RU2472127C1 - Способ стабилизации тонкопленочной нано- и микроэлектромеханической системы тензорезисторного датчика давления - Google Patents

Способ стабилизации тонкопленочной нано- и микроэлектромеханической системы тензорезисторного датчика давления Download PDF

Info

Publication number
RU2472127C1
RU2472127C1 RU2011123616/28A RU2011123616A RU2472127C1 RU 2472127 C1 RU2472127 C1 RU 2472127C1 RU 2011123616/28 A RU2011123616/28 A RU 2011123616/28A RU 2011123616 A RU2011123616 A RU 2011123616A RU 2472127 C1 RU2472127 C1 RU 2472127C1
Authority
RU
Russia
Prior art keywords
initial output
output signal
thermal stabilization
carried out
output signals
Prior art date
Application number
RU2011123616/28A
Other languages
English (en)
Inventor
Евгений Михайлович Белозубов
Нина Евгеньевна Белозубова
Валерий Анатольевич Васильев
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Пензенский государственный университет" (ФГБОУ ВПО "Пензенский государственный университет")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Пензенский государственный университет" (ФГБОУ ВПО "Пензенский государственный университет") filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Пензенский государственный университет" (ФГБОУ ВПО "Пензенский государственный университет")
Priority to RU2011123616/28A priority Critical patent/RU2472127C1/ru
Application granted granted Critical
Publication of RU2472127C1 publication Critical patent/RU2472127C1/ru

Links

Abstract

Изобретение относится к технологии изготовления тензорезисторных датчиков давления на основе тонкопленочных нано- и микроэлектромеханических систем. Сущность: разогрев тензорезисторов импульсным электрическим током проводят после герметизации внутренней полости системы датчика при одновременном воздействии на его приемную полость давления, превышающего в 1,05 раза максимально допустимое перегрузочное давление, и минимально допустимой пониженной температуры при эксплуатации, а также давления, превышающего в 1,05 раза максимально допустимое перегрузочное давление, и повышенной температуры, превышающей в 1,05 раза максимально допустимую повышенную температуру при эксплуатации. Термостабилизацию проводят при температуре, превышающей в 1,05 раза максимально допустимую повышенную температуру при эксплуатации. Измерения начальных выходных сигналов при термостабилизации проводят при повышенном напряжении питания. Контроль скорости изменения начального выходного сигнала осуществляют по соотношениям скорости изменения приведенных значений начальных выходных сигналов при последнем и предпоследнем измерении начального выходного сигнала при термостабилизации. Технический результат: повышение стабильности начального и номинального выходного сигнала датчиков, выявление скрытых дефектов тензорезисторов на ранних стадиях изготовления.

Description

Изобретение относится к электронной технике, в частности к технологии изготовления тонкопленочных тензорезисторных датчиков давления. Современные тонкопленочные тензорезисторные датчики давления относятся к изделиям нано- и микросистемной техники, использующим в качестве чувствительных элементов тонкопленочные тензорезисторные нано- и микроэлектромеханические системы [1, 2].
Известен способ температурной стабилизации мостовой схемы нано- и микроэлектромеханической системы тонкопленочного тензорезисторного датчика давления, заключающийся в циклической термостабилизации перепадом температур и последующим воздействием механической нагрузкой, превышающей максимально рабочую, охлаждении упругого элемента перед механическим нагруженном жидким азотом и контроле выходного сигнала, циклического разогрева упругого элемента постоянным током с одновременным действием механической нагрузки до момента становления постоянного выходного сигнала [3].
Недостатком этого способа является сложность, высокая трудоемкость процесса термостабилизации упругого элемента, заключающегося в циклическом воздействии температур, механической нагрузки и воздействии постоянного тока до установления постоянного выходного сигнала.
Наиболее близким по технической сущности является способ стабилизации нано- и микроэлектромеханической системы тонкопленочного тензорезисторного датчика давления, заключающийся в термостабилизации с одновременным контролем выходного сигнала и циклическим разогревом, причем разогрев тензорезисторов проводят импульсным электрическим током до температур, обеспечивающих высокотемпературный отжиг перед его термостабилизацией при повышенной температуре с одновременным воздействием на тензорезисторы повышенного напряжения питания, и при этом осуществляют контроль по скорости изменения величины начального выходного сигнала согласно формуле
Figure 00000001
где ΔVi - скорость изменения величины начального выходного сигнала через каждый час, мВ/ч;
U0ti - начальный выходной сигнал при напряжении Un=(6,0±0,05) В, температуре 80°С после термостабилизации за время ti, мВ;
U0ti+1 - начальный выходной сигнал при напряжении Un=(6,0±0,05) В, температуре 80°С после термостабилизации за время ti+1, мВ;
i=1…5 - количество измерений;
Т=1 ч;
при этом, если ΔVi>0,1 мВ/ч, нано- и микроэлектромеханическую систему датчика давления следует браковать [4].
Недостатком этого способа является низкая эффективность стабилизации, заключающаяся в том, что не все потенциально нестабильные по начальному выходному сигналу нано- и микроэлектромеханические системы отбраковываются. Это связано как с неоптимальными режимами способа стабилизации, так и недостаточно жестким критерием отбраковки, а также с недостаточной точностью определения критерия отбраковки. Недостатком известного способа является также необходимость изменения напряжения питания при измерении начального выходного сигнала.
Целью изобретения является повышение стабильности начального и номинального выходного сигнала тонкопленочного тензорезисторного датчика давления на основе нано- и микроэлектромеханической системы и выявление скрытых дефектов тензорезисторов на ранних стадиях изготовления за счет повышения эффективности стабилизации, оптимизации режимов стабилизации, повышения температуры воздействующей на нано- и микроэлектромеханическую систему при определении начального выходного сигнала, ужесточения критериев отбраковки, а также повышения точности определения критерия отбраковки.
Поставленная цель достигается тем, что в способе стабилизации нано- и микроэлектромеханической системы тонкопленочного тензорезисторного датчика давления, заключающемся в термостабилизации с одновременным контролем выходного сигнала и циклическим разогревом, причем разогрев тензорезисторов проводят импульсным электрическим током до температур, обеспечивающих высокотемпературный отжиг перед его термостабилизацией при повышенной температуре с одновременным воздействием на тензорезисторы повышенного напряжения питания, и при этом осуществляют контроль по скорости изменения величины начального выходного сигнала, в соответствии с заявляемым решением разогрев тензорезисторов импульсным электрическим током проводят после герметизации внутренней полости нано- и микроэлектромеханической системы датчика при одновременном воздействии на его приемную полость давления, превышающего в 1,05 раза максимально допустимое перегрузочное давление, и минимально допустимой пониженной температуры при эксплуатации, а также давления, превышающего в 1,05 раза максимально допустимое перегрузочное давление, и повышенной температуры, превышающей в 1,05 раза максимально допустимую повышенную температуру при эксплуатации, а термостабилизацию проводят при температуре, превышающей в 1,05 раза максимально допустимую повышенную температуру при эксплуатации, при этом измерения начальных выходных сигналов при термостабилизации проводят при повышенном напряжении питания, а контроль скорости изменения начального выходного сигнала осуществляют по соотношениям
Figure 00000002
Figure 00000003
где ΔYi, ΔYi-1 - скорости изменения приведенных значений начальных выходных сигналов при последнем и предпоследнем измерении начального выходного сигнала при термостабилизации, соответственно, мВ/(В·ч);
U0ti-2, U0ti-1, U0ti, - начальных выходных сигналов при предпредпоследнем, предпоследнем и последнем измерении начального выходного сигнала при термостабилизации соответственно, мВ;
UWti-2, UWti-1, UWti - напряжения питания при измерении соответственно значений начальных выходных сигналов U0ti-2, U0ti-1, U0ti, B;
i=5 - количество измерений;
ti-1=ti=1,5 - время между предпоследним и последним измерением начального выходного сигнала при термостабилизации соответственно, ч, при этом, если разница скоростей изменения приведенных значений начальных выходных сигналов при предпоследнем и последнем измерении(ΔYi-1-ΔYi) будет более 0,003 мВ/(В·ч) и по 0,005 мВ/(В·ч), а скорость изменения приведенного значения начального выходного сигнала при последнем измерении ΔYi - более 0,003 мВ/(В·ч) и по 0,005 мВ/(В·ч), то нано- и микроэлектромеханическую систему датчика давления следует браковать.
Способ осуществляют следующим образом. В случае отсутствия (вследствие конструктивных особенностей конкретного исполнения нано- и микроэлектромеханической системы) возможности подачи давления на приемную полость помещают нано- и микроэлектромеханическую систему в технологическое приспособление, обеспечивающее такую возможность. Герметизируют внутреннюю полость нано- и микроэлектромеханической системы датчика для исключения в последующем дестабилизирующего влияния внешней окружающей среды. Импульсным током кратковременно разогревают обрабатываемую пленку тонкопленочных тензорезисторов до высоких температур, добиваясь высокотемпературного отжига тензорезисторов. Высокотемпературный отжиг приводит к изменению структуры тонкой пленки в первую очередь в местах наибольшей дефектности пленки и, таким образом, выявляются потенциально нестабильные тензорезисторы.
Одновременно воздействуют на приемную полость нано- и микроэлектромеханической системы давлением, превышающим в 1,05 раза максимально допустимое перегрузочное давление, и минимально допустимой пониженной температуры при эксплуатации. Например, при максимально допустимом перегрузочном давлении, равном 100 МПа, воздействуют давлением 105 МПа, при минимально допустимой пониженной температуре при эксплуатации минус 196°С воздействуют температурой минус 196°С и при максимально допустимой повышенной температуре при эксплуатации +100°С воздействуют температурой +105°С. Одновременное воздействие на приемную полость нано- и микроэлектромеханической системы давления, превышающего в 1,05 раза максимально допустимое перегрузочное давление, и минимально допустимой пониженной температуры при эксплуатации, а также давления, превышающего в 1,05 раза максимально допустимое перегрузочное давление, и повышенной температуры, превышающей в 1,05 раза максимально допустимую повышенную температуру при эксплуатации, позволяет улучшить выявление потенциально нестабильных тензорезисторов. Совместное воздействие импульсной токовой обработки, повышенного давления и широкого диапазона температур позволяет достичь контролируемого упорядочения структуры пленки тензорезисторов и образования устойчивых мостиков проводимости между отдельными зернами тонкопленочных тензорезисторов. Кроме того, совместное воздействие импульсной токовой обработки, повышенного давления и широкого диапазона температур стабилизирует начальный и номинальный выходной сигнал датчика.
Проводят термостабилизацию при температуре, превышающей в 1,05 раза максимально допустимую повышенную температуру при эксплуатации. Например, при максимально допустимой повышенной температуре при эксплуатации +100°С воздействуют температурой +105°С. Превышение воздействующих давлений и температур, превышающих в 1,05 раза максимально допустимые при эксплуатации обеспечивает исключение воздействий на датчик при эксплуатации, сочетаний факторов, которые могли бы повлиять на стабильность. В то же время дальнейшее ужесточение режимов нецелесообразно в связи с ухудшением долговременной стабильности тензорезисторов вследствие появления значительных термомеханических напряжений.
Измерения начальных выходных сигналов при термостабилизации проводят при повышенном напряжении питания, что повышает точность определения критерия отбраковки за счет увеличения величины выходного сигнала при повышенном напряжении питания. Например, при номинальном напряжении питания 6В измерение начальных выходных сигналов проводят при повышенном напряжении 9В, что увеличивает величину выходного сигнала в 1,5 раза. Кроме того, повышение напряжения питания приводит к повышению тока через тензорезисторы, повышая тем самым качество стабилизации. Точность определения критерия отбраковки дополнительно увеличивается за счет учета напряжения питания в соотношениях скорости изменения приведенных значений начальных выходных сигналов. Учитывая, что в прототипе измерение начального выходного сигнала проводится при напряжении питания Un=(6,0±0,05), учет напряжения питания в соответствии с предлагаемым решением позволяет уменьшить погрешность измерения начального выходного сигнала не менее чем на ±0,83%.
Увеличение времени между предпоследним и последним измерением начального выходного сигнала при термостабилизации также увеличивает точность определения критерия отбраковки за счет повышения точности определения скорости изменения начального выходного сигнала. Введение дополнительного критерия по скорости изменения начального выходного сигнала при предпоследнем измерении повышает объективность контроля стабильности. Ужесточение критериев отбраковки повышает стабильность начального и номинального выходного сигнала нано- и микроэлектромеханической системы за счет более тщательного выявления скрытых дефектов тензорезисторов. В то же время дальнейшее ужесточение критерия нецелесообразно вследствие увеличения в этом случае погрешности измерения наиболее распространенных цифровых вольтметров.
Предлагаемое решение по сравнению с прототипом по результатам тестовых испытаний позволяет повысить стабильность начального выходного сигнала не менее чем в 1,3 раза, а стабильность номинального выходного сигнала не менее чем в 1,1 раза. Таким образом, техническим результатом заявляемого решения является повышение стабильности начального и номинального выходного сигнала тензорезисторных датчиков давления на основе тонкопленочных нано- и микроэлектромеханических систем и выявление скрытых дефектов тензорезисторов на ранних стадиях изготовления за счет повышения эффективности стабилизации, оптимизации режимов стабилизации, повышения температуры, воздействующей на нано- и микроэлектромеханическую систему при определении начального выходного сигнала, ужесточения критериев отбраковки, а также повышения точности определения критерия отбраковки.
Источники информации
1. Белозубов Е.М., Белозубова Н.Е. Тонкопленочные тензорезисторные датчики давления - изделия нано- и микросистемной техники // Нано- и микросистемная техника - 2007. - №. 12. - С.49 - 51.
2. Белозубов Е.М., Васильев В.А., Громков Н.В. Тонкопленочные нано- и микроэлектромеханические системы - основа современных и перспективных датчиков давления для ракетной и авиационной техники // Измерительная техника. - М., 2009.- №7. - С.35-38.
3. RU, А.с. №1182289, МПК G01L 7/08, Бюл. №28. 30.09.85.
4. RU, Патент №2301977, МПК G01L 7/02, Бюл. №18. 27.06.2007.

Claims (1)

  1. Способ стабилизации тонкопленочной нано- и микроэлектромеханической системы тензорезисторного датчика давления, заключающийся в термостабилизации с одновременным контролем выходного сигнала и циклическим разогревом, причем разогрев тензорезисторов проводят импульсным электрическим током до температур, обеспечивающих высокотемпературный отжиг перед его термостабилизацией при повышенной температуре с одновременным воздействием на тензорезисторы повышенного напряжения питания, и при этом осуществляют контроль по скорости изменения величины начального выходного сигнала, отличающийся тем, что разогрев тензорезисторов импульсным электрическим током проводят после герметизации внутренней полости нано- и микроэлектромеханической системы датчика при одновременном воздействии на его приемную полость давления, превышающего в 1,05 раза максимально допустимое перегрузочное давление, и минимально допустимой пониженной температуры при эксплуатации, а также давления, превышающего в 1,05 раза максимально допустимое перегрузочное давление, и повышенной температуры, превышающей в 1,05 раза максимально допустимую повышенную температуру при эксплуатации, а термостабилизацию проводят при температуре, превышающей в 1,05 раза максимально допустимую повышенную температуру при эксплуатации, при этом измерения начальных выходных сигналов при термостабилизации проводят при повышенном напряжении питания, а контроль скорости изменения начального выходного сигнала осуществляют по соотношениям
    Figure 00000004

    Figure 00000005

    где ΔYi, ΔYi-1 - скорости изменения приведенных значений начальных выходных сигналов при последнем и предпоследнем измерениях начального выходного сигнала при термостабилизации соответственно, мВ/В·ч;
    U0ti-2, U0ti-1, U0ti - значения начальных выходных сигналов при предпредпоследнем, предпоследнем и последнем измерениях начального выходного сигнала при термостабилизации соответственно, мВ;
    UWti-2, UWti-1, UWti - напряжения питания при измерении соответственно значений начальных выходных сигналов U0ti-2, U0ti-1, U0ti, В;
    i=5 - количество измерений;
    ti-1=ti=1,5 - время между предпоследним и последним измерениями начального выходного сигнала при термостабилизации соответственно, ч, при этом, если разница скоростей изменения приведенных значений начальных выходных сигналов при предпоследнем и последнем измерениях (ΔYi-1-ΔYi) будет более 0,003 мВ/В·ч и по 0,005 мВ/В·ч, а скорость изменения приведенного значения начального выходного сигнала при последнем измерении ΔYi - более 0,003 мВ/В·ч и по 0,005 мВ/В·ч, то нано- и микроэлектромеханическую систему датчика давления следует браковать.
RU2011123616/28A 2011-06-09 2011-06-09 Способ стабилизации тонкопленочной нано- и микроэлектромеханической системы тензорезисторного датчика давления RU2472127C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2011123616/28A RU2472127C1 (ru) 2011-06-09 2011-06-09 Способ стабилизации тонкопленочной нано- и микроэлектромеханической системы тензорезисторного датчика давления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011123616/28A RU2472127C1 (ru) 2011-06-09 2011-06-09 Способ стабилизации тонкопленочной нано- и микроэлектромеханической системы тензорезисторного датчика давления

Publications (1)

Publication Number Publication Date
RU2472127C1 true RU2472127C1 (ru) 2013-01-10

Family

ID=48806189

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011123616/28A RU2472127C1 (ru) 2011-06-09 2011-06-09 Способ стабилизации тонкопленочной нано- и микроэлектромеханической системы тензорезисторного датчика давления

Country Status (1)

Country Link
RU (1) RU2472127C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107014444A (zh) * 2017-05-27 2017-08-04 山东罗泰风机有限公司 一种风机动态性能参数测量系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04178503A (ja) * 1990-11-14 1992-06-25 Nec Corp 歪センサーの製造方法
EP0921384A1 (de) * 1997-12-04 1999-06-09 Mannesmann VDO Aktiengesellschaft Verfahren zur Herstellung eines elektrischen Widerstandes sowie eines mechanisch-elektrischen Wandlers
RU2301977C1 (ru) * 2005-10-26 2007-06-27 ФГУП "НИИ физических измерений" Способ стабилизации упругого элемента датчика давления с тензорезисторами
RU2399894C1 (ru) * 2009-05-25 2010-09-20 Открытое акционерное общество "Научно-исследовательский институт физических измерений" Способ стабилизации упругого элемента датчика давления с тензорезисторами под давлением

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04178503A (ja) * 1990-11-14 1992-06-25 Nec Corp 歪センサーの製造方法
EP0921384A1 (de) * 1997-12-04 1999-06-09 Mannesmann VDO Aktiengesellschaft Verfahren zur Herstellung eines elektrischen Widerstandes sowie eines mechanisch-elektrischen Wandlers
RU2301977C1 (ru) * 2005-10-26 2007-06-27 ФГУП "НИИ физических измерений" Способ стабилизации упругого элемента датчика давления с тензорезисторами
RU2399894C1 (ru) * 2009-05-25 2010-09-20 Открытое акционерное общество "Научно-исследовательский институт физических измерений" Способ стабилизации упругого элемента датчика давления с тензорезисторами под давлением

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107014444A (zh) * 2017-05-27 2017-08-04 山东罗泰风机有限公司 一种风机动态性能参数测量系统
CN107014444B (zh) * 2017-05-27 2023-08-29 山东罗泰风机有限公司 一种风机动态性能参数测量系统

Similar Documents

Publication Publication Date Title
ES2705433T3 (es) Método para la compensación de deriva de temperatura de dispositivo de medición de temperatura que usa termopar
CN101206148B (zh) 一种能准确测量高温应力应变的方法
Shu et al. Method of thermocouples self verification on operation place
US10139300B2 (en) High pressure strain detection device with a base made of a first brittle material and a strain detection element bonded to the base via a second brittle material
US9702909B2 (en) Manufacturing method for current sensor and current sensor
CN109000879A (zh) 一种风洞天平温度漂移修正方法
CN104970776B (zh) 一种体温检测方法和一种高精度动态校准电子体温计装置
RU2472127C1 (ru) Способ стабилизации тонкопленочной нано- и микроэлектромеханической системы тензорезисторного датчика давления
RU2014153145A (ru) Проверка тока контура управления процессом
RU2434210C1 (ru) Способ стабилизации нано- и микроэлектромеханической системы тонкопленочного тензорезисторного датчика давления
CN114624642A (zh) 用以改进蓄电池电压测量准确度的数字校正算法
RU2399894C1 (ru) Способ стабилизации упругого элемента датчика давления с тензорезисторами под давлением
RU2301977C1 (ru) Способ стабилизации упругого элемента датчика давления с тензорезисторами
Tykhan et al. New type of piezoresistive pressure sensors for environments with rapidly changing temperature
ITBO20080432A1 (it) Metodo di compensazione delle derive termiche in un sensore di posizione e stazione di misura compensata termicamente
CN108180954A (zh) 用于超声波换能器的零漂温度补偿方法
CN106441728A (zh) 用于测试时钟防水性的方法
EP3644080B1 (en) Sensor circuit with offset compensation
KR20160061698A (ko) 온도 센서 보정 장치, 온도 센서 및 온도 센서 보정 방법
MD662Z (ru) Метод измерения составляющих импеданса
KR102349777B1 (ko) 보상수단을 포함하는 하중센서
RU2561998C2 (ru) Цифровой измеритель температуры
CN116754629A (zh) 一种电化学传感器的测量精准度补偿方法
CN106950266A (zh) 一种消除电化学气体检测传感器误差的方法
Kojima et al. Study on calibration procedure for differential pressure transducers

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20130610

NF4A Reinstatement of patent

Effective date: 20160527

MM4A The patent is invalid due to non-payment of fees

Effective date: 20170610