-22°C с использованием никелевых анодов, а для обеспечения седиментационной устойчивости квазикристаллического порошка в электролите применяют перемешивание электролита магнитной мешалкой и неионогенных поверхностно-активных веществ: синтанол АЛМ-10 (смесь полиоксиэтиленгликолевых эфиров синтетических первичных высших жирных спиртов фракций С12-C14, ТУ 6-14-864-88) или ОС-20 (смесь полиоксиэтиленгликолевых эфиров высших жирных спиртов, ГОСТ 10730-82).
Электролит никелирования готовят следующим образом: в емкости, наполненной горячей дистиллированной водой, растворяют рецептурное количество сульфата никеля, сульфата натрия и хлорида аммония. Полученный электролит обрабатывают активированным углем, фильтруют и переливают в гальваническую ячейку в количестве 100 мл. В этот объем электролита при включенной магнитной мешалке вводят требуемые количества квазикристаллического порошка со средним размером частиц 6 мкм и поверхностно-активного вещества. Используемый квазикристаллический порошок состава Al65Cu22Fe13 получают по технологии, описанной в патенте РФ №2244761. По этой же технологии были получены порошки состава Al63,5Cu24,5Fe12 Al70Cu20,3Fe9,7, Al65Cu22Fe13.
Исходную смесь порошков берут при соотношении алюминия, меди и железа, непосредственно соответствующем области существования квазикристаллической фазы сплава Al-Cu-Fe. Проводят перемешивание исходной смеси порошков на воздухе в среде жидкого испаряющегося пластификатора до получения однородной смеси и повышения ее вязкости. Затем осуществляют нагрев в бескислородной атмосфере и выдержку. Процесс нанесения покрытия на медную подложку ведут при катодной плотности тока 1-2 А/дм2.
В качестве параметров, характеризующих свойства полученных покрытий, определялись содержание квазикристаллической фазы в весовых процентах и смачиваемость образца дистиллированной водой, которая определялась по форме капли воды, нанесенной на поверхность покрытия.
На фигуре 1 показана зависимость интенсивности рентгеновского излучения от угла дифракции на образце электрохимического композиционного никелевого покрытия с квазикристаллическими частицами состава Al65Cu22Fe13, полученная на установке D8 Advance фирмы «Брукер». На той же фигуре приведена табличная штрих-рентгенограмма квазикристаллической фазы. Индицированы пики, относящиеся к Ni и квазикристаллу.
На фигуре 2 представлена фотография капли дистиллированной воды на поверхности медной подложки. Размер капли ~1.5 мм. Медь является материалом с умеренной смачиваемостью. Угол смачиваемости (в данном случае 64.5°±1°) определялся по компьютерному изображению с помощью аппроксимации формы капли сферой с известным центром и радиусом.
На фигуре 3 представлена фотография такой же капли на поверхности тефлона, который известен как материал с предельно низкой смачиваемостью. Угол смачиваемости, который определялся так же, как и для меди, составляет в данном случае 108.5±1°.
На фигуре 4 представлена фотография капли дистиллированной воды на поверхности несмачиваемого композиционного квазикристаллического покрытия. В этом случае капля представляет собой слегка искаженную сферу, и угол смачиваемости не определяется. Следует отметить, что, в отличие как от меди и тефлона, так и от покрытий с более низким содержанием квазикристалла, капля воды скатывается с несмачиваемого покрытия при наклоне образца.
В таблице приведены технологические параметры процесса и характеристики полученных покрытий для серии образцов
Figure 00000001
Из данных, приведенных в таблице, видно, что содержание квазикристаллов в композиционном покрытии и его качество зависят от состава электролита и условий электролиза. Так, увеличение концентраций сульфата никеля, сульфата натрия и хлорида аммония, а также повышение температуры электролита, среднего размера частиц квазикристаллического порошка и его концентрации выше 70 г/л приводят к снижению содержания квазикристаллов в композиционном покрытии до 12,2-20,0 % и ухудшению его качества. Композиционные квазикристаллические покрытия, получаемые по предлагаемому способу, обладают хорошей адгезией с медной основе, не разрыхляются и не смачиваются.
Таким образом, предлагаемый способ позволяет получать несмачиваемые композиционные никелевые покрытия с квазикристаллическими частицами с содержанием квазикристаллов 30-42 вес.%, в менее коррозионноактивных условиях электролиза с одновременным упрощением его реализации за счет использования существующего гальванического оборудования и удешевлением в результате замены платинированных анодов на обычные никелевые. Такие покрытия могут применяться для повышения износостойкости инструмента, снижения трения в подшипниках, применяться в качестве защитных несмачиваемых покрытий в различных отраслях промышленности, в частности, для предотвращения обледенения проводов линий электропередач.

Claims (2)

1. Способ электрохимического получения композиционного никелевого покрытия с квазикристаллическими частицами, включающий введение в электролит никелирования квазикристаллического порошка состава AlCuFe и нанесение покрытия на поверхность изделий, отличающийся тем, что электроосаждение покрытия осуществляют при температуре 18-22°С и перемешивании электролита в присутствии неионогенных поверхностно-активных веществ (ПАВ) ОС-20 или синтанола АЛМ-10 с использованием никелевых анодов при следующем соотношении компонентов, г/л:
NiSO4·7H2O 25-30 NH4Cl 28-30 Na2SO4 16-20 ПАВ 0,013-0,014 квазикристаллический порошок не выше 70,

при этом средний размер частиц квазикристаллического порошка составляет 6,0 мкм.
2. Способ по п.1, отличающийся тем, что проводят магнитное перемешивание электролита.
RU2011150538/02A 2011-12-13 2011-12-13 Способ электрохимического получения композиционного никелевого покрытия с квазикристаллическими частицами RU2478739C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2011150538/02A RU2478739C1 (ru) 2011-12-13 2011-12-13 Способ электрохимического получения композиционного никелевого покрытия с квазикристаллическими частицами

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011150538/02A RU2478739C1 (ru) 2011-12-13 2011-12-13 Способ электрохимического получения композиционного никелевого покрытия с квазикристаллическими частицами

Publications (1)

Publication Number Publication Date
RU2478739C1 true RU2478739C1 (ru) 2013-04-10

Family

ID=49152324

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011150538/02A RU2478739C1 (ru) 2011-12-13 2011-12-13 Способ электрохимического получения композиционного никелевого покрытия с квазикристаллическими частицами

Country Status (1)

Country Link
RU (1) RU2478739C1 (ru)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7309412B2 (en) * 2003-04-11 2007-12-18 Lynntech, Inc. Compositions and coatings including quasicrystals
RU2329333C1 (ru) * 2006-10-12 2008-07-20 Федеральное государственное учреждение Российский научный центр "Курчатовский институт" Способ получения квазикристаллических пленок на основе алюминия
RU2007144836A (ru) * 2007-12-05 2009-06-10 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИ Способ получения порошкового квазикристаллического материала

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7309412B2 (en) * 2003-04-11 2007-12-18 Lynntech, Inc. Compositions and coatings including quasicrystals
RU2329333C1 (ru) * 2006-10-12 2008-07-20 Федеральное государственное учреждение Российский научный центр "Курчатовский институт" Способ получения квазикристаллических пленок на основе алюминия
RU2007144836A (ru) * 2007-12-05 2009-06-10 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИ Способ получения порошкового квазикристаллического материала

Similar Documents

Publication Publication Date Title
Laszczyńska et al. Electrodeposition and characterization of Ni–Mo–ZrO2 composite coatings
Mafi et al. Comparison of the coating properties and corrosion rates in electroless Ni–P/PTFE composites prepared by different types of surfactants
Mafi et al. Studying the effects of the addition of TiN nanoparticles to Ni–P electroless coatings
US7309412B2 (en) Compositions and coatings including quasicrystals
Wu et al. The effects of pH and temperature on electrodeposition of Re-Ir-Ni coatings from aqueous solutions
Bigos et al. Ultrasound-assisted electrodeposition of Ni and Ni-Mo coatings from a citrate-ammonia electrolyte solution
EP1939331B1 (en) Process for producing composite-plated material
Bakhit The influence of electrolyte composition on the properties of Ni–Co alloy coatings reinforced by SiC nano-particles
Bund et al. Influence of bath composition and pH on the electrocodeposition of alumina nanoparticles and copper
Afshar et al. Electrodeposition of graphite-bronze composite coatings and study of electroplating characteristics
Malfatti et al. The surfactant addition effect in the elaboration of electrodepositated NiP-SiC composite coatings
Wu et al. The influence of current density and bath temperature on electrodeposition of rhodium film from sulfate–phosphate aqueous solutions
JPH0570718B2 (ru)
Hagarova et al. Microstructure and properties of electroplated Ni-Co alloy coatings
Zhang et al. Influence of electrodeposition conditions on the microstructure and hardness of Ni-B/SiC nanocomposite coatings
Dobrovets’ ka et al. Galvanic deposition of gold and palladium on magnesium by the method of substitution
Wang et al. Influence of Bi addition on the property of Ag-Bi nano-composite coatings
RU2478739C1 (ru) Способ электрохимического получения композиционного никелевого покрытия с квазикристаллическими частицами
Gamburg et al. The electrochemical deposition of nickel from electrolytes containing malonic acid
Oriňáková et al. Electrodeposition of composite Ni–B coatings in a stirred heterogeneous system
Jafari Improving the corrosion resistance of carbon steel by Ni–P nano-structured coating
Höhlich et al. Electrodeposition and characterisation of Al-W alloy films from ionic liquid
Aal et al. Electrodeposition of Ni–RuAl composite coating on steel surface
Wang et al. Electrodeposition of Silver–Graphene Films for Electronic Connectors in Succinimide Solutions
Mbugua et al. The Influence of Co Concentration on the Properties of Conventionally Electrodeposited Ni–Co–Al 2 O 3–SiC Nanocomposite Coatings

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20181214