RU2473066C2 - Устройство для контроля тангенциальных ячеек роторного диска - Google Patents

Устройство для контроля тангенциальных ячеек роторного диска Download PDF

Info

Publication number
RU2473066C2
RU2473066C2 RU2008137429/06A RU2008137429A RU2473066C2 RU 2473066 C2 RU2473066 C2 RU 2473066C2 RU 2008137429/06 A RU2008137429/06 A RU 2008137429/06A RU 2008137429 A RU2008137429 A RU 2008137429A RU 2473066 C2 RU2473066 C2 RU 2473066C2
Authority
RU
Russia
Prior art keywords
probe
cell
cells
sensors
tangential
Prior art date
Application number
RU2008137429/06A
Other languages
English (en)
Other versions
RU2008137429A (ru
Inventor
Патрик БРИФФА
Патрик КАБАНИ
ФЛОК'Х Рене ЛЕ
Кристиан Арман МАРСО
Доминик ТИБО
Венсан ПАСКЕ
Original Assignee
Снекма
Снекма Сервис
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Снекма, Снекма Сервис filed Critical Снекма
Publication of RU2008137429A publication Critical patent/RU2008137429A/ru
Application granted granted Critical
Publication of RU2473066C2 publication Critical patent/RU2473066C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
    • G01N27/9013Arrangements for scanning
    • G01N27/902Arrangements for scanning by moving the sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
    • G01N27/9013Arrangements for scanning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
    • G01N27/904Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents with two or more sensors

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

Изобретение относится к средствам контроля диска ротора. Устройство содержит зонд, объединяющий множество датчиков, организованных для сбора нескольких партий данных в течение одного прохода сканирования, причем зонд, установленный на подвижном оборудовании, перемещающимся в опоре, взаимодействует с ячейками, соседними с ячейкой, подлежащей контролю. Изобретение позволяет повысить надежность и точность измерений. 5 з.п. ф-лы, 3 ил.

Description

Изобретение относится к устройству контроля токами Фуко тангенциальных ячеек роторного диска турбомашины. В частности, оно относится к улучшению, позволяющему быстро и точно устанавливать средства контроля, иметь быстрый прием данных и более надежные и более точные измерения. Устройство в наибольшей степени адаптировано для контроля поверхностей давления, называемых тангенциальными ячейками.
Известен зонд с токами Фуко, называемый мультиэлементным, связанный с системой получения изображений, специально разработанный для перемещения вдоль тангенциальной ячейки диска ротора. Прямолинейный зонд имеет постоянное сечение; его поперечный контур соответствует сечению ячейки, подлежащей контролю. Зонд содержит в себе множество датчиков с токами Фуко, устанавливаемых для квази-одновременного сбора нескольких партий данных в течение одного прохода сканирования, производимого в продольном направлении ячейки. Каждая партия данных соответствует сканированию продольной ленты внутренней поверхности ячейки одним и тем же датчиком. Зонд перемещается вручную.
Надежность и точность измерений зависят от правильной установки зонда в ячейке. Поэтому датчики объединяются в центральное звено зонда между двух направляющих звеньев, которые этого лишены. Таким образом, зонд надежно установлен даже на крайних положениях ячейки, когда датчики начинают сканировать состояние площади ячейки.
Несмотря на то, что объединение такого мультиэлементного зонда с системой получения изображений имеет свои преимущества, технические характеристики системы ограничены наличием направляющих звеньев, то есть невозможностью располагать датчики на краях зонда. Из этого следует, что на самом деле контроль имеет высокую точность только в том случае, если имеется возможность перемещать центральное звено зонда по всей длине ячейки. Это возможно на полностью демонтируемом диске, когда зонд может быть введен через одно крайнее положение ячейки и извлечен через другое положение. Однако, при необходимости проверки ротора, образованного несколькими соединенными друг к другу дисками (спаянными), такое перемещение не всегда возможно.
Изобретение позволяет улучшить условия приведения в действие мультиэлементного зонда для контроля тангенциальных ячеек диска ротора, в частности, для контроля поверхностей давления этих ячеек.
Более точно, изобретение относится к устройству контроля токами Фуко тангенциальных ячеек диска ротора типа содержащего зонд, поперечный контур которого соответствует контуру сечения такой ячейки, причем вышеуказанный зонд объединяет множество датчиков, устанавливаемых для приема нескольких партий данных в течение одного прохода сканирования, производимого в продольном направлении ячейки, отличающийся тем, что оно содержит опору, включающую в себя два органа позиционирования, взаимодействующие соответственно с ячейками, соседними с контролируемой ячейкой, и подвижное перемещаемое оборудование, на котором закреплен зонд, организованное таким образом, чтобы его можно было направлять вдоль вышеуказанной ячейки в процессе контроля.
С определенной выше схемой позиционирование зонда становится точным с начала его перемещения внутри ячейки, и измерения, таким образом, становятся более точными и более надежными. Перемещение зонда вдоль ячейки может быть легко освоено, даже вручную. Кроме того, в соответствии с другой преимущественной характеристикой датчики могут быть распределены на большой длине зонда и даже по существу на всей его длине, в том числе краевые, наиболее удаленные области. Другими словами направляющие звенья, упомянутые выше, могут быть ликвидированы, что позволит лучше обследовать ячейки на всей их длине, даже если диск соединен с другим диском.
В соответствии с другой преимущественной характеристикой зонд образован двумя подвижными ползунами. Датчики распределены в ползунах. Ползуны соединены шарнирно с упругим напряжением, направленным во внешнюю часть (с удалением друг от друга), чтобы обеспечить контакт вышеуказанных ползунов с соответствующими областями ячеек, подлежащих контролю. Эти области включают, в частности, упомянутые выше поверхности давления.
Кроме того, для контроля положения и/или продвижения зонда в ячейке, подлежащей контролю, могут быть предусмотрены средства индексации.
В соответствии с возможным способом реализации два органа позиционирования содержат два расширяемых элемента, дистанцированных один от другого на расстоянии, соответствующем расстоянию, которое разделяет вышеуказанные соседние ячейки. Эти элементы согласованы и распределены таким образом, чтобы взаимодействовать и быть неподвижно размещенными в вышеуказанных соседних ячейках, что позволяет расположить опору так, чтобы вышеуказанный зонд мог быть введен в вышеуказанную ячейку, подлежащую контролю.
Преимущественно, устройство укомплектовано многоканальным генератором-приемником. Такой генератор-приемник позволяет активировать все датчики одновременно в различных позициях зонда в вышеуказанной ячейке, подлежащей контролю. В фазе приема он позволяет иметь синхронизацию сбора данных.
Изобретение будет лучше понято, а также другие его преимущества станут более очевидны в свете нижеследующего описания устройства контроля токами Фуко в соответствии с принципом, приводимом исключительно в качестве примера со ссылкой на прилагаемые чертежи, на которых:
Фиг.1 представляет общий вид в перспективе устройства проверки в соответствии с изобретением, установленного на периферии диска ротора для контроля токами Фуко одной из ячеек;
Фиг.2 представляет подробный вид, иллюстрирующий средства индексации; и
Фиг.3 представляет другой подробный вид, иллюстрирующий структуру зонда.
На чертежах представлено устройство управления токами Фуко 11, способное обнаруживать дефекты поверхности (или слегка скрытые) тангенциальных ячеек 13, определенных на периферии диска ротора 15. Известно, что эти ячейки удерживают основания лопаток. Такая ячейка 13 имеет, в частности, две поверхности, называемые «поверхность давления» 17, на которые опирается основание лопатки под действием центробежной силы. Особенно важен контроль состояния этих поверхностей давления, специально проводимый во время систематических проверок технического обслуживания. Таким образом, можно обнаружить образование усталостных трещин на этих поверхностях давления.
Устройство содержит опору 19, включающую два органа позиционирования 21, 23, способных соответственно взаимодействовать с ячейками, соседними с ячейкой, подлежащей контролю. Эти органы позиционирования образованы параллельными тягами 21а, 23а, каждая из которых включает в себя расширяемый кольцевой элемент 21b, 23b. Эти тяги, снабженные расширяемыми элементами, размещены на расстоянии друг от друга, соответствующем расстоянию, разделяющему соседние ячейки от ячейки, подлежащей контролю, в частности, две самые ближние ячейки, расположенные с одной и с другой стороны от контролируемой ячейки. На опоре 19, выполненной обычно в виде детали V-образной формы, крепится подвижное перемещающееся оборудование 25, на котором смонтирован зонд с токами Фуко 30 многоэлементного типа. Подвижное оборудование перемещается вдоль направляющей, определенной в опоре. Конструкция выполнена таким образом, чтобы зонд 30 мог быть введен в тангенциальную ячейку, подлежащую контролю, когда обе тяги 21а 23а вводятся в две соседние ячейки и неподвижно закрепляются в них, благодаря расширяемым элементам 21b, 23b. Различают фиксированную тягу, вводимую первой в соседнюю ячейку, и подвижную тягу 23b, перемещающуюся в опоре 19, которая вводится второй в соседнюю ячейку.
Расширяемый элемент 21b фиксированной тяги управляется боковым рычагом 28, в то время как расширяемый элемент 23b подвижной тяги управляется колесиком 29, расположенным на его заднем конце.
Опора 19 содержит две ограничительные поверхности 31. Тяги 21а, 23а образуют соответственно выступы этих поверхностей.
Когда две тяги находятся в неподвижном состоянии в двух ячейках, соседних с ячейкой, подлежащей контролю, опора устанавливается таким образом, чтобы ограничительные поверхности 31 упирались бы на диск 15, и чтобы подвижное оборудование и зонд были точно расположены напротив конца ячейки, подлежащей контролю, чтобы вышеуказанный зонд мог туда войти.
Зонд 30 можно выполнить в виде одного блока из пластикового материала, объединяющего датчики. Этот блок может иметь поперечный контур, воспроизводящий, по крайней мере частично, контур сечения ячейки 13. В описанном примере, однако, зонд 30 содержит два симметричных ползуна 35, 36, шарнирно соединенными друг с другом параллельными поворотными осями с эластичным напряжением, направленным во внешнюю часть, то есть с удалением друг от друга с помощью пружины 40. Такое расположение гарантирует контакт ползунов на соответствующих областях ячейки, подлежащей контролю, а более точно, вышеуказанных поверхностей давления 17. Такой вид установки предполагает сближение ползунов друг к другу в момент введения зонда в ячейку.
Датчики 45 с токами Фуко расположены на нескольких линиях внутри каждого ползуна 35, 36 для получения перекрытия при перемещении зонда вдоль тангенциальной ячейки. Датчики могут быть распределены по существу на всей длине зонда, включая его конечности. В частности, преимущественным является расположение нескольких датчиков 45 в передней части зонда 30 (рассматривая его направление перемещения). Кроме того, как можно большее количество датчиков можно расположить спереди каждого ползуна 35 для сканирования конечной части тангенциальной ячейки, даже если она не сквозная.
Провода датчиков подключаются к многоканальному, мультиплексному генератору-приемнику 48, который позволяет нагрузить одновременно все датчики при передаче и синхронизировать сбор данных при приеме. Этот генератор-приемник запускается при различных положениях зонда в вышеуказанной ячейке, подлежащей проверке. Такой генератор-приемник 48 может быть установлен в цоколь 50 (образующий часть подвижного оборудования), с которым сочленяются ползуны. Электрический кабель 52 для передачи сигналов связывает этот генератор-приемник с устройством получения изображений (не представленного), содержащего программное обеспечение перестройки и обработки изображения, позволяющее построить читаемый сбор данных, благодаря трансформированию в так называемый формат «C-SCAN».
Для улучшения трансформирования изображения устройство также оборудовано средствами индексации 55 для контроля и/или продвижения зонда 30 в ячейке, подлежащей контролю. Например, зубчатое колесо 56, установленное на опоре 19. Его ось связана с генератором импульсов 57 или аналогичным устройством. Зубчатое колесо находится в зацеплении с зубчатой рейкой 58, прямолинейной, установленной на перемещающемся подвижном оборудовании 25.
Таким образом, устройство сбора данных относительно не зависит от оператора, в частности от скорости, с которой оно перемещает подвижное устройство, на котором установлен зонд. Подвижное оборудование могло бы быть оснащено двигателем для обследования с постоянной, заранее определенной скоростью.

Claims (6)

1. Устройство контроля токами Фуко тангенциальных ячеек (13) диска ротора, типа содержащего зонд (30), поперечный контур которого соответствует контуру сечения такой ячейки, причем вышеуказанный зонд объединяет множество датчиков (45), устанавливаемых для сбора нескольких партий данных в течение одного прохода сканирования, выполняемого в продольном направлении ячейки, отличающееся тем, что оно содержит опору (19), включающую в себя два органа позиционирования (21, 23), взаимодействующих соответственно с ячейками, соседними с ячейкой, подлежащей контролю, и подвижное перемещаемое оборудование (25), на котором закреплен зонд, организованное таким образом, чтобы его можно было направлять вдоль вышеуказанной ячейки во время контроля.
2. Устройство контроля по п.1, отличающееся тем, что два органа позиционирования содержат два расширяемых элемента (21b, 23b), расположенных друг от друга на расстоянии, соответствующем расстоянию, которое разделяет вышеуказанные соседние ячейки, причем вышеуказанные элементы установлены для взаимодействия с этими ячейками и неподвижного закрепления в них для установки вышеуказанной опоры таким образом, чтобы вышеуказанный зонд мог быть введен в вышеуказанную тангенциальную ячейку, подлежащую контролированию.
3. Устройство по п.1 или 2, отличающееся тем, что оно содержит средства индексации (55) для контроля положения и/или продвижения зонда (30) в вышеуказанную ячейку, подлежащую контролю.
4. Устройство по п.1, отличающееся тем, что вышеуказанные датчики (45) распределены в ползунах (35) зонда (30), соединенных на шарнирах упруго во внешнем направлении для обеспечения контакта вышеуказанных ползунов с соответствующими областями вышеуказанной ячейки, подлежащей контролю.
5. Устройство по п.1, отличающееся тем, что оно содержит многоканальный генератор-приемник (48) для активации всех датчиков, по существу, одновременно в различных положениях зонда в вышеуказанной ячейке, подлежащей проверке.
6. Устройство по п.1, отличающееся тем, что датчики (45) расположены в передней части зонда (30).
RU2008137429/06A 2007-09-19 2008-09-18 Устройство для контроля тангенциальных ячеек роторного диска RU2473066C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0757669A FR2921158B1 (fr) 2007-09-19 2007-09-19 Dispositif de controle des alveoles tangentielles d'un disque de rotor
FR0757669 2007-09-19

Publications (2)

Publication Number Publication Date
RU2008137429A RU2008137429A (ru) 2010-03-27
RU2473066C2 true RU2473066C2 (ru) 2013-01-20

Family

ID=39311073

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008137429/06A RU2473066C2 (ru) 2007-09-19 2008-09-18 Устройство для контроля тангенциальных ячеек роторного диска

Country Status (9)

Country Link
US (1) US7800364B2 (ru)
EP (1) EP2040069B1 (ru)
JP (1) JP5294773B2 (ru)
CN (1) CN101393169B (ru)
CA (1) CA2639589C (ru)
FR (1) FR2921158B1 (ru)
IL (1) IL194171A (ru)
RU (1) RU2473066C2 (ru)
SG (1) SG151217A1 (ru)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2931242B1 (fr) * 2008-05-14 2010-06-11 Snecma Sonde destinee au controle par courants de foucault de la surface d'une alveole circonferentielle d'un disque de turboreacteur
FR2947633B1 (fr) * 2009-07-02 2012-04-13 Snecma Dispositif de controle non destructif d'une piece
FR2947911B1 (fr) * 2009-07-09 2011-06-17 Snecma Dispositif de controle d'un moteur de turbomachine
US9551689B2 (en) 2010-02-26 2017-01-24 United Technologies Corporation Inspection device utilizing eddy currents
EP2447714A1 (de) * 2010-10-28 2012-05-02 Siemens Aktiengesellschaft Automatische prüfkopfpositionsabhängige Einschallwinkelverstellung für Ultraschallprüfköpfe
US8505364B2 (en) * 2011-11-04 2013-08-13 General Electric Company Systems and methods for use in monitoring operation of a rotating component
US8640531B2 (en) * 2012-04-17 2014-02-04 General Electric Company Turbine inspection system and related method of operation
US9110036B2 (en) 2012-08-02 2015-08-18 Olympus Ndt, Inc. Assembly with a universal manipulator for inspecting dovetail of different sizes
JP6121711B2 (ja) * 2012-12-28 2017-04-26 三菱日立パワーシステムズ株式会社 渦電流探傷装置および渦電流探傷方法
US9518851B2 (en) 2014-12-03 2016-12-13 General Electric Company Probes for inspection system for substantially round hole

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0577244A2 (en) * 1992-04-03 1994-01-05 General Electric Company A device for inspecting a component
RU2029274C1 (ru) * 1991-01-08 1995-02-20 Институт проблем машиностроения АН Украины Способ настройки на резонансную частоту колебания испытываемых лопаток рабочего колеса
RU2111469C1 (ru) * 1997-04-11 1998-05-20 Анатолий Алексеевич Хориков Способ диагностики колебаний рабочего колеса турбомашины
US6952094B1 (en) * 2004-12-22 2005-10-04 General Electric Company Nondestructive inspection method and system therefor
US20050274188A1 (en) * 2004-06-11 2005-12-15 Snecma Moteurs Installation for non-destructive inspection of a part
US7107695B2 (en) * 2003-03-28 2006-09-19 Snecma Moteurs Device and process for profile measurement

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4262425A (en) * 1980-06-13 1981-04-21 General Electric Company Self-adjusting inspection apparatus
JPS6344162A (ja) * 1986-08-11 1988-02-25 Kubota Ltd サクシヨンロ−ルシエル亀裂検出装置
US4970890A (en) * 1988-11-23 1990-11-20 Westinghouse Electric Corp. Electric generator inspection system
US5442286A (en) * 1993-09-22 1995-08-15 General Electric Company Eddy current array inspection device
US6608478B1 (en) * 2001-12-07 2003-08-19 General Electric Company Rotor slot bottom inspection apparatus and method
US6745622B2 (en) * 2002-10-31 2004-06-08 General Electric Company Apparatus and method for inspecting dovetail slot width for gas turbine engine disk
US6972561B2 (en) * 2003-02-28 2005-12-06 General Electric Company Internal eddy current inspection
JP2008089328A (ja) * 2006-09-29 2008-04-17 Hitachi Ltd 渦電流探傷装置及び渦電流探傷方法
FR2915582B1 (fr) 2007-04-27 2009-08-21 Snecma Sa Procede et installation de controle non destructif par courants de foucault, a etalonnage automatique
FR2915581B1 (fr) 2007-04-27 2010-09-03 Snecma Dispositif de controle par courants de foucault d'une cavite rectiligne
FR2916851B1 (fr) 2007-05-29 2010-08-13 Snecma Dispositif de controle non destructif, par courants de foucault d'un trou pratique dans une piece conductrice

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2029274C1 (ru) * 1991-01-08 1995-02-20 Институт проблем машиностроения АН Украины Способ настройки на резонансную частоту колебания испытываемых лопаток рабочего колеса
EP0577244A2 (en) * 1992-04-03 1994-01-05 General Electric Company A device for inspecting a component
RU2111469C1 (ru) * 1997-04-11 1998-05-20 Анатолий Алексеевич Хориков Способ диагностики колебаний рабочего колеса турбомашины
US7107695B2 (en) * 2003-03-28 2006-09-19 Snecma Moteurs Device and process for profile measurement
US20050274188A1 (en) * 2004-06-11 2005-12-15 Snecma Moteurs Installation for non-destructive inspection of a part
US6952094B1 (en) * 2004-12-22 2005-10-04 General Electric Company Nondestructive inspection method and system therefor

Also Published As

Publication number Publication date
JP2009075106A (ja) 2009-04-09
CN101393169B (zh) 2013-09-04
IL194171A (en) 2012-03-29
CA2639589C (fr) 2016-10-18
JP5294773B2 (ja) 2013-09-18
EP2040069A1 (fr) 2009-03-25
US7800364B2 (en) 2010-09-21
CN101393169A (zh) 2009-03-25
FR2921158A1 (fr) 2009-03-20
RU2008137429A (ru) 2010-03-27
FR2921158B1 (fr) 2011-05-06
CA2639589A1 (fr) 2009-03-19
US20090267598A1 (en) 2009-10-29
SG151217A1 (en) 2009-04-30
IL194171A0 (en) 2009-08-03
EP2040069B1 (fr) 2015-11-11

Similar Documents

Publication Publication Date Title
RU2473066C2 (ru) Устройство для контроля тангенциальных ячеек роторного диска
US7305898B2 (en) Installation for non-destructive inspection of a part
KR102251548B1 (ko) 구성요소의 검사를 위한 시스템 및 방법
GB2421796A (en) Nondestructive inspection method and system therefor
EP1577666B1 (en) Method and apparatus for eddy current inspection of a metallic post
US7075296B2 (en) Inspection carriage for turbine blades
GB2413183A (en) Automated ultrasonic or eddy current turbine component inspections
CN213301472U (zh) 一种自动化标定的光谱采集系统
US8866471B2 (en) Probe for inspecting the surface of a circumferential slot in a turbojet disk by means of eddy currents
KR102606272B1 (ko) 위상배열초음파탐상법을 이용한 터빈 블레이드의 도브테일 비파괴검사용 이송장치
CN210716737U (zh) 一种电波多探头自动测试装置
US20140144241A1 (en) Automatic incidence angle adjustment for ultrasound test heads which is dependent on the position of the test heads
KR101499800B1 (ko) 발전소 튜브 전용 위상배열 초음파 검사장치
CN112557033B (zh) 一种可便捷拆装试样的高精度推力球轴承多参数试验平台
KR102607481B1 (ko) 위상배열초음파탐상법을 이용한 터빈 블레이드의 도브테일 비파괴검사장치
KR102007085B1 (ko) 와전류 프로브 장치
KR101919233B1 (ko) 로터 검사장치 및 검사방법
KR101410757B1 (ko) 사용후핵연료 피복관 크러드채취장치
KR101298678B1 (ko) 보빈 검사장치
CN217403385U (zh) 玻璃管直径检测装置
CN117214106A (zh) 复合型光谱采集系统以及工作方法
CN107152943B (zh) 一种用于检测汽轮机预扭叶片装配质量的装置
CN103884592B (zh) 已敷设电缆模量自动检测装置
CN114778702A (zh) 相控阵超声自动探伤装置
CN114813929A (zh) 发电机护环阵列涡流检测用吸附式扫查装置及检测方法

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner
TK4A Correction to the publication in the bulletin (patent)

Free format text: CORRECTION TO CHAPTER -PD4A- IN JOURNAL 17-2018

PC43 Official registration of the transfer of the exclusive right without contract for inventions

Effective date: 20180720

PD4A Correction of name of patent owner