RU2473934C1 - Способ слежения за подвижным объектом - Google Patents

Способ слежения за подвижным объектом Download PDF

Info

Publication number
RU2473934C1
RU2473934C1 RU2011142232/28A RU2011142232A RU2473934C1 RU 2473934 C1 RU2473934 C1 RU 2473934C1 RU 2011142232/28 A RU2011142232/28 A RU 2011142232/28A RU 2011142232 A RU2011142232 A RU 2011142232A RU 2473934 C1 RU2473934 C1 RU 2473934C1
Authority
RU
Russia
Prior art keywords
tracking
sighting
sight
line
field
Prior art date
Application number
RU2011142232/28A
Other languages
English (en)
Inventor
Алексей Вячеславович Бытьев
Михаил Витальевич Головань
Александр Александрович Кириченко
Николай Алексеевич Краснянчук
Андрей Алексеевич Круглов
Олег Михайлович Малецкий
Владимир Иванович Ткаченко
Наталия Владимировна Ткаченко
Владислав Николаевич Черкасов
Сергей Владимирович Шульга
Original Assignee
Алексей Вячеславович Бытьев
Михаил Витальевич Головань
Александр Александрович Кириченко
Николай Алексеевич Краснянчук
Андрей Алексеевич Круглов
Олег Михайлович Малецкий
Владимир Иванович Ткаченко
Наталия Владимировна Ткаченко
Владислав Николаевич Черкасов
Сергей Владимирович Шульга
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Алексей Вячеславович Бытьев, Михаил Витальевич Головань, Александр Александрович Кириченко, Николай Алексеевич Краснянчук, Андрей Алексеевич Круглов, Олег Михайлович Малецкий, Владимир Иванович Ткаченко, Наталия Владимировна Ткаченко, Владислав Николаевич Черкасов, Сергей Владимирович Шульга filed Critical Алексей Вячеславович Бытьев
Priority to RU2011142232/28A priority Critical patent/RU2473934C1/ru
Application granted granted Critical
Publication of RU2473934C1 publication Critical patent/RU2473934C1/ru

Links

Landscapes

  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Telescopes (AREA)

Abstract

Изобретение относится к способам управления, а более конкретно к способам слежения за подвижным объектом. Техническим результатом является повышение помехоустойчивости, точности визирования и слежения за подвижным объектом. Изобретение включает определение и установку исходных размеров поля зрения визирного устройства, совмещение его с объектом слежения и удержание в таком положении в течение заданного времени и отличается тем, что формируют стабилизированную линию визирования и юстируют ее в исходном состоянии с оптической осью визирного устройства прибора слежения, определяют направление и величину угловой скорости ухода стабилизированной линии визирования, перемещают ее с этой же скоростью в противоположном направлении, совмещают ее с точкой визирования на объекте слежения, при маневрировании визирного устройства измеряют угол его крена, угол возвышения линии визирования, определяют угол отклонения линии визирования от заданного положения и перемещают ее в обратном направлении на этот же угол, при перемещении объекта слежения измеряют и запоминают направление и величину его угловой скорости ω, определяют ее математическое ожидание ωи среднеквадратическое отклонение ω, автоматически перемещают линию визирования в направлении движения объекта слежения, подсвечивают визирный индекс, изменяют яркость и цвет его подсветки до оптимального контраста с объектом слежения, уменьшают поле зрения, а по истечении времени восстанавливают исходные размеры поля зрения визирного устройства прибора слежения.

Description

В настоящем описании и материалах заявки использованы только открытые источники информации.
Изобретение относится к способам повышения эффективности управления, а более конкретно к способам слежения за подвижным объектом.
От эффективности слежения за подвижным объектом и, прежде всего, точности его визирования зависит и эффективность соответствующих процессов управления. Например, при фотосъемках, киносъемках, телеуправлении, дальнометрировании, стрельбе, геодезических работах и др. Для решения ряда задач при передаче сигналов управления на объекты управления с помощью электромагнитных волн оптического диапазона (1013-1015 Гц), необходимо прежде всего решить задачу точного визирования объекта визирования. В настоящее время эта задача решается путем придания устройствам визирования приборов слежения такого положения, которое обеспечило бы точное совмещение линии визирования с объектом визирования (Новый энциклопедический словарь. Научное издательство «Большая Российская энциклопедия» - Издательство «Рипол Классик». 2000, с.188. Гриф - «несекретно»).
Известен, например, способ визирования и слежения за подвижным объектом, реализованный в комплексе вооружения (см., например, Руководство по материальной части и эксплуатации танка Т-62. - М.: Воениздат, 1968, с.195-210. Гриф - «несекретно»). В этом комплексе при стрельбе в обычных условиях с места по неподвижной цели слежение сводится к визированию и осуществляется путем совмещения точки визирования на цели с визирным индексом (прицельной маркой) в визирном устройстве прибора слежения (прицела), а изменение условий стрельбы учитывается перемещением визирного индекса (прицельной марки) на определенную угловую величину до выстрела. При этом возникает необходимое угловое рассогласование между линией визирования и вооружением (осью канала ствола орудия), что обеспечивает с одной стороны ввод поправки, а с другой - однообразие визирования. Этому способу визирования свойственны недостатки: линия визирования отклоняется от оптической оси визирного устройства, что сопровождается ухудшением видимости, снижением разрешающей способности оптической системы и быстрым нарастанием зрительной усталости наводчиков-операторов. Кроме того, при стрельбе в условиях, отличных от обычных (стрельба с ходу, по движущейся цели, стрельба при сильном боковом ветре и т.д.), приходится постоянно вводить изменяющуюся поправку в положение визирного индекса относительно объекта визирования. В этом случае снижается точность прицеливания, а вместе с этим резко падает и эффективность стрельбы.
Известен также способ слежения и визирования за подвижным объектом (см., например, «Танк Т-80Б». Техническое описание и инструкция по эксплуатации. Кн. 1. - М.: Воениздат, 1984, с.48-54, с.86. Гриф - «несекретно»), являющийся прототипом заявляемого. Он включает определение и установку исходных размеров поля зрения визирного устройства прибора слежения, совмещение его (поля зрения) с объектом слежения и визирования и удержание в таком положении в течение заданного времени.
В этом способе поправки на отклонение условий стрельбы от нормальных вводятся в положение вооружения по отношению к линии визирования, а не наоборот. Это обеспечивает однообразие при прицеливании, предотвращает ухудшение видимости и снижение разрешающей способности оптической системы, а вместе с этим способствует и улучшению эргономических условий при визировании.
Однако этот способ также имеет недостатки. Удерживать линию визирования на точке визирования необходимо более продолжительное время, чтобы обеспечить ввод в положение вооружения всех поправок (не менее 3 с.). При стрельбе управляемой ракетой на максимальную дальность линию визирования необходимо удерживать на точке визирования не менее 10 с. Это вызывает повышенную напряженность органов зрения обслуживающего персонала, что очень часто приводит к потере объекта визирования и слежения или визирного индекса в условиях действия пыледымовых и, особенно, световых помех. Кроме того, продолжительное визирование в условиях стабилизации поля зрения приводит (из-за его увода) к увеличению ошибки визирования. Поэтому эффективность способа снижается. Еще более она снижается, если визирование осуществляется с подвижного объекта, при маневрировании которого визирная линия, несмотря на ее стабилизацию по высоте и направлению, в плоскости крена отклоняется, поскольку в ней не стабилизирована. Отклонение это тем больше, чем больше угол возвышения линии визирования и угол крена визирного устройства. Если же объект визирования подвижен (бегущий спортсмен, движущаяся цель на поле боя и др.), то ошибки слежения могут увеличиться в разы и в существенной степени зависят от угловой скорости слежения за подвижным объектом.
Целью изобретения является улучшение условий, повышение помехоустойчивости и точности визирования и слежения за подвижным объектом.
Указанная цель достигается тем, что в известном способе слежения за подвижным объектом, включающем определение и установку исходных размеров поля зрения визирного устройства прибора слежения, совмещение его с объектом слежения и удержание в таком положении в течение заданного времени, формируют стабилизированную линию визирования и юстируют ее в исходном состоянии с оптической осью визирного устройства прибора слежения, определяют направление и величину угловой скорости ухода от оптической оси визирного устройства прибора слежения стабилизированной линии визирования, перемещают с этой же скоростью стабилизированную линию визирования в противоположном направлении, совмещают ее с точкой визирования на объекте слежения, при маневрировании визирного устройства прибора слежения измеряют угол его крена, угол возвышения линии визирования, определяют угол отклонения линии визирования от заданного положения и перемещают ее в обратном направлении на этот же угол в заданное положение, при перемещении объекта слежения измеряют и запоминают направление и величину его угловой скорости ωo, определяют ее математическое ожидание ωo.мож и среднеквадратическое отклонение ωo.ско, автоматически перемещают линию визирования с угловой скоростью ωлвo.мож в направлении движения объекта слежения, подсвечивают визирный индекс, плавно изменяют яркость и цвет его подсветки до достижения им оптимального контраста с объектом слежения, уменьшают поле зрения до размера
Figure 00000001
, где В - уменьшаемый угловой размер поля зрения визирного устройства прибора слежения, В0 - угловой размер объекта слежения, σв - среднеквадратическое значение ошибки визирования, σю - среднеквадратическое значение ошибки юстировки линии визирования с оптической осью визирного устройства, tи - время инерции системы «глаз - визирное устройство - прибор слежения», а по истечении времени t3+tи, где t3 - заданное время визирования, восстанавливают исходные размеры поля зрения визирного устройства прибора слежения.
Предложенный способ позволил устранить указанные недостатки. Использование предлагаемого способа происходит следующим образом. Предварительно, в исходном состоянии, формируют стабилизированную линию визирования (с помощью, как правило, гироскопического стабилизатора линии визирования (СЛВ)), юстируют ее с оптической осью визирного устройства прибора слежения. При этом устраняют появляющиеся ошибки юстировки, значение которых при каждом включении СЛВ является случайным. Определяют направление и величину угловой скорости ухода от оптической оси визирного устройства стабилизированной линии визирования. Для компенсации ухода СЛВ формируют соответствующий сигнал и перемещают ее с той же скоростью в противоположном направлении. Затем СЛВ совмещают с точкой визирования на объекте слежения, определяют и устанавливают необходимый размер поля зрения (как правило, угол поля зрения) визирного устройства.
Определение и выбор исходных размеров поля зрения зависят от типа визирного устройства. Если это оптический прибор, то основным размером будет угол поля зрения, изменяемый, как правило, плавно или дискретно в зависимости от необходимого увеличения, размеров объекта визирования (цели), скорости его движения, наличия помех в поле зрения и т.д. В процессе поиска объектов визирования и слежения (целей), до их обнаружения, размеры поля зрения, как правило, максимальны, что необходимо для сокращения времени поиска.
Если же поиск объектов визирования производится по экрану электронно-оптического устройства, то основными размерами поля зрения будут ширина и высота экрана. Совмещение линии визирования с точкой визирования производится с помощью визирного индекса (марки), съюстированного с оптической осью визирного устройства. Поэтому при совмещении линии визирования с объектом визирования и слежения одновременно происходит совмещение с ним и оптической оси визирного устройства, благодаря чему достигается увеличение разрешающей способности визирного устройства и видимости цели, уменьшается вероятность оптических искажений.
При маневрировании визирного устройства прибора слежения появляются отклонения визирной линии в плоскости крена, поскольку она не стабилизирована в этой плоскости. Отклонения эти тем больше, чем больше угол возвышения линии визирования. Поэтому измеряют угол крена визирного устройства и угол возвышения линии визирования, определяют угол отклонения линии визирования от заданного положения в соответствии с выражением Ψ=φSinγ, где Ψ - угол отклонения линии визирования от заданного положения в плоскости крена, φ - угол возвышения линии визирования, γ - угол крена визирного устройства. Затем перемещают линию визирования в обратном направлении на этот же угол в заданное положение.
При перемещении объекта слежения с угловой скоростью измеряют и запоминают направление и величину этой скорости, автоматически перемещают в этом же направлении и с такой же угловой скоростью линию визирования. Это позволяет использовать запоминание скорости для обеспечения подачи на вход оператора разности между угловыми скоростями объекта слежения и линии визирования (Локк А. С. Управление снарядами. - М.: Госиздат физико-математической литературы, 1958, с.764-765 - «несекретно»), облегчить функции и существенно снизить напряженность оператора.
Для повышения контраста на фоне местности и объекта слежения визирного индекса его подсвечивают, изменяют яркость и цвет его подсветки до достижения им оптимального контраста и с объектом слежения, и фоном местности В наиболее ответственный момент (например, при слежении за объектом слежения при киносъемке, при стрельбе и др.) для уменьшения помех уменьшают поле зрения на заданное время визирования до
Figure 00000002
, где В - уменьшаемый угловой размер поля зрения визирного устройства прибора слежения, В0 - угловой размер объекта визирования, σв - среднеквадратическое значение ошибки визирования, σю - среднеквадратическое значение ошибки юстировки линии визирования с оптической осью визирного устройства, tи - время инерции системы «глаз - визирное устройство - прибор слежения», а по истечении времени t3+tи, где t3 - заданное время визирования, восстанавливают исходные размеры поля зрения визирного устройства прибора слежения.
С уменьшением размеров поля зрения визирного устройства уменьшается вероятность попадания в него помех. Благодаря компенсации угловой скорости ухода стабилизированной линии визирования, позволившей значительно уменьшить ошибки визирования, такое уменьшение стало возможным практически до размеров объекта визирования. Однако из-за ошибок визирования и юстировки, а также из-за угловых ошибок слежения за подвижным объектом слежения такое уменьшение размеров поля зрения нецелесообразно из-за опасности выхода из него объекта визирования.
Уменьшение поля зрения может происходить либо по специальной команде наводчика, например, нажатием на введенную для этих целей в систему управления специальную кнопку, либо по совпадающей по времени штатной команде системы управления: команды на замер дальности, заряжание орудия и др. Если размеры поля зрения угловые, то информацию о размерах объекта визирования определяют после замера дальности до него. Информация о размерах типовых объектов визирования (целей) вводится в систему управления заблаговременно. Уменьшение размера поля зрения производится с помощью специально введенной в оптическую систему визирного устройства диафрагмы с регулируемым посредством специального привода осевым отверстием. Это обеспечивает снижение яркости фона и повышение четкости изображения цели (см., например, Бутиков Е.И. «Оптика», - М.: «Высшая школа», 1986, с.347-352 - «несекретно»). Кроме того, за счет снижения яркости фона обеспечивается увеличение контраста визирного индекса. Основное же значение уменьшения поля зрения заключается в экранировании пыледымовых и, прежде всего, световых помех. Все это обеспечивает повышение помехоустойчивости и точности визирования и слежения.
По истечении времени t3+tи, где t3 - заданное время визирования, восстанавливают исходные размеры поля зрения визирного устройства.
Величину заданного времени определяет, как правило, соответствующий оператор (телевидения, киносъемки и др.). Что касается стрельбы по целям, то заданным временем считается время от момента совмещения линии визирования с объектом визирования до попадания снаряда (ракеты) в цель. Команда на восстановление размеров поля зрения может быть подана как самим оператором (наводчиком), так и автоматически системой управления на основании информации о дальности до цели и скорости полета снаряда (ракеты). Своевременное восстановление исходных размеров поля зрения необходимо для сохранения высокого уровня достоверности оценки результата выстрела и эффективной разведки последующих целей.
Предложенный способ слежения обеспечивает повышение помехоустойчивости и точности процессов визирования и слежения, что обеспечивается экранированием световых и пыледымовых помех, снижением яркости фона и повышением четкости изображения. Кроме того, при слежении за подвижным объектом угловые ошибки слежения практически не возникают и напряженность оператора не увеличивается (из-за автоматического придания линии визирования угловой скорости ωлво.мож, которая практически полностью компенсирует угловую скорость перемещения объекта слежения).
Экспериментальная оценка эффективности предложенного способа слежения подтвердила возможность существенного повышения точности визирования и слежения при стрельбе в сложных условиях (пестрый и яркий фон, быстрое изменение яркости фона и цели, наличие световых и пыледымовых помех в поле зрения визирного устройства, угловое перемещение объекта слежения и др.). Частость попадания при электронных стрельбах в условиях помех, полученная наводчиками с использованием предложенного способа, превысила (на 8-10%) частость попадания, полученную известным (см. прототип) способом слежения в аналогичных условиях. При визировании с подвижного объекта частость попадания возросла еще на 5%, а при слежении за подвижным объектом показатели не ухудшились.
Предложенный способ слежения может быть использован как в военных целях, так и в других областях науки и техники, например, при визировании объектов и слежении за ними на фоне звездного неба, в телевидении, кино, фотографии, геологии, навигации и др.

Claims (1)

  1. Способ слежения за подвижным объектом, включающий определение и установку исходных размеров поля зрения визирного устройства прибора слежения, совмещение его с объектом слежения и удержание в таком положении в течение заданного времени, отличающийся тем, что формируют стабилизированную линию визирования и юстируют ее в исходном состоянии с оптической осью визирного устройства прибора слежения, определяют направление и величину угловой скорости ухода от оптической оси визирного устройства прибора слежения стабилизированной линии визирования, перемещают с этой же скоростью стабилизированную линию визирования в противоположном направлении, совмещают ее с точкой визирования на объекте слежения, при маневрировании визирного устройства прибора слежения измеряют угол его крена, угол возвышения линии визирования, определяют угол отклонения линии визирования от заданного положения и перемещают ее в обратном направлении на этот же угол в заданное положение, при перемещении объекта слежения измеряют и запоминают направление и величину его угловой скорости ωо, определяют ее математическое ожидание ωо.мож и среднеквадратическое отклонение ωо.ско, автоматически перемещают линию визирования с угловой скоростью ωлво.мож в направлении движения объекта слежения, подсвечивают визирный индекс, плавно изменяют яркость и цвет его подсветки до достижения им оптимального контраста с объектом слежения, уменьшают поле зрения до размера
    Figure 00000003
    где В - уменьшаемый угловой размер поля зрения визирного устройства прибора слежения, В0 - угловой размер объекта слежения, σв - среднеквадратическое значение ошибки визирования, σю - среднеквадратическое значение ошибки юстировки линии визирования с оптической осью визирного устройства, tи - время инерции системы «глаз - визирное устройство - прибор слежения», а по истечении времени tз+tи, где tз - заданное время визирования, восстанавливают исходные размеры поля зрения визирного устройства прибора слежения.
RU2011142232/28A 2011-10-19 2011-10-19 Способ слежения за подвижным объектом RU2473934C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2011142232/28A RU2473934C1 (ru) 2011-10-19 2011-10-19 Способ слежения за подвижным объектом

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011142232/28A RU2473934C1 (ru) 2011-10-19 2011-10-19 Способ слежения за подвижным объектом

Publications (1)

Publication Number Publication Date
RU2473934C1 true RU2473934C1 (ru) 2013-01-27

Family

ID=48807119

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011142232/28A RU2473934C1 (ru) 2011-10-19 2011-10-19 Способ слежения за подвижным объектом

Country Status (1)

Country Link
RU (1) RU2473934C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2102785C1 (ru) * 1995-01-23 1998-01-20 Открытое Акционерное Общество "Пеленг" Система стабилизации линии визирования
RU2207483C1 (ru) * 2001-11-26 2003-06-27 Общевойсковая Академия Вооруженных Сил Российской Федерации Устройство для визирования
RU2213318C1 (ru) * 2002-05-13 2003-09-27 Общевойсковая Академия Вооруженных Сил Российской Федерации Способ наведения управляемой ракеты
US7282727B2 (en) * 2004-07-26 2007-10-16 Retsky Michael W Electron beam directed energy device and methods of using same
US20090224454A1 (en) * 2008-03-07 2009-09-10 Durq Machinery Corp. Vise quick-release structure for miter saw

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2102785C1 (ru) * 1995-01-23 1998-01-20 Открытое Акционерное Общество "Пеленг" Система стабилизации линии визирования
RU2207483C1 (ru) * 2001-11-26 2003-06-27 Общевойсковая Академия Вооруженных Сил Российской Федерации Устройство для визирования
RU2213318C1 (ru) * 2002-05-13 2003-09-27 Общевойсковая Академия Вооруженных Сил Российской Федерации Способ наведения управляемой ракеты
US7282727B2 (en) * 2004-07-26 2007-10-16 Retsky Michael W Electron beam directed energy device and methods of using same
US20090224454A1 (en) * 2008-03-07 2009-09-10 Durq Machinery Corp. Vise quick-release structure for miter saw

Similar Documents

Publication Publication Date Title
US9151574B2 (en) Method of movement compensation for a weapon
US8074394B2 (en) Riflescope with image stabilization
US8893423B2 (en) Dynamic targeting system with projectile-specific aiming indicia in a reticle and method for estimating ballistic effects of changing environment and ammunition
US9121672B2 (en) Ballistic effect compensating reticle and aim compensation method with sloped mil and MOA wind dot lines
US20150247702A1 (en) Feedback display for riflescope
US9383166B2 (en) Telescopic gun sight with ballistic zoom
US20150316351A1 (en) System and method for removing and reinstalling weapon sight without changing boresight
US20210348885A1 (en) Visual targeting apparatus and system
EP3071921A1 (de) Reflexvisier mit virtueller visierung
US10634454B2 (en) Dynamic sight
US11619824B2 (en) Selectable offset image wedge
US20210033370A1 (en) Turret cap apparatus and method for calculating aiming point information
RU2453810C1 (ru) Способ слежения за подвижным объектом
RU2481603C1 (ru) Способ визирования
US8950102B1 (en) Scope correction apparatuses and methods
RU2473934C1 (ru) Способ слежения за подвижным объектом
US3475821A (en) Sub-target aiming device
RU2469253C1 (ru) Способ визирования
US10801812B2 (en) Boresight alignment device for aiming systems
RU2436029C1 (ru) Способ визирования
RU2674632C1 (ru) Способ установки угла прицеливания и поправки на деривацию фокусировкой цели и компенсацией параллакса прицела, а также прицел с этим способом
RU2440545C1 (ru) Визирно-поисковая система
RU2090824C1 (ru) Способ визирования
Chrzanowski Report B01/19 Introduction to Boresight of Electro-Optical Surveillance Systems
JP2019527810A (ja) 照準装置および方法