RU2465636C1 - Способ исправления одиночных ошибок и предотвращения возникновения двойных ошибок в регистровом файле и устройство для его осуществления - Google Patents
Способ исправления одиночных ошибок и предотвращения возникновения двойных ошибок в регистровом файле и устройство для его осуществления Download PDFInfo
- Publication number
- RU2465636C1 RU2465636C1 RU2011136521/08A RU2011136521A RU2465636C1 RU 2465636 C1 RU2465636 C1 RU 2465636C1 RU 2011136521/08 A RU2011136521/08 A RU 2011136521/08A RU 2011136521 A RU2011136521 A RU 2011136521A RU 2465636 C1 RU2465636 C1 RU 2465636C1
- Authority
- RU
- Russia
- Prior art keywords
- register file
- write
- read
- address
- multiplexer
- Prior art date
Links
Images
Landscapes
- Techniques For Improving Reliability Of Storages (AREA)
Abstract
Изобретение относится к области телемеханики, автоматики и вычислительной техники и предназначено для обработки данных и исправления одиночных сбоев в регистровых файлах микропроцессоров. Техническим результатом является обеспечение устойчивости схемы регистрового файла к одиночным сбоям при сохранении временной диаграммы выполнения команд при меньшей площади кристалла и меньшем энергопотреблении. Устройство содержит регистровый файл, блок формирования корректирующих кодов и блок проверки и восстановления, блок управления восстановлением содержимого регистрового файла, счетчик адреса фонового чтения и записи, мультиплексор данных записи, мультиплексор адреса записи, мультиплексор адреса чтения. Способ описывает работу устройства. 2 н.п. ф-лы, 2 ил.
Description
Изобретение относится к области телемеханики, автоматики и вычислительной техники и предназначено для обработки данных и исправления одиночных сбоев в регистровых файлах микропроцессоров.
Уменьшение технологических норм изготовления изделий микроэлектроники приводит к уменьшению критического заряда, требуемого для возникновения одиночного сбоя в элементах хранения цифровых схем. Проблема усугубляется для электронных устройств, применяемых в авиации и космосе, где воздействие атмосферных нейтронов и тяжелых ионов во много раз сильнее, чем на поверхности земли.
Одним из основных блоков любого микропроцессора является регистровый файл, в котором сосредоточены основное количество элементов хранения, расположенных вне встроенных блоков памяти.
Регистровый файл существенно отличается от встроенных блоков памяти, таких как кэш-память, поскольку к нему предъявляются особые требования по быстродействию, по количеству портов чтения и записи и пр., требуются особые методы и решения для защиты его содержимого от одиночных сбоев. Стандартным методом защиты данных в регистровых файлах является защита с помощью корректирующих кодов. Принцип действия защиты заключается в том, что специальное устройство формирует дополнительные разряды на основе исходных данных таким образом, что при сбое любого элемента хранения возможно обнаружить его положение и исправить. Наиболее часто применяются схема кодирования кодом Хеммина, позволяющая исправлять одиночную и обнаруживать двойную ошибку («Architecture Design for Soft Errors», Mukherjee S. // Elsevier, 2008, стр.172-186).
Известны и другие схемы. Пример такой схемы применительно к регистровому файлу описан ниже. В этой схеме входное слово данных, разрядностью I, поступает в блок формирования корректирующих кодов, где на его основе формируются дополнительные D разрядов, которые записываются в соответствующий регистр регистрового файла вместе с исходным словом. При чтении, блок проверки и восстановления проверяет целостность слова данных, вычисляя корректирующие коды и сравнивая их со считанным значением из регистрового файла. При обнаружении расхождения, блок восстанавливает исходное значение и выдает на выход правильные данные разрядностью I. Недостатком такой схемы является то, что значение в регистровом файле остается поврежденным, поскольку исправление ошибки в регистровом файле возможно только при его записи. Таким образом, существует вероятность того, что запись в регистр не будет происходить длительное время и возможно возникновение в нем второго сбоя, а две ошибки традиционные схемы, такие как схема защиты кодом Хемминга, исправить не в состоянии. Данное явление принято называть накоплением сбоев. Существует разные программные и аппаратные решения данной проблемы. Например, широко известен программный метод, называемый scrubbing, при котором, параллельно к выполнению основной программы, периодически запускается фоновый процесс, в котором программа обращается последовательно ко всем ячейкам регистрового файла, считывая и обратно записывая содержимое считанной ячейки, тем самым исправляя все возможные одиночные сбои (Architecture Design for Soft Errors», Mukherjee S. // Elsevier, 2008, стр.132).
Недостатком этого метода является то, что требуется серьезная модификация программного кода, что не всегда возможно.
Наиболее близким по технической сути и достигаемому результату являются способ исправления одиночных ошибок и предотвращения возникновения двойных ошибок в регистровом файле, каждый регистр которого, помимо I информационных, содержит D дополнительных разрядов, и устройство для его осуществления, содержащее регистровый файл, блок формирования корректирующих кодов и блок проверки и восстановления, с входами и выходами и связями между блоками (Патент US №7493523, кл. G06F 11/14, опублик. 1994).
В указанном патенте описана схема, отслеживающая частоту обращений и принудительно вставляющая команду обращения к регистру, к которому длительное время не было обращения. Реализация схемы предполагает введение отдельного счетчика, а также схемы его управления для каждого регистра из регистрового файла.
Недостатком описанного выше технического решения является существенное увеличение суммарной площади на кристалле, занимаемой регистровым файлом и схемой, реализующей защиту от накопления сбоев и, соответственно, повышение энергопотребления всего кристалла. Также, включение дополнительных команд в исходную последовательность инструкций приводит к изменению временной диаграммы выполнения программы, что не всегда допустимо для систем жесткого реального времени.
Техническим результатом от использования изобретения является обеспечение устойчивости схемы регистрового файла к одиночным сбоям при сохранении временной диаграммы выполнения команд при меньшей площади кристалла и меньшем энергопотреблении.
Указанный результат достигается тем, что в способе исправления одиночных ошибок и предотвращения возникновения двойных ошибок в регистровом файле, каждый регистр которого, помимо I информационных, содержит D дополнительных разрядов, в каждом такте работы процессора выполняют анализ состояния сигнала управления циклом чтения регистрового файла, и если сигнал управления циклом чтения активен, то автомат состояний блока управления восстановлением содержимого регистрового файла приводят в исходное состояние, если сигнал управления циклом чтения регистрового файла неактивен, то выполняют цикл фонового чтения, причем адрес считываемого регистра в цикле фонового чтения берут со счетчика адреса фонового чтения и записи, разрядность которого совпадает с разрядностью шины адреса регистрового файла, затем считанные данные анализируют в блоке проверки и восстановления, при этом если ошибка не обнаружена, то содержимое счетчика адреса фонового чтения и записи увеличивают на единицу и автомат состояний блока управления восстановлением содержимого регистрового файла приводят в исходное состояние, а при обнаружении ошибки анализируют сигнал управления циклом записи регистрового файла и если он активен, то автомат состояний блока управления восстановлением содержимого регистрового файла приводят в исходное состояние, а если сигнал управления циклом записи регистрового файла неактивен, то выполняют цикл фоновой записи и в регистр записывают данные, исправленные в блоке проверки и восстановления, причем адрес записываемого регистра в цикле фоновой записи берут со счетчика адреса фонового чтения и записи, после чего содержимое счетчика фонового чтения и записи увеличивают на единицу, и автомат состояний блока управления восстановлением содержимого регистрового файла приводят в исходное состояние.
Способ реализуется устройством, содержащим регистровый файл, блок формирования корректирующих кодов, и блок проверки и восстановления, с входами и выходами и связями между блоками и дополнительно содержащим блок управления восстановлением содержимого регистрового файла, счетчик адреса фонового чтения и записи, мультиплексор данных записи, мультиплексор адреса записи, мультиплексор адреса чтения, при этом выходом блока управления восстановлением содержимого регистрового файла являются сигналы управления счетчиком фонового чтения и записи, мультиплексором данных записи, мультиплексором адреса записи, мультиплексором адреса чтения и регистровым файлом, а входом являются сигналы записи и чтения регистрового файла, поступающие из дешифратора команд ядра микропроцессора, причем счетчик адреса фонового чтения и записи имеет разрядность, совпадающую с разрядностью адреса регистрового файла, при этом мультиплексор адреса записи и мультиплексор адреса чтения имеют по две входные и по одной выходной шины, разрядность которых совпадает с разрядностью адреса регистрового файла, мультиплексор данных записи, имеет две входные и одну выходную шину, разрядность которой совпадает с разрядностью шины данных регистрового файла разрядностью I+D, выходом регистрового файла является шина данных разрядностью I+D, выходом блока проверки и восстановления является шина, разрядностью I+D, содержащая исправленные данные и подключенная к входу мультиплексора данных записи, шина, разрядностью I, содержащая информационные разряды, поступающие в конвейер микропроцессора, подключенный к выходу блока проверки и восстановления.
Изобретение поясняется чертежами, где на фиг.1 представлен алгоритм работы блока управления восстановлением содержимого регистрового файла, на фиг.2 представлена блок-схема устройства исправления одиночных ошибок в регистровом файле.
Способ исправления одиночных ошибок и предотвращения возникновения двойных ошибок в регистровом файле реализуется следующим образом. Каждый регистр регистрового файла, помимо информационных, содержит дополнительные разряды, в котором каждом такте работы процессора выполняется анализ состояния сигнала управления циклом чтения регистрового файла. Если сигнал управления циклом чтения активен, то автомат состояний блока управления восстановлением содержимого регистрового файла приводится в исходное состояние. Если сигнал управления циклом чтения неактивен, то выполняется цикл фонового чтения, причем адрес считываемого регистра в цикле фонового чтения берется со счетчика адреса фонового чтения и записи, разрядность которого совпадает с разрядностью шины адреса регистрового файла.
Данные, считанные в цикле фонового чтения, включающие информационные и дополнительные разряды, анализируются в блоке проверки и восстановления. Если блок проверки и восстановления не обнаружил ошибки, то содержимое счетчика адреса фонового чтения и записи увеличивается на единицу и автомат состояний блока управления восстановлением содержимого регистрового файла приводится в исходное состояние. Если обнаружена ошибка, то анализируется сигнал управления циклом записи регистрового файла. Если сигнал управления циклом записи регистрового файла неактивен, то выполняется цикл фоновой записи, в котором в регистр записываются данные, включающие информационные и дополнительные разряды, исправленные в блоке проверки и восстановления, причем адрес записываемого регистра в цикле фоновой записи берется со счетчика адреса фонового чтения и записи, после чего содержимое счетчика фонового чтения и записи увеличивается на единицу и автомат состояний блока управления восстановлением содержимого регистрового файла приводится в исходное состояние.
если сигнал управления циклом записи регистрового файла активен, то автомат состояний блока управления восстановлением содержимого регистрового файла приводится в исходное состояние.
Способ реализуется устройством, которое содержит следующие узлы:
1 - блок формирования корректирующих кодов,
2 - блок управления восстановлением содержимого регистрового файла,
3 - счетчик адреса фонового чтения и записи,
4 - мультиплексор данных записи,
5 - мультиплексор адреса записи,
6 - мультиплексор адреса чтения
7 - регистровый файл,
8 - блок проверки и восстановления.
1. Блок формирования корректирующих кодов 1 предназначен для формирования некоторого дополнительного числа разрядностью D на основе исходного информационного слова разрядностью I. Разрядность корректирующего дополнительного слова зависит от разрядности информационного слова и от принятого алгоритма вычисления корректирующего кода. На вход 1 блока формирования корректирующих кодов 1 подается исходное информационное слово, поступающее из конвейера микропроцессора.
2. Блок управления восстановлением содержимого регистрового файла 2 предназначен для формирования сигналов управления счетчиком 3, мультиплексорами 4. 5, 6 и регистровым файлом 7. Выходом блока 2 являются сигналы управления счетчиком фонового чтения и записи 3, мультиплексорами 4, 5, 6 и регистровым файлом 7. Входом схемы 2 являются сигналы записи и чтения регистрового файла, поступающие из дешифратора команд ядра микропроцессора. Алгоритм работы блока управления восстановлением содержимого регистрового файла показан на рис.1.
3. Счетчик адреса фонового чтения и записи 3 предназначен для формирования адреса, по которому производится фоновое считывание данных из регистрового файла 7 для проверки, а также по которому производится фоновая запись в регистровый файл 7 в случае обнаружения ошибки. Представляет собой стандартный счетчик с разрядностью, совпадающей с разрядностью адреса регистрового файла 7.
4. Мультиплексор 4 предназначен для формирования данных для цикла записи регистрового файла 7. Представляет собой стандартный мультиплексор с двумя входными и одной выходной шиной. Разрядность входных и выходных шин мультиплексора совпадает с разрядностью шины данных регистрового файла 7.
5. Мультиплексор 5 предназначен для формирования адреса цикла фоновой записи регистрового файла 7. Представляет собой стандартный мультиплексор с двумя входными и одной выходной шиной. Разрядность входных и выходных шин мультиплексора совпадает с разрядностью адреса регистрового файла 7.
6. Мультиплексор 6 предназначен для формирования адреса цикла фонового чтения регистрового файла 7. Представляет собой стандартный мультиплексор с двумя входными и одной выходной шиной. Разрядность входных и выходных шин мультиплексора совпадает с разрядностью адреса регистрового файла 7.
7. Регистровый файл 7 предназначен для хранения I информационных и D дополнительных разрядов и состоит из набора регистров общего назначения. Количество информационных разрядов каждого регистра определяется архитектурой микропроцессора и, как правило, составляет 8, 16, 32 или 64 разряда, но может принимать и другие значения. Количество дополнительных разрядов каждого регистра зависит от алгоритма вычисления корректирующего кода. Выходом регистрового файла является шина данных разрядностью I+D. Регистровый файл сможет содержать произвольное количество регистров, количество которых определят разрядность адреса чтения и записи. Наиболее распространены регистровые файлы с 16, 32, 64 регистрами (разрядность адреса = 4, 5, 6 соответственно), но возможны и другие значения количества регистров и, соответственно, другая разрядность адреса. Регистровый файл может иметь различное количество портов чтения и записи.
8. Блок проверки и восстановления 8 предназначен для проверки корректности считанных из регистрового файла 7 информационных и дополнительных данных и, в случае обнаружения одиночной ошибки, восстановления сбойного разряда. Наиболее распространенным является алгоритм проверки и восстановления кодом Хемминга, тем не менее, принцип действия устройства допускает любые другие алгоритмы проверки и восстановления. Выходом блока проверки и восстановления 8 является шина, разрядностью I+D, содержащая исправленные данные и подключенная к входу мультиплексора 4 шина разрядностью I, содержащая информационные разряды, поступающие в конвейер микропроцессора, и сигнал Fault, являющийся признаком обнаружения сбоя, подключенный к входу блока управления восстановлением содержимого регистрового файла 2. Устройство исправления одиночных ошибок и предотвращения возникновения двойных ошибок в регистровом файле 100 работает следующим образом: в начале каждого процессорного такта блок управления восстановлением содержимого регистрового файла 2 анализирует состояние сигнала управления циклом чтения регистрового файла Rd_RF_En, который формируется схемой управления конвейером микропроцессора. Если данный сигнал активен, то устройство 100 выполняет стандартный цикл чтения регистрового файла, а именно: сигнал Rd_En, поступающий с выхода 7 блока 2 на вход 27 регистрового файла 7, становится активным, сигнал управления мультиплексором Check_read, поступающий с выхода 10 блока 2 на вход 23 мультиплексора 6, имеет неактивное состояние, позволяя адресу чтения с конвейера микропроцессора R_AD_pipe попасть на вход 29 регистрового файла 7. Считанные данные R_Data_H с выхода 30 регистрового файла 7 поступают на вход 31 блока проверки и восстановления 8, в котором производится проверка и восстановление содержимого I информационных разрядов шины данных R_DATA, которые с выхода 33 блока 8 поступают в конвейер микропроцессора, после чего схема 100 переводит все сигналы в неактивное состояние и готова к началу следующего процессорного такта. Если сигнал управления циклом чтения регистрового файла Rd_RF_En имеет неактивное состояние, то схема 100 начинает цикл фонового чтения, в котором сигнал Rd_En, поступающий с выхода 7 блока 2 на вход 27 регистрового файла 7, становится активным, сигнал управления мультиплексором Check_read, поступающий с выхода 10 блока 2 на вход 23 мультиплексора 6, принимает неактивное состояние, позволяя адресу фонового чтения и записи Cnt_AD с выхода счетчика 3 попасть на вход 29 регистрового файла 7. Считанные данные R_Data_H разрядностью I+D с выхода 30 регистрового файла 7 поступают на вход 31 блока проверки и восстановления 8, в котором производится проверка содержимого разрядов шины R_Data_H.
Если блок проверки и восстановления 8 не обнаружил ошибки в данных на шине R_Data_H, то сигнал Fault, поступающий с выхода 34 блока 8 на вход 4 блока 2, имеет неактивное состояние и блок 2 переводит сигнал на выходе 9, поступающий на вход 11 счетчика 3, в активное состояние до окончания текущего такта, при этом счетчик 3 увеличивает свое значение на 1, после чего схема 100 переводит все сигналы в неактивное состояние и готова к началу следующего процессорного такта.
Если блок проверки и восстановления 8 обнаружил ошибку в данных на шине R_Data_H, то сигнал Fault, поступающий с выхода 34 блока 8 на вход 4 блока 2, переходит в активное состояние. Блок 2, обнаружив на входе 4 активный уровень сигнала Fault, анализирует состояние сигнала управления циклом записи регистрового файла Wr_RF_EN, поступающего на вход 2, который формируется схемой управления конвейером микропроцессора.
Если данный сигнал активен, то схема 100 выполняет стандартный цикл записи регистрового файла, а именно: сигнал Wr_En, поступающий с выхода 6 блока 2 на вход 26 регистрового файла 7, становится активным, информационные разряды I на шине данных W_DATA, подаваемые на вход 1 блока формирования корректирующих кодов из конвейера микропроцессора, дополняются корректирующими разрядами D, формируя на выходе 5 блока 1 данные разрядностью I+D на шине W_DATA_H, сигнал управления мультиплексором Fix_write, поступающий с выхода 8 блока 2 на вход 19 мультиплексора 4 и на вход 20 мультиплексора 5 имеет неактивное состояние, позволяя адресу записи с конвейера микропроцессора W_AD_pipe попасть на вход 28 регистрового файла 7, а данным на шине W_DATA_H с выхода 5 блока 1 попасть на вход 25 регистрового файла 7, после чего схема 100 переводит все сигналы в неактивное состояние и готова к началу следующего процессорного такта.
Если сигнал Wr_RF_EN неактивен, то схема 100 начинает цикл фоновой записи, при котором сигнал Wr_En, поступающий с выхода 6 блока 2 на вход 26 регистрового файла 7, становится активным, сигнал управления мультиплексором Fix_write, поступающий с выхода 8 блока 2 на вход 19 мультиплексора 4 и на вход 20 мультиплексора 5 принимает активное состояние, позволяя адресу фонового чтения и записи Cnt_AD с выхода счетчика 3 попасть на вход 28 регистрового файла 7, а исправленным данным на шине DATA_H разрядностью I+D с выхода 32 блока проверки и восстановления 8 попасть на вход 25 регистрового файла 7. Результатом данного цикла фоновой записи станет исправление поврежденного слова данных в регистровом файле 7. По завершении указанных действий блок 2 переводит сигнал на выходе 9, поступающий на вход 11 счетчика 3, в активное состояние, при этом счетчик 3 увеличивает свое значение на 1, после чего схема 100 переводит все сигналы в неактивное состояние и готова к началу следующего.
Описанные выше способ и устройство позволяют обеспечить устойчивость схемы регистрового файла к одиночным сбоям при сохранении временной диаграммы выполнения команд при меньшей площади кристалла и меньшем энергопотреблении.
Claims (2)
1. Способ исправления одиночных ошибок и предотвращения возникновения двойных ошибок в регистровом фале, каждый регистр которого, помимо I информационных, содержит D дополнительных разрядов, отличающийся тем, что в каждом такте работы процессора выполняют анализ состояния сигнала управления циклом чтения регистрового файла, и если сигнал управления циклом чтения активен, то автомат состояний блока управления восстановлением содержимого регистрового файла приводят в исходное состояние, если сигнал управления циклом чтения регистрового файла неактивен, то выполняют цикл фонового чтения, причем адрес считываемого регистра в цикле фонового чтения берут со счетчика адреса фонового чтения и записи, разрядность которого совпадает с разрядностью шины адреса регистрового файла, затем считанные данные анализируют в блоке проверки и восстановления, при этом, если ошибка не обнаружена, то содержимое счетчика адреса фонового чтения и записи увеличивают на единицу и автомат состояний блока управления восстановлением содержимого регистрового файла приводят в исходное состояние, а при обнаружении ошибки анализируют сигнал управления циклом записи регистрового файла, и, если он активен, то автомат состояний блока управления восстановлением содержимого регистрового файла приводят в исходное состояние, а если сигнал управления циклом записи регистрового файла неактивен, то выполняют цикл фоновой записи и в регистр записывают данные, исправленные в блоке проверки и восстановления, причем адрес записываемого регистра в цикле фоновой записи берут со счетчика адреса фонового чтения и записи, после чего содержимое счетчика фонового чтения и записи увеличивают на единицу, и автомат состояний блока управления восстановлением содержимого регистрового файла приводят в исходное состояние.
2. Устройство для осуществления способа по п.1, содержащее регистровый файл, блок формирования корректирующих кодов, и блок проверки и восстановления, с входами и выходами и связями между блоками, отличающееся тем, что устройство дополнительно содержит блок управления восстановлением содержимого регистрового файла, счетчик адреса фонового чтения и записи, мультиплексор данных записи, мультиплексор адреса записи, мультиплексор адреса чтения, при этом выходом блока управления восстановлением содержимого регистрового файла являются сигналы управления счетчиком фонового чтения и записи, мультиплексором данных записи, мультиплексором адреса записи, мультиплексором адреса чтения и регистровым файлом, а входом являются сигналы записи и чтения регистрового файла, поступающие из дешифратора команд ядра микропроцессора, причем счетчик адреса фонового чтения и записи имеет разрядность, совпадающую с разрядностью адреса регистрового файла, при этом мультиплексор адреса записи и мультиплексор адреса чтения имеют по две входные и по одной выходной шины, разрядность которых совпадает с разрядностью адреса регистрового файла, мультиплексор данных записи имеет две входные и одну выходную шины, разрядность которой совпадает с разрядностью шины данных регистрового файла разрядностью I+D, выходом регистрового файла является шина данных разрядностью I+D, выходом блока проверки и восстановления является шина разрядностью I+D, содержащая исправленные данные и подключенная к входу мультиплексора данных записи, шина разрядностью I, содержащая информационные разряды, поступающие в конвейер микропроцессора, подключенный к выходу блока проверки и восстановления.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2011136521/08A RU2465636C1 (ru) | 2011-09-02 | 2011-09-02 | Способ исправления одиночных ошибок и предотвращения возникновения двойных ошибок в регистровом файле и устройство для его осуществления |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2011136521/08A RU2465636C1 (ru) | 2011-09-02 | 2011-09-02 | Способ исправления одиночных ошибок и предотвращения возникновения двойных ошибок в регистровом файле и устройство для его осуществления |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2465636C1 true RU2465636C1 (ru) | 2012-10-27 |
Family
ID=47147599
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2011136521/08A RU2465636C1 (ru) | 2011-09-02 | 2011-09-02 | Способ исправления одиночных ошибок и предотвращения возникновения двойных ошибок в регистровом файле и устройство для его осуществления |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2465636C1 (ru) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7083092B2 (en) * | 2004-03-24 | 2006-08-01 | Fujitsu Limited | Cash registering apparatus and system, and computer-readable recording medium which stores a display control program for the same apparatus therein |
RU2302667C1 (ru) * | 2006-01-10 | 2007-07-10 | Государственное образовательное учреждение высшего профессионального образования "Воронежский государственный университет" | Способ интеллектуально-адаптивной широтно-импульсной записи цифровой информации |
US7493523B2 (en) * | 2006-03-14 | 2009-02-17 | International Business Machines Corporation | Method and apparatus for preventing soft error accumulation in register arrays |
RU2384899C2 (ru) * | 2008-06-02 | 2010-03-20 | Государственное образовательное учреждение высшего профессионального образования "Московский государственный текстильный университет имени А.Н. Косыгина" | Запоминающее устройство |
-
2011
- 2011-09-02 RU RU2011136521/08A patent/RU2465636C1/ru active IP Right Revival
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7083092B2 (en) * | 2004-03-24 | 2006-08-01 | Fujitsu Limited | Cash registering apparatus and system, and computer-readable recording medium which stores a display control program for the same apparatus therein |
RU2302667C1 (ru) * | 2006-01-10 | 2007-07-10 | Государственное образовательное учреждение высшего профессионального образования "Воронежский государственный университет" | Способ интеллектуально-адаптивной широтно-импульсной записи цифровой информации |
US7493523B2 (en) * | 2006-03-14 | 2009-02-17 | International Business Machines Corporation | Method and apparatus for preventing soft error accumulation in register arrays |
RU2384899C2 (ru) * | 2008-06-02 | 2010-03-20 | Государственное образовательное учреждение высшего профессионального образования "Московский государственный текстильный университет имени А.Н. Косыгина" | Запоминающее устройство |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10019312B2 (en) | Error monitoring of a memory device containing embedded error correction | |
CN108268340B (zh) | 校正存储器中的错误的方法 | |
US10901839B2 (en) | Common high and low random bit error correction logic | |
US8010875B2 (en) | Error correcting code with chip kill capability and power saving enhancement | |
US7447948B2 (en) | ECC coding for high speed implementation | |
US8468416B2 (en) | Combined group ECC protection and subgroup parity protection | |
CN104347122B (zh) | 一种消息式内存模组的访存方法和装置 | |
KR20090028507A (ko) | 비휘발성 메모리 에러 보정 시스템 및 방법 | |
EP2715549A2 (en) | Apparatus and methods for providing data integrity | |
EP2715550A2 (en) | Apparatus and methods for providing data integrity | |
US8949694B2 (en) | Address error detection | |
KR20140105393A (ko) | 메모리 회로들, 메모리에 액세스하는 방법 및 메모리를 복구하는 방법 | |
US9934085B2 (en) | Invoking an error handler to handle an uncorrectable error | |
US9189327B2 (en) | Error-correcting code distribution for memory systems | |
US9329926B1 (en) | Overlapping data integrity for semiconductor devices | |
US7240272B2 (en) | Method and system for correcting errors in a memory device | |
US20230089736A1 (en) | Single-cycle byte correcting and multi-byte detecting error code | |
US10824504B2 (en) | Common high and low random bit error correction logic | |
RU2465636C1 (ru) | Способ исправления одиночных ошибок и предотвращения возникновения двойных ошибок в регистровом файле и устройство для его осуществления | |
US7360132B1 (en) | System and method for memory chip kill | |
Rahman | Utilizing two stage scrubbing to handle single-fault multi-error cases in DRAM systems | |
Karsli et al. | Enhanced duplication: a technique to correct soft errors in narrow values | |
US11809272B2 (en) | Error correction code offload for a serially-attached memory device | |
CN117716342A (zh) | 存储器装置的裸片上ecc数据 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20130903 |
|
NF4A | Reinstatement of patent |
Effective date: 20140920 |
|
PD4A | Correction of name of patent owner | ||
PC41 | Official registration of the transfer of exclusive right |
Effective date: 20160808 |
|
PC41 | Official registration of the transfer of exclusive right |
Effective date: 20180813 |