RU2467165C2 - Способ регулирования разработки нефтяного месторождения - Google Patents

Способ регулирования разработки нефтяного месторождения Download PDF

Info

Publication number
RU2467165C2
RU2467165C2 RU2010141714/03A RU2010141714A RU2467165C2 RU 2467165 C2 RU2467165 C2 RU 2467165C2 RU 2010141714/03 A RU2010141714/03 A RU 2010141714/03A RU 2010141714 A RU2010141714 A RU 2010141714A RU 2467165 C2 RU2467165 C2 RU 2467165C2
Authority
RU
Russia
Prior art keywords
water
aluminium
urea
oil
formation
Prior art date
Application number
RU2010141714/03A
Other languages
English (en)
Other versions
RU2010141714A (ru
Inventor
Любовь Константиновна Алтунина (RU)
Любовь Константиновна Алтунина
Владимир Александрович Кувшинов (RU)
Владимир Александрович Кувшинов
Любовь Анатольевна Стасьева (RU)
Любовь Анатольевна Стасьева
Original Assignee
Учреждение Российской академии наук Институт химии нефти Сибирского отделения РАН (ИХН СО РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Учреждение Российской академии наук Институт химии нефти Сибирского отделения РАН (ИХН СО РАН) filed Critical Учреждение Российской академии наук Институт химии нефти Сибирского отделения РАН (ИХН СО РАН)
Priority to RU2010141714/03A priority Critical patent/RU2467165C2/ru
Publication of RU2010141714A publication Critical patent/RU2010141714A/ru
Application granted granted Critical
Publication of RU2467165C2 publication Critical patent/RU2467165C2/ru

Links

Images

Abstract

Изобретение относится к регулированию разработки нефтяных месторождений и может найти применение при повышении нефтеотдачи в пластах с высокой температурой или разрабатываемых тепловыми методами. В способе регулирования разработки нефтяного месторождения с неоднородными по проницаемости пластами с высокой пластовой температурой 90°C и выше или при тепловых методах воздействия на пласт - 100-320°C, включающем закачку в пласт водного раствора соли алюминия и карбамида, закачку проводят порциями, причем сначала закачивают порцию водного раствора, содержащую, % мас.: соль алюминия 1.0-3.0, карбамид 3.75-15.0 и воду - остальное, образующего в пласте золь, а затем, по крайней мере, еще одну порцию водного раствора, содержащую, % мас.: соль алюминия 3.5-17.0, карбамид 16.0-30 и воду - остальное, образующего в пласте гель. В качестве солей алюминия используют хлористый или азотнокислый алюминий безводный или гидратированный или их частично гидролизованную форму, причем гидроксохлорид алюминия содержит оксид алюминия 10-30%. Технический результат - повышение интенсивности добычи нефти за счет выравнивания профиля приемистости и образования водоизолирующего экрана. 1 з.п. ф-лы, 1 табл., 2 ил.

Description

Изобретение относится к регулированию разработки нефтяных месторождений и может найти применение при повышении нефтеотдачи в пластах с высокой температурой или разрабатываемых тепловыми методами.
Известен способ разработки нефтяных месторождений, в котором для увеличения охвата пласта заводнением закачивают в пласт водный раствор сульфата алюминия (Г.И.Ибрагимов, К.С.Фазлутдинов, Н.И.Хисамутдинов. Справочник. Применение химических реагентов для интенсификации добычи нефти. - М.: Недра, 1991, с.168-170). При взаимодействии сульфата алюминия с пластовой водой в пористой среде выпадает осадок гидроксида алюминия Al(OH)3, образуется вязкая масса, блокирующая промытые каналы фильтрации, а непромытые нефтенасыщенные зоны подключаются к разработке. Однако этот способ недостаточно эффективен, кроме того, во избежание преждевременного выпадения осадка Al(OH)3 в призабойной зоне пласта раствор сульфата алюминия подкисляют добавлением серной кислоты, что вызывает повышенное коррозионное разрушение отдельных узлов оборудования и цементного камня.
Известны способы изоляции и ограничения водопритока в скважину, включающие последовательную закачку в скважину водного раствора силиката натрия (жидкого стекла) и отвердителя (инициатора реакции полимеризации силиката натрия), патенты: РФ №1329240, кл. E21B 33/138, 10.04.85; №1423726, кл. E21B 33/138, 15.09.88; №1774689, кл. E21B 33/138, 21.02.91; №2078919; E21B 43/32, 01.02.95; США №5351757, кл. E21B 33/138. При этом водный раствор силиката натрия вступает в реакцию с отвердителем, в результате которой образуется нерастворимый кремнезоль. Недостатком этих способов является низкая эффективность, т.к. в пластовых условиях практически не происходит перемешивания закачиваемых растворов, образование геля в пласте носит вероятностный характер, поэтому образующиеся в пласте гели имеют невысокие структурно-механические свойства. Кроме того, недостатком способов является низкая технологичность процесса, связанная с тем, что при приготовлении и закачке растворов существует вероятность преждевременного смешения растворов и мгновенного нерегулируемого образования блокирующего экрана вблизи линии нагнетания или в стволе скважины.
Наиболее близким по технической сущности является способ регулирования разработки нефтяного месторождения с разнопроницаемыми пластами (Патент РФ №2061856, кл. E21B 43/24, E21B 33/138, 1996.06.10). При температуре пласта 70-90°C или в результате предварительного нагрева пласта до этой температуры в него закачивают водный раствор карбамида и соли алюминия, с концентрациями, обеспечивающими образование непосредственно в пласте объемного геля. Однако этот способ недостаточно эффективен для пластов с температурами выше 90°C и при тепловых методах воздействия. При высоких температурах время гелеобразования раствора резко сокращается и велика вероятность образования геля непосредственно в призабойной зоне пласта.
Задачей предлагаемого изобретения является создание способа регулирования разработки нефтяного месторождения, позволяющего повысить эффективность вытеснения нефти за счет выравнивания профиля приемистости, перераспределения фильтрационных потоков и образования водоизолирующего экрана в промытой зоне пласта на значительном удалении от призабойной зоны скважины, на расстоянии, необходимом по геолого-физическим условиям и состоянию разработки, при одновременной экономии общего количества закачиваемого гелеобразующего состава в зонах «языковых» прорывов нагнетаемых флюидов для пластов с высокой пластовой температурой (90°C и выше) или при тепловых методах воздействия (100-320°C).
Технический результат достигается тем, что в способе регулирования разработки нефтяного месторождения с неоднородными по проницаемости пластами с пластовой температурой 90°C и выше, а при тепловых методах воздействия на пласт - 100-320°C, включающем закачку в пласт водного раствора, содержащего соль алюминия и карбамид, закачку проводят порциями, причем сначала закачивают порцию водного раствора, образующего в пласте золь, содержащую, % мас.: соль алюминия 1.0-3.0, карбамид 3.75-15.0 и воду - остальное, а затем, по крайней мере, еще одну порцию водного раствора, образующего в пласте гель, содержащую, % мас.: соль алюминия 3.5-17.0, карбамид 16.0-30.0 и воду - остальное.
В способе в качестве соли алюминия используют хлористый или азотнокислый алюминий безводный или гидратированный или их частично гидролизованную форму, причем гидроксохлорид алюминия содержит оксид алюминия 10-30% мас.
При закачке растворов, содержащих соли алюминия 1.0-3.0% мас., карбамид 3.75-15.0% мас. и воду - остальное, в пласте под действием температуры пласта или закачиваемого теплоносителя при тепловых методах воздействия карбамид гидролизуется, повышается pH среды, в результате образуется свободно-дисперсная подвижная вязкая система (золь), с вязкостью, сопоставимой с вязкостью нефти, способная фильтроваться в разнопроницаемые пропластки на значительные расстояния от нагнетательной скважины, выравнивать профиль вытеснения нефти, осуществляя поршневое вытеснение нефти. После закачки первой порции раствора и получения золя в пласте можно закачивать оторочки водного раствора соли алюминия и карбамида с концентрациями: соль алюминия 3.5-17.0% мас., карбамид 16.0-30.0% мас. и воду - остальное, образующие в пласте гель. Применение ряда оторочек, образующих в пласте золи или гели, позволит экранировать «языковые» прорывы нагнетаемой воды на заданном расстоянии от скважины при существенной экономии реагентов. В зависимости от поставленной цели, геолого-физических условий и состояния разработки изменением концентрации компонентов в растворе можно регулировать вязкость получаемого в пласте геля (золя).
Измерение динамической вязкости растворов, золей и гелей, полученных при температуре 90°C, проводили с использованием вибрационного вискозиметра с камертонным датчиком «Реокинетика», pH среды - потенциометрическим методом с применением стеклянного электрода. В таблице приведены примеры составов водных растворов различных солей алюминия (хлористый или азотнокислый алюминий, безводный или гидратированный, или их частично гидролизованные формы) и карбамида (композиции ГАЛКА®), значения pH и динамической вязкости растворов и гелей (золей).
Эффективность применения предлагаемого способа изучали на фильтрационной установке высокого давления при фильтрации водного раствора соли алюминия и карбамида через водонасыщенные модели и в процессе доотмыва остаточной нефти из двух параллельных колонок с различной проницаемостью. При температуре 200°C исследованы фильтрационные характеристики и нефтевытесняющая способность композиции в линейных и неоднородных моделях пласта применительно к условиям месторождений с высокой пластовой температурой или разрабатываемых паротепловым воздействием.
По полученным данным рассчитывали градиент давления grad P, атм/м, скорость фильтрации V, м/сут, подвижность жидкостей k/µ, мкм2/(мПа·с), абсолютный коэффициент вытеснения нефти водой Кв, %, и водой и композицией Ка, %. Использовали насыпные модели пласта, приготовленные из дезинтегрированного кернового материала или мрамора, пресную воду и дегазированную нефть Усинского месторождения (термостабилизированная нефть с добавлением 30% керосина). Проницаемость моделей находилась в пределах от 0.634 до 11.693 мкм2, проницаемость параллельных колонок различалась в 9.8-12.2 раза. Время термостатирования подбиралось с учетом кинетики гелеобразования при температуре опыта и составляло от 3 до 24 часов.
Далее приведены результаты исследований.
В линейную водонасыщенную модель пласта с исходной газопроницаемостью 11.169 мкм2 при температуре 200°C в условиях, моделирующих площадную закачку пара на пермо-карбоновой залежи Усинского месторождения, закачивали последовательно оторочки водного раствора соли алюминия и карбамида с концентрациями: AlCl3 - 2.0% мас., карбамида - 7.5% мас., воды - 90.5% мас. и AlCl3 - 3.0% мас., карбамида - 11.25% мас., воды - 85.75% мас. (примеры 2, 3 в таблице), которые образуют в модели пласта подвижные золи, а затем 2 оторочки водного раствора соли алюминия и карбамида с концентрациями: AlCl3 - 4.0% мас., карбамида - 16.0% мас. и воды - 80.0% мас. (пример 4 в таблице), которые образуют в модели пласта гели, фиг.1. После закачки водного раствора соли алюминия и карбамида с концентрациями: AlCl3 - 2.0% мас., карбамида - 7.5% мас., воды - 90.5% мас. и AlCl3 - 3.0% мас., карбамида - 11.25% мас., воды - 85.75% мас., образующих золи, наблюдалось кратковременное повышение перепада давления до 23-29 атм/м, но фильтрация продолжалась, хотя подвижность фильтруемой жидкости уменьшилась в 30 раз. Объем 1-й оторочки составил 1.6 поровых объемов модели. После закачки оторочек водного раствора соли алюминия и карбамида с концентрациями: AlCl3 - 4.0% мас., карбамида - 16.0% мас. и воды - 80.0% мас., образующих гель, повышение перепада давления составило 60.5-61.5 атм/м, при этом после закачки 2-й оторочки фильтрация прекратилась. Таким образом, использование растворов водного раствора соли алюминия и карбамида в указанном количестве, образующих золи и гели, позволяет использовать большие объемы оторочек и продвигать их на любое необходимое расстояние вглубь пласта.
В неоднородную нефтенасыщенную модель пласта с исходной газовой проницаемостью колонок 0.959 и 11.693 мкм2 при 200°C закачивали сначала воду до полной обводненности извлекаемой продукции, при этом наблюдалось вытеснение нефти в основном из 2-й более высокопроницаемой модели пласта, коэффициент вытеснения нефти водой составил 69.4%, в то время как из первой более низкопроницаемой модели пласта - 15.3%. После закачки водного раствора соли алюминия и карбамида с концентрацией компонентов: 2.0% мас. AlCl3, 7.5% мас. карбамида и 90.5% мас. воды (пример 2 в таблице) и образования в модели пласта золя наблюдалось перераспределение фильтрационных потоков и доотмыв нефти из обеих колонок. Раствор входил в обе колонки, в более высокопроницаемую модель вошло 1.113 поровых объема раствора, в менее проницаемую колонку - 0.63 поровых объема, при этом наблюдалось снижение подвижности жидкости в высокопроницаемой колонке в 3.4 раза. Фильтрация продолжалась через обе колонки с интенсивным дополнительным вытеснением нефти, при этом коэффициент нефтевытеснения увеличился в более высокопроницаемой колонке с 69.4 до 77.7%, а в более низкопроницаемой колонке - с 15.3 до 71.0%. Затем закачивали вторую порцию раствора, содержащего 4.0% мас. алюминия хлористого, 15.0% мас. карбамида и 80.0% мас. воды. Через определенное время после образования геля в модели пласта произошло практически полное выравнивание профиля приемистости, подвижность жидкости в высокопроницаемой колонке снизилась еще в 9.6 раза, что сопровождалось дополнительным вытеснением нефти из обеих колонок, прирост коэффициента нефтевытеснения составил по более низкопроницаемой колонке 7.3% (с 71.0 до 78.3%), по высокопроницаемой колонке - 5.4% (с 77.7 до 83.1%). Таким образом, в результате закачки двух оторочек были достигнуты высокие абсолютные коэффициенты нефтевытеснения.
Примеры реализации изобретения
Пример 1. По вышеописанной методике определения эффективности предлагаемого способа регулирования разработки нефтяного месторождения с неоднородными по проницаемости пластами в неоднородную нефтенасыщенную модель пласта с карбонатным коллектором с исходной газовой проницаемостью колонок 0.634 и 2.182 мкм2 при 90°C после вытеснения нефти водой осуществляют закачку первой порции водного раствора соли алюминия и карбамида с концентрацией компонентов: 3.0% маc. AlCl3, 15.0% мас. карбамида и 82.0% мас. воды, после образования в модели пласта золя наблюдалось снижение подвижности жидкости в высокопроницаемой колонке в 2.9 раза. Затем закачивают вторую порцию раствора, содержащего 17.0% мас. алюминия хлористого, 16.0% мас. карбамида и 67.0% мас. воды, фиг.2. Через определенное время после образования геля в модели пласта произошло практически полное выравнивание профиля приемистости, подвижность жидкости в высокопроницаемой колонке снизилась еще в 5.7 раза, что сопровождалось вытеснением нефти из обеих колонок, прирост коэффициента нефтевытеснения составил по более низкопроницаемой колонке 10.5% (с 46.9 до 57.4%), по высокопроницаемой колонке - 6.2% (с 53.6 до 59.8%).
Пример 2. По вышеописанной методике определения эффективности предлагаемого способа регулирования разработки нефтяного месторождения с неоднородными по проницаемости пластами в неоднородную нефтенасыщенную модель пласта с карбонатным коллектором с исходной газовой проницаемостью колонок 0.278 и 2.015 мкм2 при 150°C сначала осуществляют закачку первой порции водного раствора соли алюминия и карбамида с концентрацией компонентов: 7.0% мас. Al(NO3)3, 10.0% мас. карбамида и 83.0% мас. воды, после образования в модели пласта золя наблюдалось снижение подвижности жидкости в высокопроницаемой колонке в 2.4 раза, при этом коэффициент нефтевытеснения увеличился в более высокопроницаемой колонке с 38.1 до 62.5%, а в более низкопроницаемой колонке - с 16.4 до 59.6%. Затем закачивают вторую и третью порции раствора, содержащего 17.0% мас. алюминия хлористого, 16.0% мас. карбамида и 67.0% мас. воды. При образовании геля после закачки второй порции в модели пласта произошло полное выравнивание профиля приемистости, закачка третьей порции раствора приводит к перераспределению фильтрационных потоков, что сопровождается дальнейшим доотмывом нефти как из низкопроницаемых зон, так и из высокопроницаемых зон модели пласта. Были достигнуты высокие абсолютные коэффициенты нефтевытеснения, прирост коэффициента нефтевытеснения составил по более низкопроницаемой колонке 14.4% (с 59.6 до 74.0%), по высокопроницаемой колонке - 14.4% (с 62.5 до 76.9%), подвижность жидкости в высокопроницаемой колонке снизилась в 18.3 раза.
Пример 3. По вышеописанной методике определения эффективности предлагаемого способа регулирования разработки нефтяного месторождения с неоднородными по проницаемости пластами в неоднородную нефтенасыщенную модель пласта с исходной газовой проницаемостью колонок 0.274 мкм2 и 1.253 мкм2 при 200°C осуществляют закачку первой порции водного раствора соли алюминия и карбамида с концентрацией компонентов: 1.0% мас. AlCl3, 4.0% мас. карбамида и 95.0% мас. воды, в качестве соли алюминия использовали гидроксохлорид алюминия, содержащий 30.0% оксида алюминия. После закачки первой порции раствора и образования золя в модели пласта наблюдалось незначительное снижение подвижности жидкости в высокопроницаемой колонке. Затем закачивают вторую, третью и четвертую порции раствора, содержащего 17.0 мас.% алюминия хлористого, 20.0 мас.% карбамида и 63.0 мас.% воды, в качестве алюминия хлористого использовали частично гидролизованную форму гидроксохлорида алюминия, содержащую 20.0% оксида алюминия. При образовании геля после закачки второй и третьей порций в модели пласта произошло выравнивание профиля приемистости, после закачки четвертой порции раствора происходит перераспределение фильтрационных потоков, что сопровождается доотмывом нефти как из низкопроницаемых зон, так и из высокопроницаемых зон модели пласта. Коэффициент нефтевытеснения по более низкопроницаемой колонке увеличился с 13.4 до 77.0%, по высокопроницаемой колонке - 53.1 до 79.2%, прирост коэффициента нефтевытеснения составил 26.1%, подвижность жидкости в высокопроницаемой колонке снизилась в 62.5 раза.
Экспериментальные исследования фильтрационных характеристик золей и гелей водного раствора карбамида и соли алюминия в условиях, моделирующих площадную закачку теплоносителя, показали, что применение растворов, образующих золи, позволяет использовать большие объемы оторочек и продвигать их на любое необходимое расстояние вглубь пласта. Градиентная закачка водного раствора карбамида и соли алюминия - сначала системы, образующей в пласте золь, а затем более концентрированной, образующей гель, позволит эффективно увеличивать охват пласта закачкой пара. При этом наблюдается интенсивный доотмыв остаточной нефти и достигаются высокие коэффициенты нефтевытеснения.
Таким образом, использование предлагаемого способа регулирования разработки нефтяного месторождения с неоднородными по проницаемости пластами с высокой температурой (выше 90°C) или разрабатываемых тепловыми методами (100-320°C) позволяет повысить эффективность вытеснения нефти за счет увеличения охвата пласта путем градиентной закачки водного раствора карбамида и соли алюминия - сначала закачивается менее концентрированная система, образующая в пласте золь, которую можно прокачивать на большое расстояние от забоя скважины с целью перераспределения потоков, а затем более концентрированная система, образующая в пласте гель - неподвижный экран.
Figure 00000001

Claims (2)

1. Способ регулирования разработки нефтяного месторождения с неоднородными по проницаемости пластами с высокой пластовой температурой 90°C и выше или при тепловых методах воздействия на пласт - 100-320°C, включающий закачку в пласт водного раствора соли алюминия и карбамида, отличающийся тем, что закачку проводят порциями, причем сначала закачивают порцию водного раствора, содержащую мас.%: соль алюминия 1,0-3,0, карбамид 3,75-15,0 мас.% и воду - остальное, образующего в пласте золь, а затем, по крайней мере, еще одну порцию водного раствора, содержащую мас.%: соль алюминия 3,5-17,0 карбамида 16,0-30 мас.% и воду - остальное, образующего в пласте гель.
2. Способ по п.1, отличающийся тем, что в качестве солей алюминия используют хлористый или азотнокислый алюминий безводный или гидратированный или их частично гидролизованную форму, причем гидроксохлорид алюминия оксид алюминия 10-30%.
RU2010141714/03A 2010-10-11 2010-10-11 Способ регулирования разработки нефтяного месторождения RU2467165C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2010141714/03A RU2467165C2 (ru) 2010-10-11 2010-10-11 Способ регулирования разработки нефтяного месторождения

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2010141714/03A RU2467165C2 (ru) 2010-10-11 2010-10-11 Способ регулирования разработки нефтяного месторождения

Publications (2)

Publication Number Publication Date
RU2010141714A RU2010141714A (ru) 2012-04-20
RU2467165C2 true RU2467165C2 (ru) 2012-11-20

Family

ID=46032255

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010141714/03A RU2467165C2 (ru) 2010-10-11 2010-10-11 Способ регулирования разработки нефтяного месторождения

Country Status (1)

Country Link
RU (1) RU2467165C2 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2535762C2 (ru) * 2013-01-17 2014-12-20 Открытое акционерное общество "Татнефть" имени В.Д. Шашина Способ разработки неоднородного нефтяного месторождения
RU2568452C1 (ru) * 2014-09-16 2015-11-20 Федеральное государственное бюджетное учреждение науки Институт химии нефти Сибирского отделения Российской академии наук (ИХН СО РАН) Способ герметизации противофильтрационного экрана под водоемом после отработки карьера
CN105586023A (zh) * 2014-10-23 2016-05-18 中国石油化工股份有限公司 低渗油藏无机凝胶泡沫堵水调剖剂
RU2673498C1 (ru) * 2017-12-05 2018-11-27 Публичное акционерное общество "Татнефть" имени В.Д. Шашина Способ разработки залежей высоковязкой нефти или битума при тепловом воздействии

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2061856C1 (ru) * 1992-06-30 1996-06-10 Институт химии нефти СО РАН Способ регулирования разработки нефтяного месторождения с разнопроницаемыми пластами
RU2120544C1 (ru) * 1996-08-06 1998-10-20 Институт химии нефти СО РАН Способ разработки нефтяного месторождения
RU2143550C1 (ru) * 1997-12-05 1999-12-27 Научно-исследовательский институт "Нефтеотдача" Состав для повышения нефтеотдачи
RU2185504C2 (ru) * 2000-10-04 2002-07-20 ЗАО "Химеко-ГАНГ" Гелеобразующий состав для повышения нефтеотдачи пластов
RU2270229C1 (ru) * 2004-08-24 2006-02-20 Елена Владимировна Григулецкая Состав для повышения нефтеотдачи
US20080035344A1 (en) * 2006-08-07 2008-02-14 Nadir Odeh Delayed polyacrylamide-co-aluminum hydroxyl chloride gel
EP2218751A1 (en) * 2004-12-17 2010-08-18 Dow Global Technologies Inc. Rheology modified polyethylene compositions
CN101839123A (zh) * 2010-03-26 2010-09-22 北京东方亚洲石油技术服务有限公司 一种析蜡型油藏开采方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2061856C1 (ru) * 1992-06-30 1996-06-10 Институт химии нефти СО РАН Способ регулирования разработки нефтяного месторождения с разнопроницаемыми пластами
RU2120544C1 (ru) * 1996-08-06 1998-10-20 Институт химии нефти СО РАН Способ разработки нефтяного месторождения
RU2143550C1 (ru) * 1997-12-05 1999-12-27 Научно-исследовательский институт "Нефтеотдача" Состав для повышения нефтеотдачи
RU2185504C2 (ru) * 2000-10-04 2002-07-20 ЗАО "Химеко-ГАНГ" Гелеобразующий состав для повышения нефтеотдачи пластов
RU2270229C1 (ru) * 2004-08-24 2006-02-20 Елена Владимировна Григулецкая Состав для повышения нефтеотдачи
EP2218751A1 (en) * 2004-12-17 2010-08-18 Dow Global Technologies Inc. Rheology modified polyethylene compositions
US20080035344A1 (en) * 2006-08-07 2008-02-14 Nadir Odeh Delayed polyacrylamide-co-aluminum hydroxyl chloride gel
CN101839123A (zh) * 2010-03-26 2010-09-22 北京东方亚洲石油技术服务有限公司 一种析蜡型油藏开采方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2535762C2 (ru) * 2013-01-17 2014-12-20 Открытое акционерное общество "Татнефть" имени В.Д. Шашина Способ разработки неоднородного нефтяного месторождения
RU2568452C1 (ru) * 2014-09-16 2015-11-20 Федеральное государственное бюджетное учреждение науки Институт химии нефти Сибирского отделения Российской академии наук (ИХН СО РАН) Способ герметизации противофильтрационного экрана под водоемом после отработки карьера
CN105586023A (zh) * 2014-10-23 2016-05-18 中国石油化工股份有限公司 低渗油藏无机凝胶泡沫堵水调剖剂
RU2673498C1 (ru) * 2017-12-05 2018-11-27 Публичное акционерное общество "Татнефть" имени В.Д. Шашина Способ разработки залежей высоковязкой нефти или битума при тепловом воздействии

Also Published As

Publication number Publication date
RU2010141714A (ru) 2012-04-20

Similar Documents

Publication Publication Date Title
Cooke Jr et al. Oil recovery by alkaline waterflooding
CN109996930B (zh) 处理井底地层带的方法
RU2467165C2 (ru) Способ регулирования разработки нефтяного месторождения
Naseri et al. Effect of temperature and calcium ion concentration on permeability reduction due to composite barium and calcium sulfate precipitation in porous media
RU2546700C1 (ru) Состав для повышения нефтеотдачи пластов (варианты)
CN100475929C (zh) 一种加重酸液配方
Liwei et al. Experimental study on gelling property and plugging effect of inorganic gel system (OMGL)
Nurxat et al. Alkaline/surfactant/polymer (ASP) flooding
WO2016090089A1 (en) Hydrocarbon recovery using complex water and carbon dioxide emulsions
RU2597593C1 (ru) Способ выравнивания профиля приемистости нагнетательных и ограничения водопритока в добывающих скважинах
RU2271444C1 (ru) Способ изоляции водопроницаемого пласта
RU2536070C1 (ru) Способ разработки и повышения нефтеотдачи неоднородных нефтяных пластов
RU2747726C1 (ru) Состав для потоковыравнивающих работ в нагнетательных скважинах
RU2280757C1 (ru) Способ изоляции притока пластовых вод
Usaitis Laboratory evaluation of sodium silicate for zonal isolation
RU2125648C1 (ru) Способ повышения нефтеотдачи нефтяной залежи
Zhang et al. Experimental and Statistical Study on Wellbore Scaling Mechanisms and Characteristics for Huanjiang Oilfield
RU2111351C1 (ru) Способ изоляции притока пластовых вод
RU2266398C2 (ru) Способ повышения нефтеотдачи пластов
RU2285792C1 (ru) Способ разработки нефтяных и газоконденсатных месторождений
RU2191894C1 (ru) Способ регулирования разработки нефтяного пласта
RU2770192C1 (ru) Кислотная композиция для обработки призабойной зоны высокотемпературного карбонатного коллектора
RU2236559C1 (ru) Способ селективной обработки пласта
RU2327032C2 (ru) Способ добычи нефти
RU2453691C2 (ru) Способ регулирования проницаемости пласта

Legal Events

Date Code Title Description
QB4A Licence on use of patent

Free format text: LICENCE

Effective date: 20130821

QB4A Licence on use of patent

Free format text: LICENCE

Effective date: 20140604

QB4A Licence on use of patent

Free format text: LICENCE

Effective date: 20141125

PD4A Correction of name of patent owner
QB4A Licence on use of patent

Free format text: LICENCE

Effective date: 20170405

QB4A Licence on use of patent

Free format text: LICENCE FORMERLY AGREED ON 20210524

Effective date: 20210524