RU2470060C1 - Основа бескальциевой жидкости для глушения скважин - Google Patents

Основа бескальциевой жидкости для глушения скважин Download PDF

Info

Publication number
RU2470060C1
RU2470060C1 RU2011132545/03A RU2011132545A RU2470060C1 RU 2470060 C1 RU2470060 C1 RU 2470060C1 RU 2011132545/03 A RU2011132545/03 A RU 2011132545/03A RU 2011132545 A RU2011132545 A RU 2011132545A RU 2470060 C1 RU2470060 C1 RU 2470060C1
Authority
RU
Russia
Prior art keywords
mixture
sodium
calcium
density
components
Prior art date
Application number
RU2011132545/03A
Other languages
English (en)
Inventor
Сергей Александрович Рябоконь
Раиса Яковлевна Бурдило
Лариса Северьяновна Сваровская
Original Assignee
Сергей Александрович Рябоконь
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сергей Александрович Рябоконь filed Critical Сергей Александрович Рябоконь
Priority to RU2011132545/03A priority Critical patent/RU2470060C1/ru
Application granted granted Critical
Publication of RU2470060C1 publication Critical patent/RU2470060C1/ru

Links

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Изобретение относится к нефтегазодобывающей промышленности, в частности, к глушению газоконденсатных и нефтяных скважин с повышенным пластовым давлением перед проведением капитального ремонта при низких климатических температурах. Основа бескальциевой жидкости для глушения скважин, содержащая смесь минеральных солей, в том числе соль натрия, в качестве соли натрия содержит натрий азотнокислый, а в качестве второй соли смеси содержит аммоний азотнокислый, в соотношении к натрию азотнокислому от 1:1 до 1:2. Причем дополнительно она может содержать тиосульфат натрия в количестве от 5 до 33,3 мас.% смеси всех компонентов или уротропин, или моноэтаноламин, или тиосульфат натрия в количестве от 0,5 до 0,7 мас.% смеси всех компонентов, а также натрий хлористый в количестве от 5,5 до 6,4 мас.% смеси всех компонентов. Технический результат - возможность приготовления технологических растворов плотностью не менее 1,35 г/см3 из недефицитных материалов для скважин с повышенным пластовым давлением и с различными геолого-техническими показателями, при этом температура кристаллизации жидкости достигает минус 35°C, что позволяет готовить и использовать ее в условиях Севера. 3 з.п. ф-лы, 1 табл., 16 пр.

Description

Изобретение относится к нефтегазодобывающей промышленности, в частности к глушению газоконденсатных и нефтяных скважин с повышенным пластовым давлением перед проведением капитального ремонта при низких климатических температурах.
В основных нефтедобывающих районах страны в настоящее время для глушения скважин часто требуются технологические жидкости плотностью 1,35 г/см3 и выше. В этом интервале плотности широко применяются водные растворы на основе хлористого кальция (см. Рябоконь С.А., Вольтерс С.А., Сурков А.Б., Глушенко В.Н. Жидкости глушения для ремонта скважин и их влияние на коллекторские свойства пласта. - М.: ВНИОЭНГ, 1989. - Обзорная информация. Серия «Нефтепромысловое дело» 1).
Однако из-за высокого содержания ионов кальция такие растворы с пластовыми водами образуют нерастворимые осадки в продуктивной зоне пласта и солеотложения на внутрискважинном оборудовании, что значительно снижает проницаемость коллекторов и приводит к падению дебитов и сокращению работы скважин.
Решить проблему солеотложений можно путем замены кальциевых растворов глушения на бескальциевые в диапазоне плотностей от 1,17 до 1,35 г/см3. Наиболее широко применяется для глушения раствор на основе одной из наиболее дешевых, доступных, хорошо растворяющихся в воде природных солей - галлите (NaCl). Недостатком такой жидкости является невысокая плотность 1,17 г/см3 с температурой кристаллизации минус 21°C. Применяют также раствор на основе калийсодержащих отходов (хлоркалий - электролит), он хорошо совместим с пластовыми водами, обеспечивает снижение набухания глинистого цемента продуктивных пород. Плотность насыщенного раствора этой соли составляет 1,19 г/см3, температура кристаллизации раствора +2°C, что затрудняет его приготовление и применение в условиях низких температур. Кроме того, для глушения скважин применяют раствор бишофита (MgCl2). С использованием этой легко растворимой соли можно получить жидкость глушения плотностью 1,3 г/см3, однако раствор бишофита такой плотности имеет температуру кристаллизации около +3°C, что затрудняет его приготовление и применение в условиях Севера (см. Рябоконь С.А., Вольтере С.А., Сурков А.Б., Глущенко В.Н. Жидкости глушения для ремонта скважин и их влияние на коллекторские свойства пласта. - М.: ВНИОЭНГ, 1989. - Обзорная информация. Серия «Нефтепромысловое дело» 1).
Наиболее близким аналогом изобретения является основа бескальциевой жидкости глушения и заканчивания скважин, состоящая из смеси продуктов переработки сильвинит и карналлитовых руд и сухой смеси гидрофобизатора, ингибитора солеотложения и поверхностно-активного вещества (ПАВ) при следующем соотношении компонентов, мас.%: калий хлористый не менее 25, натрий хлористый не менее 40, магний хлористый не менее 4, нерастворимые вещества не более 2, сухая смесь гидрофобизатора, ингибитора солеотложения и ПАВ не менее 0,055 (RU 2347797, C09K 8/42).
Однако на этой основе можно приготовить жидкость плотностью не выше 1,25-1,27 г/см3.
Задачей изобретения является разработка бескальциевой основы жидкости глушения плотностью не менее 1,35 г/см3, для использования при текущем и капитальном ремонте скважин с повышенным пластовым давлением. Основа должна состоять из недефицитных реагентов, легко приготавливаться в условиях Севера.
Поставленная задача достигается тем, что основа бескальциевой жидкости глушения скважин содержит смесь минеральных солей, в том числе соль натрия. Новым является то, что в качестве соли натрия основа содержит натрий азотнокислый, а в качестве второй соли смеси содержит аммоний азотнокислый в соотношении к натрию азотнокислому от 1:1 до 1:2.
В зависимости от геолого-технических условий скважины основа бескальциевой жидкости глушения может дополнительно содержать уротропин, или моноэтаноламин, или тиосульфат натрия в количестве от 0,5 до 0,7 мас.% смеси всех компонентов.
Основа бескальциевой жидкости глушения скважин может дополнительно содержать тиосульфат натрия в количестве от 5 до 33,3 мас.% смеси всех компонентов, что обеспечивает жидкости необходимую плотность, температуру кристаллизации до минус 35°C и одновременно предотвращает возможность возникновения коррозионных процессов, поскольку тиосульфат натрия является ингибитором коррозии.
Основа бескальциевой жидкости глушения скважин может дополнительно содержать натрий хлористый в количестве от 5,5 до 6,4 мас.% смеси всех компонентов, обеспечивая жидкости необходимую плотность и снижение температуры кристаллизации до минус 34°C, при одновременном удешевлении композиции.
Совокупность заявляемых компонентов основы в заявляемых соотношениях при их взаимодействии в процессе приготовлении жидкости глушения обеспечивает синергетический эффект в виде получения бескальциевой жидкости глушения с плотностью не менее 1,35 г/см3 и температурой кристаллизации, которая несвойственна компонентам основы в отдельности. Такой эффект объясняется тем, что при растворении смеси в воде в момент пересыщения раствора усиливаются связи между молекулами компонентов, увеличивая тем самым их взаимную растворимость, и с понижением температуры усиливается структурированность образовавшихся систем. Дополнительный ввод тиосульфата натрия или натрия хлористого в основу позволяет усилить связи между молекулами компонентов, что приводит к дополнительному понижению температуры.
Таким образом, техническим результатом использования заявляемой основы бескальциевой жидкости глушения скважин является возможность приготовления технологических растворов плотностью не менее 1,35 г/см3 из недефицитных материалов для скважин с повышенным пластовым давлением и с различными геолого-техническими показателями, при этом температура кристаллизации жидкости достигает минус 35°C, что позволяет готовить и использовать ее в условиях Севера.
Основу готовили путем смешивания сухих компонентов. Из приготовленной основы путем ее растворения в воде готовили технологическую жидкость и испытывали по известным методикам. Совместимость растворов, приготовленных из основы, проверяли путем смешения в равных объемных долях (1:1) с пластовыми водами Приобского, Ярайнерского, Вынгапуровского месторождений.
Результаты испытаний приведены в таблице.
Пример 1. В 304,0 мл воды на механической мешалке растворяли 371,5 г сухой смеси, содержащей 50% нитрата аммония, 50% нитрата натрия (соотношение 1:1). После растворения смеси получившиеся 500 мл раствора плотностью 1,351 г/см3 испытывали на коррозионную активность при температуре 100-120°C, кристаллизацию, совместимость с пластовыми водами, замеряли условную вязкость и рH.
Пример 2. В 318,5 мл воды на механической мешалке растворяли 359,0 г сухой смеси, содержащей 40% нитрата аммония и 60% нитрата натрия (соотношение 1:1,5). После растворения смеси получившиеся 500 мл раствора плотностью 1,355 г/см3 испытывали аналогично примеру 1.
Пример 3. В 307,0 мл воды на механической мешалке растворяли 371,5 г сухой смеси, содержащей 49,65% нитрата аммония, 49,65% нитрата натрия (соотношение 1:1), 0,7% уротропина. После растворения смеси получившиеся 500 мл раствора плотностью 1,357 г/см3 испытывали аналогично примеру 1.
Пример 4. В 304,9 мл воды на механической мешалке растворяли 372,6 г сухой смеси, содержащей 49,75% нитрата аммония, 49,75% нитрата натрия (соотношение 1:1), 0, 5% уротропина. После растворения смеси получившиеся 500 мл раствора плотностью 1,355 г/см3 испытывали аналогично примеру 1.
Пример 5. В 306,5 мл воды на механической мешалке растворяли 371,0 г сухой смеси, содержащей 49,65% нитрата аммония, 49,65% нитрата натрия (соотношение 1:1), 0,7% моноэтаноламина. После растворения смеси получившиеся 500 мл раствора плотностью 1,355 г/см3 испытывали аналогично примеру 1.
Пример 6. В 326,0 мл воды на механической мешалке растворяли 350,5 г сухой смеси, содержащей 39,8% нитрата аммония, 59,7% нитрата натрия (соотношение 1:1,5), 0,5% тиосульфата натрия. После растворения смеси получившиеся 500 мл раствора плотностью 1,353 г/см3 испытывали аналогично примеру 1.
Пример 7. В 317,0 мл воды на механической мешалке растворяли 361,0 г сухой смеси, содержащей 39,8% нитрата аммония, 59,7% нитрата натрия (соотношение 1:1,5), 0,5% моноэтаноламина. После растворения смеси получившиеся 500 мл раствора плотностью 1,356 г/см3 испытывали аналогично примеру 1.
Пример 8. В 321,7 мл воды на механической мешалке растворяли 353,3 г сухой смеси, содержащей 39,7% нитрата аммония, 59,6% нитрата натрия (соотношение 1:1,5), 0,7% тиосульфата натрия. После растворения смеси получившиеся 500 мл раствора плотностью 1,35 г/см3 испытывали аналогично примеру 1.
Пример 9. В 298,0 мл воды на механической мешалке растворяли 379,5 г сухой смеси, содержащей 47,5% нитрата аммония, 47,5% нитрата натрия (соотношение 1:1), 5% тиосульфата натрия. После растворения смеси получившиеся 500 мл раствора плотностью 1,355 г/см3 испытывали аналогично примеру 1.
Пример 10. В 284,0 мл воды на механической мешалке растворяли 397,0 г сухой смеси, содержащей 33,3% нитрата аммония, 33.3% нитрата натрия (соотношение 1:1), 33,3% тиосульфата натрия. После растворения смеси получившиеся 500 мл раствора плотностью 1,362 г/см3 испытывали аналогично примеру 1.
Пример 11. В 292,0 мл воды на механической мешалке растворяли 403,0 г сухой смеси, содержащей 22,2% нитрата аммония, 44,5% нитрата натрия (соотношение 1:2), 33,3% тиосульфата натрия. После растворения смеси получившиеся 500 мл раствора плотностью 1,39 г/см3 испытывали аналогично примеру 1.
Пример 12. В 308,0 мл воды на механической мешалке растворяли 367,5 г сухой смеси, содержащей 47,25% нитрата аммония, 47,25% нитрата натрия (соотношение 1:1), 5,5% NaCl. После растворения смеси получившиеся 500 мл раствора плотностью 1,351 г/см3 испытывали аналогично примеру 1.
Пример 13. В 308,0 мл воды на механической мешалке растворяли 367,5 г сухой смеси, содержащей 46,8% нитрата аммония, 46,8% нитрата натрия (соотношение 1:1), 6,4% NaCl. После растворения смеси получившиеся 500 мл раствора плотностью 1,352 г/см3 испытывали аналогично примеру 1.
Пример 14. В 309,0 мл воды на механической мешалке растворяли 366,5 г сухой смеси, содержащей 46,45% нитрата аммония, 46,45% нитрата натрия (соотношение 1:1), 6,4% NaCl, 0,7% уротропина. После растворения смеси получившиеся 500 мл раствора плотностью 1,351 г/см3 испытывали аналогично примеру 1.
Пример 15. В 297,0 мл воды на механической мешалке растворяли 379,5 г сухой смеси, содержащей 47,0% нитрата аммония, 47,0% нитрата натрия (соотношение 1:1), 5,5% NaCl, 0,5% тиосульфата натрия. После растворения смеси получившиеся 500 мл раствора плотностью 1,353 г/см3 испытывали аналогично примеру 1.
Пример 16. В 298,1 мл воды на механической мешалке растворяли 379,4 г сухой смеси, содержащей 47,0% нитрата аммония, 47,0% нитрата натрия (соотношение 1:1), 5,5% NaCl, 0,5% моноэтаноламина. После растворения смеси получившиеся 500 мл раствора плотностью 1,355 г/см3 испытывали аналогично примеру 1.
Figure 00000001
По данным, приведенным в таблице, можно отметить, что применение в качестве основы смеси минеральных солей натрия и аммония позволило получить бескальциевую жидкость для глушения скважин с повышенным пластовым давлением, плотностью не менее 1,35 г/см3. Понижение температуры кристаллизации до значений от минус 31°C, до минус 35°C является новым свойством композиции, поскольку кристаллизация составляющих компонентов: натрия азотнокислого плотностью 1,35 г/см3 происходит при минус 25°C, аммония азотнокислого плотностью 1,22 г/см3 - при минус 15°C, тиосульфата натрия плотностью 1,35 г/см3 - при минус 26°C. Введение в состав хлористого натрия снижает стоимость основы и позволяет снизить температуру кристаллизации жидкости до минус 34°C.
Применение растворов на заявляемой основе, не содержащей солей кальция, позволяет избежать образования нерастворимых осадков на подземном оборудовании, так как они совместимы с пластовыми флюидами любой степени минерализации и ионного состава и исключают необратимую кольматацию пор пласта твердыми частицами.
Растворы, приготовленные из заявленной основы, обладают пониженной коррозионной активностью, а введение ингибитора коррозии снижает ее до минимального уровня, что дает возможность применения изобретения для ремонта скважин с температурами от 100 до 120°C.

Claims (4)

1. Основа бескальциевой жидкости для глушения скважин, содержащая смесь минеральных солей, в том числе соль натрия, отличающаяся тем, что в качестве соли натрия содержит натрий азотнокислый, а в качестве второй соли смеси содержит аммоний азотнокислый в соотношении с натрием азотнокислому от 1:1 до 1:2.
2. Основа бескальциевой жидкости для глушения скважин по п.1, отличающаяся тем, что дополнительно содержит тиосульфат натрия в количестве от 5 до 33,3 мас.% от смеси всех компонентов.
3. Основа бескальциевой жидкости для глушения скважин по п.1, отличающаяся тем, что дополнительно содержит уротропин, или моноэтаноламин, или тиосульфат натрия в количестве от 0,5 до 0,7 мас.% от смеси всех компонентов.
4. Основа бескальциевой жидкости для глушения скважин по п.1 или 3, отличающаяся тем, что дополнительно содержит натрий хлористый в количестве от 5,5 до 6,4 мас.% от смеси всех компонентов.
RU2011132545/03A 2011-08-02 2011-08-02 Основа бескальциевой жидкости для глушения скважин RU2470060C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2011132545/03A RU2470060C1 (ru) 2011-08-02 2011-08-02 Основа бескальциевой жидкости для глушения скважин

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011132545/03A RU2470060C1 (ru) 2011-08-02 2011-08-02 Основа бескальциевой жидкости для глушения скважин

Publications (1)

Publication Number Publication Date
RU2470060C1 true RU2470060C1 (ru) 2012-12-20

Family

ID=49256533

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011132545/03A RU2470060C1 (ru) 2011-08-02 2011-08-02 Основа бескальциевой жидкости для глушения скважин

Country Status (1)

Country Link
RU (1) RU2470060C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2558072C1 (ru) * 2014-05-27 2015-07-27 Открытое акционерное общество "Северо-Кавказский научно-исследовательский проектный институт природных газов" (ОАО "СевКавНИПИгаз") Сухая смесь для приготовления жидкости глушения
RU2582151C1 (ru) * 2014-12-16 2016-04-20 Общество с ограниченной ответственностью "Джи Эр Инвестментс" Сухая смесь для глушения нефтегазовых скважин и обработки пластов призабойной зоны

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2309176C2 (ru) * 2005-10-10 2007-10-27 Вера Викторовна Живаева Технологическая жидкость для перфорации и глушения скважин
RU2347797C2 (ru) * 2006-08-25 2009-02-27 Общество с ограниченной ответственностью "Аксис" Основа жидкости глушения и заканчивания скважин
RU2387687C2 (ru) * 2008-06-27 2010-04-27 Общество с ограниченной ответственностью "НАУЧНО-ТЕХНИЧЕСКАЯ КОМПАНИЯ "ПРАЙД" Способ приготовления технологических жидкостей нефтяных и газовых скважин
RU2406745C1 (ru) * 2009-08-10 2010-12-20 Сергей Александрович Рябоконь Состав для приготовления тяжелых технологических жидкостей для заканчивания и ремонта нефтяных и газовых скважин
EP2325277A2 (en) * 2004-12-14 2011-05-25 M-I L.L.C. High density brines for use in wellbore fluids

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2325277A2 (en) * 2004-12-14 2011-05-25 M-I L.L.C. High density brines for use in wellbore fluids
RU2309176C2 (ru) * 2005-10-10 2007-10-27 Вера Викторовна Живаева Технологическая жидкость для перфорации и глушения скважин
RU2347797C2 (ru) * 2006-08-25 2009-02-27 Общество с ограниченной ответственностью "Аксис" Основа жидкости глушения и заканчивания скважин
RU2387687C2 (ru) * 2008-06-27 2010-04-27 Общество с ограниченной ответственностью "НАУЧНО-ТЕХНИЧЕСКАЯ КОМПАНИЯ "ПРАЙД" Способ приготовления технологических жидкостей нефтяных и газовых скважин
RU2406745C1 (ru) * 2009-08-10 2010-12-20 Сергей Александрович Рябоконь Состав для приготовления тяжелых технологических жидкостей для заканчивания и ремонта нефтяных и газовых скважин

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2558072C1 (ru) * 2014-05-27 2015-07-27 Открытое акционерное общество "Северо-Кавказский научно-исследовательский проектный институт природных газов" (ОАО "СевКавНИПИгаз") Сухая смесь для приготовления жидкости глушения
RU2582151C1 (ru) * 2014-12-16 2016-04-20 Общество с ограниченной ответственностью "Джи Эр Инвестментс" Сухая смесь для глушения нефтегазовых скважин и обработки пластов призабойной зоны

Similar Documents

Publication Publication Date Title
Khormali et al. Study of adsorption/desorption properties of a new scale inhibitor package to prevent calcium carbonate formation during water injection in oil reservoirs
AU2016222831B2 (en) Compositions for enhanced oil recovery
IL268834A (en) High density aqueous well liquids
Almubarak et al. Design and application of high-temperature raw-seawater-based fracturing fluids
CA3041060A1 (en) Compositions for enhanced oil recovery
EA025544B1 (ru) Композиции поглотителя кислорода для растворов для заканчивания скважин
CN103748190A (zh) 修井流体和用该流体修井的方法
ITVA20100076A1 (it) Inibitori di argille per l'industria petrolifera
AlMubarak et al. Design and application of high temperature seawater based fracturing fluids in Saudi Arabia
Podoprigora et al. Acid stimulation technology for wells drilled the low-permeable high-temperature terrigenous reservoirs with high carbonate content
RU2470060C1 (ru) Основа бескальциевой жидкости для глушения скважин
US20180010035A1 (en) Secondary hydrocarbon-fluid recovery enhancement
RU2648379C1 (ru) Полисолевой биополимерный буровой раствор ПОЛИ-С
WO2017165954A1 (en) Using synthetic acid compositions as alternatives to conventional acids in the oil and gas industry
RU2519019C1 (ru) Состав для приготовления тяжелой технологической жидкости для заканчивания и ремонта нефтяных и газовых скважин
Jones et al. Proppant behavior under simulated geothermal reservoir conditions
Xiong et al. Hydraulic fracturing geochemical impact on fluid chemistry: comparing wolfcamp shale and Marcellus Shale
RU2252238C1 (ru) Пенообразующий состав для перфорации продуктивных пластов
RU2744224C1 (ru) Утяжеленная жидкость без твердой фазы для глушения нефтяных и газовых скважин
CA2961777C (en) Synthetic acid compositions alternatives to conventional acids in the oil and gas industry
Roostaie et al. An experimental investigation of different formation waters and injection water incompatibility to obtain the optimum water mixing ratio in injection processes
Alkhowaildi et al. A Comprehensive Review on the Characteristics, Challenges and Reuse Opportunities Associated with Produced Water in Fracturing Operations
CN105419761A (zh) 一种阻止钙卤结垢的改性剂
Gulomjon et al. Development of effective compositions of thermal-salt-resistant composite chemicals using local and secondary materials
RU2601708C1 (ru) Вязкоупругий состав для глушения нефтяных и газовых скважин