RU2476256C2 - Способ очистки воздуха - Google Patents

Способ очистки воздуха Download PDF

Info

Publication number
RU2476256C2
RU2476256C2 RU2010129741/05A RU2010129741A RU2476256C2 RU 2476256 C2 RU2476256 C2 RU 2476256C2 RU 2010129741/05 A RU2010129741/05 A RU 2010129741/05A RU 2010129741 A RU2010129741 A RU 2010129741A RU 2476256 C2 RU2476256 C2 RU 2476256C2
Authority
RU
Russia
Prior art keywords
side walls
duct
walls
path
closed cavity
Prior art date
Application number
RU2010129741/05A
Other languages
English (en)
Other versions
RU2010129741A (ru
Inventor
Владимир Викторович Черниченко
Владимир Григорьевич Стогней
Павел Анатольевич Солженикин
Павел Михайлович Глебов
Владимир Юрьевич Дубанин
Original Assignee
Государственное образовательное учреждение высшего профессионального образования "Воронежский государственный технический университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное образовательное учреждение высшего профессионального образования "Воронежский государственный технический университет" filed Critical Государственное образовательное учреждение высшего профессионального образования "Воронежский государственный технический университет"
Priority to RU2010129741/05A priority Critical patent/RU2476256C2/ru
Publication of RU2010129741A publication Critical patent/RU2010129741A/ru
Application granted granted Critical
Publication of RU2476256C2 publication Critical patent/RU2476256C2/ru

Links

Images

Landscapes

  • Gas Separation By Absorption (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

Изобретение относится к процессам пылеулавливания и может быть использовано в любой отрасли народного хозяйства, где требуется улавливание высокодисперсных аэрозолей из воздушного протока, в частности в пищевой промышленности. Способ очистки воздуха заключается в пропускании воздуха через увлажнитель и разнотемпературную конденсационную камеру с газовым трактом преимущественно прямоугольного сечения, противоположные соседние стенки которого имеют разную температуру. Верхнее и нижнее днища камеры соединяют между собой по периферийной части при помощи боковых стенок с образованием замкнутой полости, в стенках которой выполняют разъемы для обеспечения возможности подвода внутрь полости трубопроводов рабочего тела и средств измерений. Боковые стенки тракта выполняют состоящими из нескольких подвижно соединенных между собой частей, имеющих возможность углового и радиального перемещений как внутрь, так и наружу газового тракта. Тракт образуют верхним, нижним днищами и боковыми стенками тракта, изменение длины тракта производят путем перемещения входной части в радиальном направлении, а геометрии тракта - за счет перемещения в осевом, радиальном и угловом боковых стенок, при этом давление в тракте разнотемпературной конденсационной камеры и в замкнутой полости поддерживают равным. Технический результат состоит в более полном отделении конденсата и механических примесей от потока газа, подвергаемого очистке. 3 ил.

Description

Изобретение относится к процессам пылеулавливания и может быть использовано в любой отрасли народного хозяйства, где требуется улавливание высокодисперсных аэрозолей из воздушного протока, в частности в пищевой промышленности.
Наиболее близким к предлагаемому изобретению по технической сущности и достигаемому результату является способ улавливания высокодисперсных аэрозолей путем насыщения запыленного воздушного потока водяными парами с последующим конденсационным укрупнением и улавливанием аэрозольных частиц из паровоздушного потока (Патент РФ №2323033, МПК B01D 47/05 - прототип).
Основным недостатком известного способа является то, что поток газа встречает на своем пути значительное гидравлическое сопротивление, возникающее в узких каналах насадки, что приводит к значительным потерям энергии.
Технической задачей предлагаемого изобретения является устранение указанных недостатков и создание способа очистки воздуха, применение которого позволит обеспечить более полное отделение конденсата и механических примесей от потока газа, подвергаемого очистке.
Решение поставленной задачи достигается за счет того, что в предложенном способе очистки воздуха, заключающемся в охлаждении и пересыщении очищаемого потока водяными парами при пропускании его через увлажнитель и разнотемпературную конденсационную камеру с газовым трактом преимущественно прямоугольного сечения, противоположные соседние стенки которого имеют разную температуру, с последующим отделением из потока твердой и конденсированной фаз, согласно изобретению верхнее и нижнее днища камеры соединяют между собой по периферийной части при помощи боковых стенок с образованием замкнутой полости, в стенках которой выполняют разъемы для обеспечения возможности подвода внутрь полости трубопроводов рабочего тела и средств измерений, боковые стенки тракта выполняют состоящими из нескольких подвижно соединенных между собой частей, имеющих возможность углового и радиального перемещений как внутрь, так и наружу газового тракта, при этом тракт образуют верхним, нижним днищами и боковыми стенками тракта, изменение длины тракта производят путем перемещения входной части в радиальном направлении, а геометрии тракта - за счет перемещения в осевом, радиальном и угловом боковых стенок, при этом давление в тракте разнотемпературной конденсационной камеры и в замкнутой полости поддерживают равным.
Сущность изобретения иллюстрируется чертежами, где на фиг.1 показана принципиальная схема установки для очистки воздуха, на фиг.2 - разнотемпературная конденсационная камера в аксонометрии с трактом, сужающимся во входной части, на фиг.3 - разнотемпературная конденсационная камера в аксонометрии с трактом, расширяющимся во входной части.
Указанный способ реализуется следующим образом.
Очищаемый воздух поступает в компрессор 1, где происходит его сжатие до заданных параметров.
Из компрессора 1 сжатый очищаемый воздух подается в увлажнитель сжатого воздуха 2 и далее в подогреватель 3, где ему придается требуемая влажность и температура.
Далее сжатый воздух, вырабатываемый компрессором 1, прошедший через увлажнитель сжатого воздуха 2 и подогреватель 3, подается в разнотемпературную камеру 4 с трактом 5, в которой происходит конденсация водяных паров на ядрах конденсации, например механических примесях, газовых ионах и на поверхности самопроизвольно образующихся зародышей и их рост до размеров капель.
Камера 4 содержит нижнее днище 6, верхнее днище 7, холодную 8 и горячую 9 боковые стенки тракта с устройствами обеспечения разности температур их наружных поверхностей.
Боковые стенки 8 и 9 тракта выполнены состоящими из нескольких подвижно соединенных между собой частей, имеющих возможность углового и радиального перемещений как внутрь, так и наружу газового тракта.
Продольная стенка 8 выполнена состоящей из нескольких соединенных между собой с возможностью радиального перемещения частей 10.
Продольная стенка 9 выполнена состоящей из нескольких соединенных между собой с возможностью радиального перемещения частей 11.
Верхнее 7 и нижнее 6 днища соединены между собой по периферийной части при помощи боковых стенок 12 с образованием замкнутой полости. В стенках 12 полости выполнены разъемы для обеспечения возможности подвода внутрь полости трубопроводов рабочего тела и средств измерений.
Во входной части тракта установлена подвижная стенка 13. В боковых стенках 12 выполнены каналы 14 для подвода рабочего тела и кабелей средств измерений.
За счет того, что боковые стенки 8 и 9 камеры выполнены с возможностью радиального перемещения, обеспечиваются требуемые условия прохождения очищаемого потока через газовый тракт разнотемпературной камеры путем изменения площади проходного сечения тракта.
За счет того, что имеется возможность изменения длины газового тракта путем перемещения входной части 13 в осевым направлении и геометрии тракта - за счет перемещения в осевом, радиальном и угловом направлениях боковых стенок 8 и 9, предложенная разнотемпературная конденсационная камера может легко перестраиваться на различные режимы работы, обеспечивающие оптимальную степень очистки газовых потоков при изменении их температурных и расходных характеристик.
По мере прохождения в канале пересыщенной парогазовой смеси происходит конденсация паров жидкости на аэрозольных частицах, как на ядрах конденсации, и образовавшиеся капли выделяются из парогазовой смеси под действием диффузионных и термодиффузионных сил. При движении парогазовой смеси вдоль холодной поверхности давление паров жидкости над ней значительно меньше, чем в центральной части потока. Вследствие этого в смеси возникает диффузионный поток пара, который воздействует на находящиеся в смеси аэрозольные частицы и капли. В результате этого воздействия частицы и капли движутся в сторону охлаждаемой поверхности. Конденсация пара в объеме и частично на холодной поверхности сопровождается уменьшением объема, что приводит к общему течению парогазовой смеси к этой поверхности. Возникающий при этом конвективный поток, называемый стефановским течением, усиливает диффузионный поток и всегда направлен в сторону уменьшения объема, т.е. к холодной поверхности. С другой стороны, при движении потока между разнотемпературными поверхностями в парогазовой смеси возникает температурный градиент, обуславливающий появление термодиффузионных сил, под действием которых частицы и капли тоже движутся в сторону холодной поверхности, укрупняются и осаждаются в объеме и частично на холодной стенке. Непрерывность конденсации и укрупнения частиц при движении вдоль канала поддерживается вследствие высокой степени пресыщения, которая возникает в результате увеличения парциального давления у обогреваемой поверхности и снижения его у охлаждаемой поверхности. Причем величина пересыщения растет от обогреваемой поверхности к охлаждаемой. В канале, постепенно расширяющемся по ходу газа, процесс конденсации на частицах идет более интенсивно за счет снижения скорости парогазового потока, которое приводит к увеличению парциального статического давления паров жидкости, т.е. к увеличению степени пересыщения и более высокому выходу конденсата, осаждающемуся в виде капель в объеме и на холодной стенке. Выполнение разнотемпературного канала с сужением обеспечит более эффективное удаление образовавшихся капель конденсата со стенок газового тракта за счет обеспечения возможности их срыва со стенок и попадания на днище для последующего удаления.
Изменением длины канала определяется время нахождения аэрозольных частиц в рабочей зоне, тем самым характеризуя степень очистки газового потока.
Одна часть конденсата улавливается в камере 4, а другая, оставшаяся, - в расположенном за ней водоотделителе. Комплект, состоящий из увлажнителей и подогревателя, позволяет изменять влажность и температуру воздушного потока в широком диапазоне.
За счет того, что верхнее и нижнее 6 днища соединены между собой по периферийной части при помощи боковых стенок 12 с образованием замкнутой полости, в тракте 5 и в указанной замкнутой полости создается повышенное давление, что приводит к улучшению условий отделения конденсата.
Проведенные авторами и заявителем испытания полноразмерной установки для очистки воздуха подтвердили правильность заложенных конструкторско-технологических решений.
Использование предложенного технического решения позволит обеспечить более полное отделение конденсата и механических примесей от потока газа, подвергаемого очистке при меньших затратах энергии.

Claims (1)

  1. Способ очистки воздуха, заключающийся в охлаждении и пересыщении очищаемого потока водяными парами при пропускании его через увлажнитель и разнотемпературную конденсационную камеру с газовым трактом преимущественно прямоугольного сечения, противоположные соседние стенки которого имеют разную температуру, с последующим отделением из потока твердой и конденсированной фаз, отличающийся тем, что верхнее и нижнее днища камеры соединяют между собой по периферийной части при помощи боковых стенок с образованием замкнутой полости, в стенках которой выполняют разъемы для обеспечения возможности подвода внутрь полости трубопроводов рабочего тела и средств измерений, боковые стенки тракта выполняют состоящими из нескольких подвижно соединенных между собой частей, имеющих возможность углового и радиального перемещений как внутрь, так и наружу газового тракта, при этом тракт образуют верхним, нижним днищами и боковыми стенками тракта, изменение длины тракта производят путем перемещения входной части в радиальном направлении, а геометрии тракта - за счет перемещения боковых стенок в осевом, радиальном и угловом направлениях, при этом давление в тракте разнотемпературной конденсационной камеры и в замкнутой полости поддерживают равным.
RU2010129741/05A 2010-07-15 2010-07-15 Способ очистки воздуха RU2476256C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2010129741/05A RU2476256C2 (ru) 2010-07-15 2010-07-15 Способ очистки воздуха

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2010129741/05A RU2476256C2 (ru) 2010-07-15 2010-07-15 Способ очистки воздуха

Publications (2)

Publication Number Publication Date
RU2010129741A RU2010129741A (ru) 2012-01-20
RU2476256C2 true RU2476256C2 (ru) 2013-02-27

Family

ID=45785407

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010129741/05A RU2476256C2 (ru) 2010-07-15 2010-07-15 Способ очистки воздуха

Country Status (1)

Country Link
RU (1) RU2476256C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2567952C2 (ru) * 2014-01-09 2015-11-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Воронежский государственный технический университет" Способ очистки воздуха

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2090244C1 (ru) * 1995-04-14 1997-09-20 Курский государственный технический университет Фильтр для очистки воздуха
US6447585B1 (en) * 2000-01-11 2002-09-10 Buchholz, Jr. Leroy H. Closed system for volatile organic compound recycling
RU2323033C1 (ru) * 2006-06-15 2008-04-27 Государственное образовательное учреждение высшего профессионального образования "Воронежский государственный технический университет" Способ очистки воздуха и установка для его реализации
RU2365402C1 (ru) * 2007-12-17 2009-08-27 Государственное образовательное учреждение высшего профессионального образования "Воронежский государственный технический университет" Способ очистки воздуха
RU2366493C1 (ru) * 2007-12-17 2009-09-10 Государственное образовательное учреждение высшего профессионального образования "Воронежский государственный технический университет" Установка для очистки воздуха
RU2378038C2 (ru) * 2008-02-07 2010-01-10 Государственное образовательное учреждение высшего профессионального образования "Воронежский государственный технический университет" Уловитель аэрозольных частиц
GB2464215A (en) * 2008-10-08 2010-04-14 Grid Xitek Ltd Breathable air cleaning apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2090244C1 (ru) * 1995-04-14 1997-09-20 Курский государственный технический университет Фильтр для очистки воздуха
US6447585B1 (en) * 2000-01-11 2002-09-10 Buchholz, Jr. Leroy H. Closed system for volatile organic compound recycling
RU2323033C1 (ru) * 2006-06-15 2008-04-27 Государственное образовательное учреждение высшего профессионального образования "Воронежский государственный технический университет" Способ очистки воздуха и установка для его реализации
RU2365402C1 (ru) * 2007-12-17 2009-08-27 Государственное образовательное учреждение высшего профессионального образования "Воронежский государственный технический университет" Способ очистки воздуха
RU2366493C1 (ru) * 2007-12-17 2009-09-10 Государственное образовательное учреждение высшего профессионального образования "Воронежский государственный технический университет" Установка для очистки воздуха
RU2378038C2 (ru) * 2008-02-07 2010-01-10 Государственное образовательное учреждение высшего профессионального образования "Воронежский государственный технический университет" Уловитель аэрозольных частиц
GB2464215A (en) * 2008-10-08 2010-04-14 Grid Xitek Ltd Breathable air cleaning apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2567952C2 (ru) * 2014-01-09 2015-11-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Воронежский государственный технический университет" Способ очистки воздуха

Also Published As

Publication number Publication date
RU2010129741A (ru) 2012-01-20

Similar Documents

Publication Publication Date Title
Bao et al. Nanoporous membrane tube condensing heat transfer enhancement study
RU2323033C1 (ru) Способ очистки воздуха и установка для его реализации
Valipour et al. Experimental modeling of a curved Ranque–Hilsch vortex tube refrigerator
RU2365402C1 (ru) Способ очистки воздуха
RU2378038C2 (ru) Уловитель аэрозольных частиц
RU2476256C2 (ru) Способ очистки воздуха
RU2478417C2 (ru) Разнотемпературная конденсационная камера
RU2377074C1 (ru) Устройство для отделения частиц жидкости из газового потока
RU2504421C2 (ru) Установка для очистки воздуха
RU2687909C1 (ru) Разнотемпературная конденсационная камера
RU2567952C2 (ru) Способ очистки воздуха
RU2560885C2 (ru) Способ повышения эффективности очистки воздуха в разнотемпературной конденсационной камере
CN107525141A (zh) 一种t型管式空气制冷除湿系统
RU2483781C2 (ru) Разнотемпературная конденсационная камера
RU2366493C1 (ru) Установка для очистки воздуха
RU2569549C2 (ru) Разнотемпературная конденсационная камера
RU2567956C2 (ru) Разнотемпературная конденсационная камера
RU2569550C2 (ru) Способ очистки воздуха в разнотемпературной конденсационной камере
RU148596U1 (ru) Разнотемпературная конденсационная камера
RU148726U1 (ru) Разнотемпературная конденсационная камера
RU2560886C2 (ru) Способ очистки воздуха
Nastenko et al. Mathematical modeling of separation process by coupled heat transfer in the inertial-filtering gas separator-condenser
RU2412746C2 (ru) Установка осушки газа
RU2571976C2 (ru) Разнотемпературная конденсационная камера
RU2560884C2 (ru) Установка для очистки воздуха

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20130716