RU2474688C1 - Способ определения акустических характеристик глинистой корки - Google Patents
Способ определения акустических характеристик глинистой корки Download PDFInfo
- Publication number
- RU2474688C1 RU2474688C1 RU2011139727/03A RU2011139727A RU2474688C1 RU 2474688 C1 RU2474688 C1 RU 2474688C1 RU 2011139727/03 A RU2011139727/03 A RU 2011139727/03A RU 2011139727 A RU2011139727 A RU 2011139727A RU 2474688 C1 RU2474688 C1 RU 2474688C1
- Authority
- RU
- Russia
- Prior art keywords
- clay
- determining
- acoustic
- acoustic characteristics
- pressure
- Prior art date
Links
- 239000004927 clay Substances 0.000 title claims abstract description 61
- 238000000034 method Methods 0.000 title claims abstract description 39
- 230000008569 process Effects 0.000 claims abstract description 14
- 230000004044 response Effects 0.000 claims abstract description 12
- 230000001052 transient effect Effects 0.000 claims abstract description 10
- 239000012530 fluid Substances 0.000 claims abstract description 7
- 230000007704 transition Effects 0.000 claims description 13
- 230000015572 biosynthetic process Effects 0.000 claims description 7
- 238000005259 measurement Methods 0.000 claims description 7
- 230000000694 effects Effects 0.000 abstract description 2
- 239000000126 substance Substances 0.000 abstract 1
- 238000005553 drilling Methods 0.000 description 6
- 238000009792 diffusion process Methods 0.000 description 4
- 230000035699 permeability Effects 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 238000013461 design Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 239000012065 filter cake Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000003534 oscillatory effect Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B49/00—Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B49/00—Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
- E21B49/005—Testing the nature of borehole walls or the formation by using drilling mud or cutting data
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/04—Analysing solids
- G01N29/11—Analysing solids by measuring attenuation of acoustic waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/34—Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor
- G01N29/348—Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor with frequency characteristics, e.g. single frequency signals, chirp signals
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/44—Processing the detected response signal, e.g. electronic circuits specially adapted therefor
- G01N29/48—Processing the detected response signal, e.g. electronic circuits specially adapted therefor by amplitude comparison
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/02—Indexing codes associated with the analysed material
- G01N2291/024—Mixtures
- G01N2291/02416—Solids in liquids
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Mining & Mineral Resources (AREA)
- Geology (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Analytical Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Signal Processing (AREA)
- Acoustics & Sound (AREA)
- Geophysics And Detection Of Objects (AREA)
Abstract
Изобретение относится к способу определения акустических характеристик глинистой корки, образующейся при бурении скважины, таких как подвижность флюида и пьезопроводность глинистой корки. Техническим результатом является создание простого и эффективного способа определения характеристик глинистой корки в скважине, позволяющего определить характеристики глинистой корки с применением источника давления, вырабатывающего неколеблющийся сигнал. Для определения акустических характеристик глинистой корки в скважине по меньшей мере одним акустическим датчиком регистрируют отклик на низкочастотный неколеблющийся сигнал давления. Из полученного сигнала определяют, по меньшей мере, одну характеристику переходного процесса изменения давления, определяют толщину глинистой корки и на основе полученных значений определяют по меньшей мере одно из следующих значений: пьезопроводность глинистой корки и подвижность флюида. 18 з.п. ф-лы, 1 ил.
Description
Настоящее изобретение относится к способам определения акустических характеристик глинистой корки, образующейся при бурении скважины, таких как подвижность флюида и пьезопроводность глинистой корки.
Глинистая корка создается во время бурения буровым раствором, подаваемым в скважину по бурильной колонне и удаляемым через отверстия в буровом долоте с целью смазки бурового долота при бурении и для выноса обломков выбуренной породы на поверхность. Слой глинистой корки образуется по мере того, как буровой раствор смешивается с обломками горной породы и/или другими твердыми веществами и циркулирует вверх через кольцевую область между внешней поверхностью бурильной колонны и стенкой скважины. Смесь покрывает стенку скважины и образует слой глинистой корки. Одной из функций слоя глинистой корки является изолирование пласта от внутренней части скважины. Слой глинистой корки в отрасли часто называют глинистой коркой или фильтрационной коркой.
Известен способ прямого определения характеристик глинистой корки во время отбора проб, проводимого во время бурения, описанный в заявке WO 2009/139992. В известном способе используют низкочастотный акустический датчик в режиме прослушивания для оценки коэффициента диффузии давления глинистой корки κ, который непосредственно связан с герметизирующими характеристиками глинистой корки. В качестве устройства для создания гармонических или периодических колебаний давления использовался поршень камеры предварительных испытаний или любого другого устройства. Однако выработка колебаний давления не всегда возможна на практике.
Технический результат, на достижение которого направлено настоящее изобретение, заключается в создании простого и эффективного способа определения характеристик глинистой корки в скважине, позволяющего определить характеристики глинистой корки с применением источника давления, вырабатывающего неколеблющийся сигнал (например, единичный ступенчатый импульс давления).
Указанный технический результат достигается за счет того, что в скважине по меньшей мере одним акустическим датчиком регистрируют отклик на низкочастотный неколеблющийся сигнал давления, из полученного сигнала определяют по меньшей мере одну характеристику переходного процесса изменения давления, определяют толщину глинистой корки и на основе полученных значений определяют по меньшей мере одно из следующих значений: пьезопроводность глинистой корки и подвижность флюида.
Характеристиками переходного процесса являются показатель экспоненты переходной компоненты решения, момент времени, когда переходный компонент решения достигает своего максимума, и значение максимального давления, достигнутого во время переходного процесса.
В качестве неколеблющегося источника давления могут быть использованы как естественные источники, так и техногенные.
В качестве техногенных источников могут быть использованы низкочастотные акустические датчики/источники/трансдьюсеры, низкочастотная модуляция скважинного давления и т.п.
В качестве акустических датчиков для регистрации отклика давления могут быть использованы гидрофоны, трансдьюсеры, акселерометры, датчики давления и т.п.
Источник низкочастотных сигналов давления одновременно может быть акустическим датчиком.
Источник и/или датчик низкочастотных сигналов давления может быть установлен на пакере.
Источник и/или датчик низкочастотных сигналов давления может быть установлен на пробоотборнике.
Источник и/или датчик низкочастотных сигналов давления может быть установлен на опорном башмаке.
Может быть использовано несколько источников, установленных в разных местах.
Толщину глинистой корки определяют на основе импульсно-эховых измерений, включающих подачу в пласт коротких высокочастотных сигналов и регистрацию времени прихода отраженных эхо-сигналов.
Предпочтительно при определении толщины глинистой корки подачу высокочастотных сигналов осуществляют по меньшей мере из двух положений, расположенных на разном расстоянии от глинистой корки.
Изобретение поясняется чертежом, где на фиг.1 показано отношение давления со стороны датчика, установленного в глинистой корке, к амплитуде давления с другой стороны для различных значений проницаемости.
Для получения параметров формации и глинистой корки распространение импульса давления через них можно разделить. Учитывая, что длина волны рассеивания давления в глинистой корке λmc значительно меньше длины волны в пласте λƒor и что толщина глинистой корки hmc значительно меньше радиуса скважины Rb, описание распространения сигнала давления через глинистую корку можно сократить до простой одномерной задачи.
где κ - пьезопроводность (коэффициент диффузии давления), P - давление, х - линейная координата, перпендикулярная поверхности глинистой корки, k - проницаемость, с пограничными условиями
Решение задачи (1)-(2) таково:
Это означает, что в случае источника, вырабатывающего неколеблющийся сигнал давления, отклик датчика будет содержать только переходный процесс. Например, рассмотрим ступенчатую функцию источника:
Путем простых преобразований решения (3), (4) получаем выражение:
для t≤τ0
и
для t>τ0
Можно увидеть, что данное решение содержит только переходный процесс. Этого результата можно было ожидать, т.к. отсутствуют источники стимулирования наведенных колебаний. Эта ситуация рассмотрена в качестве примера на фиг.1, на которой составлены графики P/P0(t) для моделей с различными значениями проницаемости. В этом случае в качестве источника был выбран ступенчатый начальный импульс давления продолжительностью 10 с. Можно увидеть, что переходный процесс, его максимум и дальнейшее затухание являются в достаточной степени выраженными, и их можно использовать для оценки проницаемости глинистой корки. Возможность этого создается за счет анализа как роста начального давления, так и за счет длительного понижения давления. Оба этих процесса можно проанализировать, используя формулы (5), (6).
В общем случае для любого неколебательного импульса давления отклик давления будет содержать только переходный процесс. Этот процесс отличается несколькими характерными чертами, которые можно использовать для оценки пьезопроводности глинистой корки κ:
1) экспонент переходного компонента решения;
2) момент времени τmax, когда переходный компонент решения достигает своего максимума;
3) значение максимального давления, достигнутого во время переходного процесса.
Выделение характеристик из отклика датчика (переходный процесс) не представляет трудностей. Нахождение τmax и максимального давления представляется простым. Для извлечения описанных выше величин из сигнала, регистрируемого датчиком, мы предлагаем использовать идеи теории обработки и фильтрации сигналов и синхронизированных по фазе контуров для разделения переходных и колебательных процессов. Это объясняется тем, что частота вынужденных колебаний известна (частота источника), а спектральное содержание переходного компонента решения сконцентрировано вокруг намного более низких частот. Следовательно, для извлечения переходного компонента решения можно применить фильтр низких частот. Тогда найти τmax можно очень легко. Если выбрать затухающую часть переходного компонента (при t>τmax) и взять ее логарифм, можно найти интервал времени, когда наклон кривой становится постоянным. Это указывает на то, что достигнута фаза, характеризуемая присутствием только одного оставшегося экспонента. Начальная стадия этого процесса регистрируется датчиком, и ее можно проанализировать, используя формулы решения (5), (6). Если знать эти значения и использовать формулы, устанавливающие их соотношения с κ, можно легко оценить его значение (например, путем простых итераций или использования обычного решателя для нахождения корней функций).
Использование акселерометров в качестве датчиков позволяет охватить широкую и, в особенности, высокочастотную область низкочастотного спектра (1 Гц - десятки кГц); автономные датчики давления позволяют проводить измерения сигнала давления и могут использоваться, даже если непосредственный контакт с глинистой коркой/ формацией по какой-либо причине нежелателен или невозможен, либо в таких местах, как вход зонда и т.д.
Можно использовать один или несколько источников, а также один или несколько датчиков. Следует также отметить, что зачастую одно и то же устройство может действовать и как источник, и как датчик, и эти состояния можно либо комбинировать, либо переключать. Кроме того, в части мест расположения этих источников и/или датчиков имеется определенная гибкость. В число примеров среди прочего входят:
- пакер для инструмента;
- башмак пробоотборника;
- опорный башмак;
- источник(и) /датчик(и), установленные автономно;
- и т.д.
Широкий спектр вариантов имеет большое значение и дает многочисленные преимущества. Например, если установить источник(и)/ датчик(и) на пакере, это может помочь для установления хорошего контакта с глинистой коркой; если установить их на башмаке пробоотборника, можно надежно измерить отклик вблизи входа зонда, что позволяет избежать сильного затухания сигнала давления и т.д.; если установить их на опорный башмак, можно компенсировать шум и точно измерить компонент сигнала, связанного с диффузией давления через глинистую корку; автономная установка обеспечивает гибкость при измерениях и проектировании и т.д.
Низкочастотные измерения можно существенно усовершенствовать за счет применения нескольких датчиков. Их можно разместить в различных местах: башмаке пробоотборника, опорном башмаке и т.д. Это может обеспечить снижение или устранение шума, а также возможность измерения пьезопроводности. Это может увеличить соотношение «сигнал-шум», снизить требования в части динамического диапазона и чувствительности, способствовать снижению возможных воздействий геометрии измерения и т.д.
Для оценки коэффициента диффузии давления глинистой корки κ предлагается использовать сигналы, регистрируемые низкочастотным акустическим датчиком.
Толщину глинистой корки hmc предварительно определяют на основе импульсно-эховых измерений, включающих подачу в пласт коротких высокочастотных сигналов и регистрацию времени прихода отраженных эхо-сигналов (см., например, WO 2009/139992). Предпочтительно при определении толщины глинистой корки подачу высокочастотных сигналов осуществляют по меньшей мере из двух положений, расположенных на разном расстоянии от глинистой корки.
Подвижность флюида η в глинистой корке определяют как
η=κϕ/K
Пористость глинистой корки ϕ оценивается как 10-30%.
Claims (19)
1. Способ определения акустических характеристик глинистой корки в скважине, в соответствии с которым в скважине по меньшей мере одним акустическим датчиком регистрируют отклик на низкочастотный неколеблющийся сигнал давления, из полученного сигнала определяют по меньшей мере одну характеристику переходного процесса изменения давления, определяют толщину глинистой корки и на основе полученных значений определяют по меньшей мере одно из следующих значений: пьезопроводность глинистой корки и подвижность флюида.
2. Способ определения акустических характеристик глинистой корки в скважине по п.1, в соответствии с которым характеристиками переходного процесса изменения давления являются показатель экспоненты переходной компоненты решения, момент времени, когда переходный компонент решения достигает своего максимума и значение максимального давления, достигнутого во время переходного процесса.
3. Способ определения акустических характеристик глинистой корки в скважине по п.1, в соответствии с которым источником низкочастотного неколеблющегося сигнала давления являются естественные источники.
4. Способ определения акустических характеристик глинистой корки по п.2, в соответствии с которым по меньшей мере один акустический датчик установлен на пакере.
5. Способ определения акустических характеристик глинистой корки по п.2, в соответствии с которым по меньшей мере один акустический датчик установлен на пробоотборнике.
6. Способ определения акустических характеристик глинистой корки по п.2, в соответствии с которым по меньшей мере один акустический датчик установлен на опорном башмаке.
7. Способ определения акустических характеристик глинистой корки в скважине по п.1, в соответствии с которым низкочастотный неколеблющийся сигнал давления в скважине возбуждают по меньшей мере одним техногенным источником.
8. Способ определения акустических характеристик глинистой корки по п.7, в соответствии с которым источник низкочастотного неколеблющегося сигнала одновременно является акустическим датчиком.
9. Способ определения акустических характеристик глинистой корки по п.7, в соответствии с которым низкочастотный неколеблющийся сигнал давления возбуждают посредством низкочастотной модуляции скважинного давления.
10. Способ определения акустических характеристик глинистой корки по п.1, в соответствии с которым в качестве акустических датчиков для регистрации отклика давления используют виброметры.
11. Способ определения акустических характеристик глинистой корки по п.1, в соответствии с которым в качестве акустических датчиков для регистрации отклика давления используют акселерометры.
12. Способ определения акустических характеристик глинистой корки по п.1, в соответствии с которым в качестве акустических датчиков для регистрации отклика давления используют трансдьюсеры.
13. Способ определения акустических характеристик глинистой корки по п.1, в соответствии с которым в качестве акустического датчика для регистрации отклика давления используют датчики давления.
14. Способ определения акустических характеристик глинистой корки по п.7, в соответствии с которым источник низкочастотного неколеблющегося сигнала и/или акустический датчик установлен на пакере.
15. Способ определения акустических характеристик глинистой корки по п.7, в соответствии с которым источник низкочастотного неколеблющегося сигнала и/или акустический датчик установлен на пробоотборнике.
16. Способ определения акустических характеристик глинистой корки по п.7, в соответствии с которым источник низкочастотного неколеблющегося сигнала и/или акустический датчик установлен на опорном башмаке.
17. Способ определения акустических характеристик глинистой корки по п.7, в соответствии с которым используют несколько источников низкочастотного неколеблющегося сигнала, установленных в разных местах.
18. Способ определения акустических характеристик глинистой корки по п.1, в соответствии с которым толщину глинистой корки определяют на основе импульсно-эховых измерений, включающих подачу в пласт коротких высокочастотных сигналов и регистрацию времени прихода отраженных эхо-сигналов.
19. Способ определения акустических характеристик глинистой корки по п.15, в соответствии с которым подачу высокочастотных сигналов осуществляют по меньшей мере из двух положений, расположенных на разном расстоянии от глинистой корки.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2011139727/03A RU2474688C1 (ru) | 2011-09-30 | 2011-09-30 | Способ определения акустических характеристик глинистой корки |
PCT/RU2012/000793 WO2013048291A1 (ru) | 2011-09-30 | 2012-09-28 | Способ определения акустических характеристик глинистой корки |
US14/348,383 US20140233354A1 (en) | 2011-09-30 | 2012-09-28 | Method for determining the acoustic characteristics of a mud filter cake |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2011139727/03A RU2474688C1 (ru) | 2011-09-30 | 2011-09-30 | Способ определения акустических характеристик глинистой корки |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2474688C1 true RU2474688C1 (ru) | 2013-02-10 |
Family
ID=47996073
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2011139727/03A RU2474688C1 (ru) | 2011-09-30 | 2011-09-30 | Способ определения акустических характеристик глинистой корки |
Country Status (3)
Country | Link |
---|---|
US (1) | US20140233354A1 (ru) |
RU (1) | RU2474688C1 (ru) |
WO (1) | WO2013048291A1 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EA037631B1 (ru) * | 2020-07-14 | 2021-04-23 | ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ "Тота Системс" | Способ определения физических величин в скважине на основе пьезорезонансных датчиков без электроники и устройство для его осуществления |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10927659B2 (en) * | 2015-12-11 | 2021-02-23 | Halliburton Energy Services, Inc. | Mud cake correction of formation measurement data |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1516959A1 (ru) * | 1987-06-02 | 1989-10-23 | Кишиневское Проектно-Конструкторское Бюро Автоматизированных Систем Управления | Ультразвуковое устройство дл контрол качества изделий |
SU1753434A1 (ru) * | 1990-08-22 | 1992-08-07 | Раменский Филиал Всесоюзного Научно-Исследовательского Проектно-Конструкторского И Технологического Института Геологических, Геофизических И Геохимических Информационных Систем | Акустический способ определени проницаемости пород |
RU2007135162A (ru) * | 2005-02-22 | 2009-03-27 | Шлюмбергер Текнолоджи Б.В. (Nl) | Электромагнитный зонд |
WO2009139992A2 (en) * | 2008-05-16 | 2009-11-19 | Schlumberger Canada Limited | Methods and apparatus to control a formation testing operation based on a mudcake leakage |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3175639A (en) * | 1960-10-19 | 1965-03-30 | Liben William | Method for measuring formation porosity, permeability and mud cake thickness in oil well bore holes by sonic pulses |
US3542150A (en) * | 1968-10-10 | 1970-11-24 | Dresser Ind | Acoustic well-logging apparatus having angled acoustic transducers |
US4916616A (en) * | 1986-12-08 | 1990-04-10 | Bp Exploration, Inc. | Self-consistent log interpretation method |
GB2474275B (en) * | 2009-10-09 | 2015-04-01 | Senergy Holdings Ltd | Well simulation |
RU2473805C1 (ru) * | 2011-09-30 | 2013-01-27 | Шлюмберже Текнолоджи Б.В. | Способ определения акустических характеристик глинистой корки |
-
2011
- 2011-09-30 RU RU2011139727/03A patent/RU2474688C1/ru not_active IP Right Cessation
-
2012
- 2012-09-28 WO PCT/RU2012/000793 patent/WO2013048291A1/ru active Application Filing
- 2012-09-28 US US14/348,383 patent/US20140233354A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1516959A1 (ru) * | 1987-06-02 | 1989-10-23 | Кишиневское Проектно-Конструкторское Бюро Автоматизированных Систем Управления | Ультразвуковое устройство дл контрол качества изделий |
SU1753434A1 (ru) * | 1990-08-22 | 1992-08-07 | Раменский Филиал Всесоюзного Научно-Исследовательского Проектно-Конструкторского И Технологического Института Геологических, Геофизических И Геохимических Информационных Систем | Акустический способ определени проницаемости пород |
RU2007135162A (ru) * | 2005-02-22 | 2009-03-27 | Шлюмбергер Текнолоджи Б.В. (Nl) | Электромагнитный зонд |
WO2009139992A2 (en) * | 2008-05-16 | 2009-11-19 | Schlumberger Canada Limited | Methods and apparatus to control a formation testing operation based on a mudcake leakage |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EA037631B1 (ru) * | 2020-07-14 | 2021-04-23 | ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ "Тота Системс" | Способ определения физических величин в скважине на основе пьезорезонансных датчиков без электроники и устройство для его осуществления |
Also Published As
Publication number | Publication date |
---|---|
US20140233354A1 (en) | 2014-08-21 |
WO2013048291A1 (ru) | 2013-04-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2374443C2 (ru) | Система оповещения о выбросе, использующая высокочастотный режим флюида в стволе скважины | |
WO2002031538B1 (en) | Method for borehole measurement of formation properties | |
RU2499283C1 (ru) | Способ и устройство для скважинной спектральной шумометрии | |
CA3041475C (en) | Nonlinear acoustic downhole pore pressure measurements | |
US20090132169A1 (en) | Methods and systems for evaluating fluid movement related reservoir properties via correlation of low-frequency part of seismic data with borehole measurements | |
DE602004011678D1 (de) | Bestimmung der Impedanz eines hinter einer Futterrohrung sich befindenden Materials durch Kombination zweier Sätze von Ultraschallmessungen | |
CA2900248C (en) | Removing ring down effects from sonic waveforms | |
US11726225B2 (en) | Detection and evaluation of ultrasonic subsurface backscatter | |
EP2278122A3 (en) | Wideband mud pump noise cancellation method for well telemetry | |
RU2651830C2 (ru) | Способ выявления аномальных скачков порового давления на границах разделов в непробуренных геологических формациях и система для осуществления этого способа | |
AU2010349753C1 (en) | Apparatus and methods of determining fluid viscosity | |
RU2474688C1 (ru) | Способ определения акустических характеристик глинистой корки | |
CA2940369C (en) | Speed-of-sound independent fluid level measurement apparatus and method of use | |
US12022736B2 (en) | Acoustic sensor self-induced interference control | |
US11002871B2 (en) | Method and system for processing sonic data acquired with a downhole tool | |
PL2169179T3 (pl) | Sposób i urządzenie do rejestracji głębokości płynu w odwiercie | |
RU2707311C1 (ru) | Способ оценки профиля фазовой проницаемости в нефтяных и газовых эксплуатационных скважинах | |
RU2473805C1 (ru) | Способ определения акустических характеристик глинистой корки | |
WO2020018117A1 (en) | Ultrasonic echo locating in a wellbore using time gain compensation | |
RU2728123C1 (ru) | Способ определения работающих интервалов глубин нефтяных и газовых пластов | |
RU2613704C1 (ru) | Акустический способ определения параметров перфорирования при вторичном вскрытии нефтегазовых буровых скважин | |
RU2728121C1 (ru) | Способ определения характеристик фильтрационного потока в околоскважинной зоне пласта | |
EA005657B1 (ru) | Использование обломков выбуренной породы для прогнозирования затухания в реальном времени | |
RU2132560C1 (ru) | Способ оценки проницаемости горных пород | |
CA2599097A1 (en) | Downlink based on pump noise |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20191001 |