RU2463522C1 - Способ розжига камеры сгорания авиационных газотурбинных двигателей - Google Patents

Способ розжига камеры сгорания авиационных газотурбинных двигателей Download PDF

Info

Publication number
RU2463522C1
RU2463522C1 RU2011114164/06A RU2011114164A RU2463522C1 RU 2463522 C1 RU2463522 C1 RU 2463522C1 RU 2011114164/06 A RU2011114164/06 A RU 2011114164/06A RU 2011114164 A RU2011114164 A RU 2011114164A RU 2463522 C1 RU2463522 C1 RU 2463522C1
Authority
RU
Russia
Prior art keywords
spark
time interval
ignition
storage capacitor
energy
Prior art date
Application number
RU2011114164/06A
Other languages
English (en)
Inventor
Андрей Николаевич Мурысев (RU)
Андрей Николаевич Мурысев
Александр Владимирович Краснов (RU)
Александр Владимирович Краснов
Евгений Викторович Распопов (RU)
Евгений Викторович Распопов
Александр Олегович Рыбаков (RU)
Александр Олегович Рыбаков
Юрий Абрамович Трубников (RU)
Юрий Абрамович Трубников
Валерий Алексеевич Шипигусев (RU)
Валерий Алексеевич Шипигусев
Original Assignee
Открытое акционерное общество "Уфимское научно-производственное предприятие "Молния"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Уфимское научно-производственное предприятие "Молния" filed Critical Открытое акционерное общество "Уфимское научно-производственное предприятие "Молния"
Priority to RU2011114164/06A priority Critical patent/RU2463522C1/ru
Application granted granted Critical
Publication of RU2463522C1 publication Critical patent/RU2463522C1/ru

Links

Images

Landscapes

  • Ignition Installations For Internal Combustion Engines (AREA)

Abstract

Изобретение относится к технике розжига топливовоздушной смеси в камерах сгорания авиационных газотурбинных двигателей. В системе зажигания от источника питания проводят подкачку энергии в накопительный конденсатор, выполняют коммутацию энергии накопительного конденсатора на искровой промежуток свечи зажигания, при этом обеспечивают в искровом промежутке свечи генерацию искрового разряда, используемого для воспламенения топливовоздушной смеси в камере сгорания газотурбинного двигателя, обеспечивают непрерывные циклы заряда-разряда накопительного конденсатора с генерацией искровых разрядов в искровом промежутке свечи в первый интервал времени с повышенной частотой за счет увеличения мощности подкачки энергии в накопительный конденсатор в этот интервал времени, а в последующий интервал времени, до прекращения подачи энергии в систему зажигания, с пониженной частотой по сравнению с первым интервалом времени. Изобретение позволяет повысить надежность противопомпажных запусков двигателя и уменьшить время восстановления выхода двигателя на нормальный режим. 1 ил.

Description

Изобретение относится к технике розжига топливовоздушной смеси в камерах сгорания авиационных газотурбинных двигателей и может быть использовано для запуска промышленных газотурбинных двигателей.
Известен способ розжига топливовоздушной смеси в камерах сгорания авиационных двигателей, заключающийся в том, что подают энергию в систему зажигания от источника питания, производят подкачку энергии в накопительный конденсатор, выполняют коммутацию энергии с накопительного конденсатора после достижения на нем заданного значения напряжения на искровой промежуток, обеспечивают за счет протекания разрядного тока конденсатора генерацию искрового разряда в искровом промежутке свечи, используемого для воспламенения топливовоздушной смеси в камере сгорания, обеспечивают повторение периодически следующих циклов заряда-разряда накопительного конденсатора на свечу зажигания с генерацией искровых разрядов в искровом промежутке свечи в определенном диапазоне частот следования разрядов [1-17].
К недостаткам широко применяемого описанного способа розжига топливовоздушной смеси в камерах сгорания авиационных газотурбинных двигателей следует отнести следующее:
- при работе системы зажигания в длительном режиме дежурного зажигания (так называемом в зарубежном авиадвигателестроении режиме «continuous ignition» [18]), используемом для поддержания горения в камере сгорания авиационного двигателя в плохих метеоусловиях: турбулентной атмосфере, обледенении, сильном дожде - искрообразование на свечах зажигания происходит при повышенных давлениях в камере сгорания и при воздействии повышенных температур в зоне искрового промежутка. Это вызывает значительное увеличение интенсивности электроэрозионной выработки контактов электродов искрового промежутка [19]. Интенсивная электроэрозионная выработка контактов электродов приводит при длительной работе системы зажигания в дежурном режиме к увеличению величины искрового промежутка свечи и, как следствие, к увеличению ее пробивного напряжения до значений, превышающих развиваемое агрегатом зажигания напряжение. Тем самым уменьшается ресурс свечей зажигания, используемых на данном двигателе, возникает необходимость их замены на новые, что повышает стоимость логистики системы зажигания при эксплуатации двигателя;
- к авиационным газотурбинным двигателям предъявляются требования по обеспечению их запуска во всем диапазоне высот и скоростей полета летательных аппаратов, также в широком диапазоне температур и давлений окружающей среды при наземных запусках. Надежное обеспечение воспламенения топливовоздушной смеси в таких условиях требует повышения энергии, запасенной на накопительном конденсаторе систем зажигания, что обеспечивает требуемое увеличение энергии разряда для воспламенения топливной смеси в таких условиях. При ограниченной выходной мощности преобразователя P2, которым обеспечивается подкачка энергии в накопительный конденсатор, увеличение запасенной на нем энергии Q3 приводит к уменьшению частоты искровых разрядов на свечах зажигания fн, которая определяется:
Figure 00000001
Следовательно, частота искрообразования на свечах зажигания будет в этом случае уменьшенной, что приводит в ряде случаев к задержкам воспламенения топливовоздушной смеси в камерах сгорания, запускам двигателей со значительным факелением за соплом (выбросом за сопло горящего облака топливовоздушной смеси) при осуществлении наземных запусков. Кроме этого, при уменьшенной частоте искрообразования на свечах зажигания при осуществлении повторного запуска (воспламенении топливовоздушной смеси) после отсечки подачи топлива при работе противопомпажной системы двигателя (осуществлении противопомпажного запуска) [20] задержка воспламенения приводит к увеличению времени выхода двигателя из помпажа и восстановлению режима его работы: повторный розжиг камеры сгорания происходит при более низких оборотах турбины, соответственно увеличивается время на восстановление имевшего место режима работы двигателя. Более позднее воспламенение топливовоздушной смеси в отдельных случаях может привести к срыву противопомпажного запуска двигателя и выключению его в полете. Это уменьшает надежность эксплуатации газотурбинных двигателей воздушных судов;
- высокие требования, предъявляемые нормами по допустимым выбросам вредных веществ в атмосферу при работе двигателя [21], предполагают повсеместное внедрение на двигателях так называемых малоэмиссионных камер сгорания (далее - МЭКС), работающих на бедных топливовоздушных смесях. Розжиг бедных топливовоздушных смесей требует значительного повышения накопленной энергии до 20 Дж [22, 23]. При ограниченной мощности преобразователей напряжения это приводит к дополнительному уменьшению частоты следования искровых разрядов. При средней мощности преобразователей 18 Вт частота следования искровых разрядов на свечах зажигания уменьшается до ≈0,7 Гц, а при понижении напряжения питания до 18 В в пределах допустимых значений по нормам [24] частота искрообразования снижается еще больше. Все это может привести к уже описанным выше недостаткам, присущим способам розжига камеры сгорания авиационных двигателей по [1-17] и связанным с ними задержкам воспламенения. Повышение мощности преобразователя напряжения, тем самым повышение частоты искровых разрядов на свечах при повышении запасенной энергии на накопительном конденсаторе приводит к значительному увеличению интенсивности элекроэрозионных процессов на электродах искрового промежутка. Это приводит к ускорению процесса увеличения искрового зазора и увеличению пробивного напряжения свечи. Таким образом, значительно сокращается время достижения пробивным напряжением величины выходного напряжения агрегата зажигания, т.е. ресурс свечей - их часовая искровая наработка.
Частично указанных недостатков лишен способ розжига топливовоздушной смеси в камере сгорания авиационных газотурбинных двигателей, принятый за прототип и описанный в [25-27], заключающийся в том, что в системе зажигания от источника питания проводят подкачку энергии в накопительный конденсатор, после достижения на нем установленного заданного значения напряжения выполняют коммутацию энергии накопительного конденсатора на искровой промежуток свечи зажигания, при этом обеспечивают в искровом промежутке свечи генерацию искрового разряда, используемого для воспламенения топливовоздушной смеси в камере сгорания газотурбинного двигателя, обеспечивают непрерывные циклы заряда-разряда накопительного конденсатора с генерацией искровых разрядов в искровом промежутке свечи в первый интервал времени с повышенной частотой за счет увеличения мощности подкачки энергии в накопительный конденсатор в этот интервал времени, а в последующий интервал времени, до прекращения подачи энергии в систему зажигания, с пониженной частотой по сравнению с первым интервалом времени.
Использование способа розжига топливовоздушной смеси в камере сгорания, принятого за прототип, позволяет обеспечить повышенную частоту искровых разрядов в момент, необходимый для воспламенения топливовоздушной смеси при запуске двигателя, как это имело место в вышеописанных аналогах [1-17], и уменьшить частоту следования искровых разрядов на свечах зажигания при работе системы зажигания в режиме дежурного зажигания («continuous ignition»). Это позволяет уменьшить интенсивность электроэрозионной выработки контактов электродов свечи и тем самым повысить по сравнении со способом-аналогом ресурс свечей зажигания, их часовую искровую наработку.
В то же время при энергиях, запасенных на накопительных конденсаторах (18-20) Дж, указанный способ, принятый за прототип, даже при мощности преобразователя 36 Вт в первом интервале времени не позволяет получить частоту следования искровых разрядов на свечах более (1,5-1,6) Гц, что необходимо для обеспечения надежного повторного воспламенения топливной смеси после предварительной отсечки топлива и его повторной подачи в камеру сгорания при работе противопомпажной системы двигателя при выполнении противопомпажных запусков. При работе системы зажигания в аварийном режиме при напряжении питания 18 В эта частота следования искровых разрядов на свечах зажигания за счет пониженной мощности подкачки энергии в конденсатор уменьшается еще значительнее, что, как и в случае с аналогами, приводит к более позднему воспламенению топливовоздушной смеси в камере сгорания и увеличению времени восстановления первоначального режима работы двигателя при выполнении противопомпажных запусков.
Задача предлагаемого изобретения заключается в повышении надежности противопомпажных запусков двигателя (работы противопомпажной системы) - уменьшении времени восстановления выхода двигателя на нормальный режим за счет уменьшения времени, необходимого для повторного воспламенения топливовоздушной смеси.
Указанная задача достигается способом розжига топливовоздушной смеси в камере сгорания авиационного газотурбинного двигателя, заключающимся в том, что в системе зажигания от источника питания проводят подкачку энергии в накопительный конденсатор, после достижения на нем установленного заданного значения напряжения выполняют коммутацию энергии накопительного конденсатора на искровой промежуток свечи зажигания, при этом обеспечивают в искровом промежутке свечи генерацию искрового разряда, используемого для воспламенения топливовоздушной смеси в камере сгорания газотурбинного двигателя, обеспечивают непрерывные циклы заряда-разряда накопительного конденсатора с генерацией искровых разрядов в искровом промежутке свечи в первый интервал времени с повышенной частотой за счет увеличения мощности подкачки энергии в накопительный конденсатор в этот интервал времени, а в последующий интервал времени, до прекращения подачи энергии в систему зажигания, с пониженной частотой по сравнению с первым интервалом времени, причем в первый интервал времени одновременно с началом подкачки энергии в накопительный конденсатор уменьшают установленное заданное для второго интервала времени напряжение, до которого накачивают накопительный конденсатор при его коммутации на искровой промежуток свечи.
Новым в предлагаемом способе розжига топливовоздушной смеси в камере сгорания авиационного газотурбинного двигателя является то, что в первый интервал времени подачи энергии в систему зажигания уменьшают значение напряжения, до которого производят накачку накопительного конденсатора.
Уменьшение напряжения U1 на накопительном конденсаторе, до которого производят накачку энергии в накопительный конденсатор до ее коммутации на искровой промежуток свечи зажигания, уменьшает запасенную энергию, коммутируемую на свечу в первый интервал времени по сравнению со вторым интервалом времени подачи энергии в систему зажигания. Таким образом, частота следования искровых разрядов на искровом промежутке свечи зажигания в первый интервал времени подачи энергии в систему зажигания будет определяться, как:
Figure 00000002
где f1 - частота следования искровых разрядов в искровом промежутке свечи в первый интервал подачи энергии в систему зажигания,
P21 - мощность подкачки энергии в накопительный конденсатор системы зажигания в первый интервал времени подачи энергии в систему зажигания,
Cн - емкость накопительного конденсатора системы зажигания,
U1 - напряжение, до которого заряжают накопительный конденсатор в первый интервал времени подачи энергии в систему зажигания.
Соответственно во втором интервале времени подачи энергии в систему зажигания частота следования искровых разрядов в искровой промежуток свечи зажигания будет определяться, как:
Figure 00000003
где f2 - частота следования искровых разрядов в искровом промежутке свечи во второй интервал времени подачи энергии в систему зажигания,
P22 - мощность подкачки энергии в накопительный конденсатор системы зажигания во второй интервал времени подачи энергии в систему зажигания,
U2 - напряжение, до которого заряжают накопительный конденсатор во второй интервал времени подачи энергии в систему зажигания.
При P21 более P22 и U2 более U1 частота следования искровых разрядов в искровом промежутке свечи зажигания в первый интервал времени будет больше частоты следования искровых разрядов во второй интервал времени подачи энергии в систему зажигания
Figure 00000004
Приведенное соотношение показывает, что по сравнению с прототипом при использовании предлагаемого способа розжига топливовоздушной смеси частота следования искровых разрядов в искровом промежутке может быть существенно повышена, т.к. кроме повышения мощности подкачки энергии в накопительный конденсатор на первом интервале времени уменьшают напряжение U1, до которого накачивают накопительный конденсатор в этот интервал работы системы зажигания.
При работе противопомпажной системы двигателя после отсечки топлива в первый интервал времени до 3 секунд параметры топливовоздушной смеси для ее воспламенения не требуют больших значений энергии электрического разряда для розжига камеры сгорания [28]. Это позволяет кратковременно уменьшить запасаемую на накопительном конденсаторе энергию в искровом разряде, используемую для воспламенения топливовоздушной смеси. Следовательно, дополнительное уменьшение запасенной на накопительном конденсаторе энергии обеспечивает дополнительное увеличение частоты следования искровых разрядов в искровом промежутке свечи в первый интервал времени по сравнению с прототипом.
Например, при мощности подкачки энергии в накопительный конденсатор 32 Вт и коммутируемой энергии в первый интервал времени ≈10 Дж частота следования искровых разрядов в искровом промежутке свечи достигает более 3 Гц, при этом во втором интервале времени, при мощности накачки энергии в накопительный конденсатор ≈18 Вт и при подаче в систему зажигания при коммутируемой энергии ≈20 Дж частота следования искровых разрядов в искровом промежутке свечи достигает ≈0,9 Гц. Такие соотношения позволяют уменьшить задержку воспламенения топливовоздушной смеси после отсечки топлива и повторной подачи его в камеру сгорания при работе противопомпажной системы (при выполнении противопомпажного запуска), сократить время восстановления двигателем первоначального режима работы, повысить надежность противопомпажного запуска двигателя. В то же время увеличение во втором интервале времени коммутируемой энергии, до которой проводят зарядку накопительного конденсатора до 20 Дж и уменьшение частоты следования искровых разрядов в искровом промежутке свечи до ≈0,9 Гц позволяют обеспечить надежное воспламенение топливовоздушной смеси при выполнении запусков двигателя без кислородной подпитки в режиме авторотации и запусков двигателя во всем диапазоне температур и давлений воздуха при аэродромных наземных запусках.
На фиг.1 представлены пояснения по работе системы зажигания, реализующей предлагаемый способ розжига топливовоздушной смеси в камере сгорания авиационного газотурбинного двигателя. Система зажигания содержит источник питания 1, фильтр в цепях питания 2, управляемый по мощности обратноходовой преобразователь напряжения 3, выпрямитель 4, накопительный конденсатор 5, коммутирующий ключ 6 (например, управляемый разрядник), активизатор 7, содержащий высокочастотный конденсатор 8 и импульсный высоковольтный трансформатор 9, сопротивление гальванической связи 10, свечу зажигания 11, устанавливаемую в камеру сгорания 12, элементы автоматики двигателя (на фиг.1 не показаны), реле времени 13, устройство управления 14, коммутирующее ключ 6.
Предлагаемый способ розжига топливовоздушной смеси в камере сгорания авиационных газотурбинных двигателей реализуется следующим образом. Подают энергию в систему зажигания путем подключения источника питания 1 к фильтру радиопомех 2, с помощью преобразователя 3 с управляемой мощностью и выпрямителя 4 проводят подкачку энергии в накопительный конденсатор 5 системы зажигания. Одновременно с накопительным конденсатором 5 проводят зарядку высокочастотного конденсатора 8, через сопротивление гальванической связи 10 и первичную обмотку трансформатора 9, входящих в активизатор 7. После достижения на накопительном конденсаторе 5 напряжения U1 устройство управления 14 переводит коммутирующий ключ 6 (например, управляемый разрядник) в проводящее состояние. Конденсатор 8 разряжается через первичную обмотку трансформатора 9, коммутирующий ключ 6 создает во вторичной обмотке трансформатора 9 импульс высокого напряжения, обеспечивая пробой искрового промежутка свечи зажигания и генерацию мощного искрового разряда в искровом промежутке свечи за счет протекания разрядного тока накопительного конденсатора 5. Процесс накачки накопительного конденсатора 5 энергией и его разрядка на искровой промежуток свечи зажигания периодически повторяются с частотой следования искровых разрядов, определяемой мощностью преобразователя 3 P21 и энергией Q31 запасаемой на накопительном конденсаторе 5 и равной
Figure 00000005
где Cн - величина емкости накопительного конденсатора.
После начала подачи энергии в систему зажигания реле времени 13 начинает отсчет времени работы системы зажигания, сравнивая его с заданным значением первого интервала времени работы системы зажигания t1. При текущем времени t менее t1 устройство управления 14 удерживает неизменными значения P21 и U1, соответственно с более высоким P21 и низким значением U1 по сравнению с заданными значениями P22 и U2 для времени t более t1 (второго интервала времени). Это обеспечивает повышенную частоту следования искровых разрядов в искровом промежутке свечи зажигания в момент времени t менее t1. После достижения времени подачи энергии в систему зажигания t, равного t1, реле времени 13 изменяет свое состояние (например, выходная цепь реле переходит в состояние «нормально замкнутые сухие контакты»), по этому сигналу устройство управления 14 уменьшает мощность накачки накопительного конденсатора 5 энергией и увеличивает значение напряжения пробоя ключа 6 - переводит его со значения U1 на U2, которое выше U1. После перевода преобразователя на мощность P22, меньшую чем P21, напряжение срабатывания (переход в проводящее состояние) ключа 6 переключается с U1 на U2, система зажигания переходит во второй режим работы с пониженной частотой следования искровых разрядов и повышенной энергией в разряде.
При выполнении наземных аэродромных запусков двигателя надежность воспламенения обеспечивается следующим образом: автоматика двигателя подключает систему зажигания к источнику питания, при этом топливо в камеру сгорания не поступает, по прошествии определенного времени, которое, как правило, превышает первый интервал времени работы системы зажигания, в камеру сгорания подается топливо, которое после распыливания его форсункой поступает в зону расположения искрового промежутка свечи зажигания. В период времени t более t1 в системе зажигания генерируются искровые разряды с низкой частотой, но с большой энергией разряда, определяемой большим значением энергии на накопительном конденсаторе. Это обеспечивает надежность воспламенения топливовоздушной смеси, розжиг камеры сгорания во всех условиях по температуре и давлению при выполнении аэродромных наземных запусков двигателей. При выполнении высотного запуска двигателя с режима авторотации (например, после его выключения в полете), розжиг камеры сгорания также происходит при работе системы зажигания во втором режиме, т.е. после отработки времени t более t1. Высокие значения запасенной энергии на накопительном конденсаторе позволяют обеспечить воспламенение топлива в заданном диапазоне высот и скоростей полета воздушного судна. При этом виде запуска двигателя процесс воспламенения камеры сгорания не критичен к частоте следования искровых разрядов в искровом промежутке свечи. При работе противопомпажной системы двигателя (выполнении противопомпажных запусков) при повторной подаче топлива в камеру сгорания после его отсечки одновременно с открытием клапана подачи топлива в систему зажигания начинают подавать энергию. Поэтому появление топливовоздушной смеси в зоне искрового промежутка свечи зажигания появляется в течение времени, меньшем t1. Поэтому, чем выше частота следования искровых разрядов в искровом промежутке свечи зажигания, тем больше возможность воспламенения топливовоздушной смеси с меньшей задержкой времени, т.е. при больших оборотах турбины. Таким образом, для восстановления режима двигателя требуется меньшее время.
Воспламенение топливовоздушной смеси в условиях противопомпажных запусков не требует повышенных энергий разряда, как в случае запуска холодного двигателя с режима авторотации [28]. Это позволяет по сравнению с прототипом дополнительно увеличить частоту следования искровых разрядов в искровом промежутке свечи за счет уменьшения в допустимых пределах (определяемых экспериментально) запасенной на первом интервале времени работы системы зажигания энергии на накопительном конденсаторе. Повышение частоты следования искровых разрядов в искровом промежутке свечи по сравнению с прототипом повышает надежность противопомпажных запусков двигателя (работы противопомпажной системы), уменьшает время восстановления двигателем первоначального режима.
В случае срыва противопомпажного запуска через время t1 система зажигания переходит в режим с выходными параметрами Q32 и f2, поэтому без выключения системы зажигания после выхода двигателя на режим авторотации до его полного охлаждения возможно реализовать запуск с режима авторотации в условиях, более благоприятных по сравнению с запуском с режима авторотации после длительного полета двигателя на этом режиме. Режим работы системы зажигания после достижения времени t1, т.е. при t более t1 может использоваться также для поддержания горения в камере сгорания в дежурном режиме («continuous ignition»).
Применение предлагаемого способа розжига топливовоздушной смеси в камерах сгорания авиационных газотурбинных двигателей позволяет повысить эффективность управления их запуском на всех режимах без изменения САУ двигателей, не требует введения в САУ дополнительных цепей, управления величиной запасенной в агрегатах зажигания энергии, коммутируемой на свечи.
Источники литературы
1. В.А.Балагуров. Аппараты зажигания. М.: Машиностроение, 1968 (см. с.52).
2. А.А.Иноземцев, М.А.Нихамкин, В.Л.Сандрацкий. Основы конструирования авиационных двигателей и энергетических установок: учеб. - М.: Машиностроение, 2008. - Т.2, - с.112.
3. А.Н.Лефевр. Процессы в камерах сгорания ГТД. Перевод с англ. - М.: Мир, 1996.
4. Агрегат зажигания емкостного разряда СКНД-11-1А. Техническое описание и инструкция по эксплуатации. М.: Машиностроение, 1969.
5. Емкостной агрегат зажигания СК-22-2 сер.2. Техническое описание и инструкция по эксплуатации. М.: Машиностроение, 1974.
6. Патент США №6297568, МПК F02P 3/05, F02P 15/00, F02P 3/02.
7. Европейский патент №0382907, МПК F02C 7/266, F02C 7/26, F02P 3/08, F02P 7/03, F02P 15/00, F02P 3/00, F02P 7/00.
8. Патент Канады №2197048, МПК F02P 15/00, H01L 29/06, H01L 29/08, H01L 29/74, H01L 29/02, H01L 29/66.
9. Патент Канады №2206781, МПК F02P 15/00.
10. Патент США №5347422, МПК F02P 3/08, F02P 15/00, F02P 17/12, H02M 3/335, H03K 3/53, F02P 3/00, H02M 3/24, H03K 3/00.
11. Патент Франции №2670829, МПК F02C 7/266.
12. Патент США №5245252, МПК F02P 3/08, F02P 3/10, F02P 9/00, F02P 15/00, F02P 15/10, F02P 3/00, F02P 3/02, F02P 17/12, F02C 7/26, F02G 3/00, H05B 37/02, H05B 39/04.
13. Патент РФ №2106518, МПК F02C 7/266, F02P 3/06.
14. Авторское свидетельство СССР №260318, МПК F02P 3/06.
15. А.В.Краснов, А.Н.Мурысев. Емкостные системы зажигания нового поколения для современных и перспективных ГТД. Авиационно-космическая техника и технология: сб. научных трудов. Выпуск 19. Тепловые двигатели и энергоустановки. - Харьков. Госаэрокосмический университет и Харьковский авиационный институт, 2000.
16. Агрегат зажигания ПВФ-22-6. Руководство по технической эксплуататции 8Г3.246.232-04 РЭ. ФГУП УНПП «Молния», г.Уфа.
17. Агрегат зажигания ПВФ-22-7. Руководство по технической эксплуатации 8Г3.246.232-04 РЭ. ФГУП УНПП «Молния», г.Уфа.
18. Continious Ignition Selection in Adverse Weater. By Michel Palomeque. Aibus. 10th Performance and Operations Conference (1998).
19. А.В.Краснов, A.H.Мурысев, В.А.Федоров, M.H.Андреев. О некоторых результатах экспериментальных исследований электроэрозии электродов запальных свечей ГТД. Межвузовский научный сборник / Электромеханика, электротехнические комплексы и системы / УГАТУ, Уфа, 2006 г.
20. Авиационный двигатель ПС-90А: А.А.Иноземцев, Е.А.Коняев, В.В.Медведев, А.В.Нерадько, А.Е.Ресов; под ред. А.А.Иноземцева. - М.: Либра-К, 2007, - 320 с. (см. с.134).
21. С.А.Волков, А.А.Горбатко, Е.Б.Жестокова. Анализ решений международной организации гражданской авиации в области охраны окружающей среды от воздействия авиации / Научно-технический сборник «Основные результаты научно-технической деятельности ЦИАМ (2009-2010 гг.) под общей редакцией В.А.Скибина, В.И.Солонина, О.С.Гуревича, М., 2010, 830 с. (см. с.619).
22. K.V.L.RAO, А.Н.Lefebre «Minimum Ignition Energies in Flowing Kerosene - Air Mixture / Combustion and Flame», V27, №1, august 1976.
23. Агрегат зажигания ПВФ-22-20. Руководство по технической эксплуатации 8Г3.246.269 РЭ. ФГУП УНПП «Молния».
24. Квалификационные требования КТ 160Д. Условия эксплуатации и окружающей среды для бортового авиационного оборудования. Требования, нормы и методы испытаний. АРМАК, 2004.
25. Патент США №5399942, МПК F02P 3/08, F02P 3/10, F02P 9/00, F02P 15/00, F02P 15/10, F02P 3/02, F02P 17/12, F02P 3/00, H05B 37/02, F02C 7/26, F02G 3/00, H05B 39/04.
26. Патент США №5065073, МПК F02P 3/055, F02C 7/266, F02P 3/08, F02P 3/10, F02P 9/00, F02P 15/00, F02P 15/10, F02P 17/12, F02P 3/02, F02C 7/26, F02P 3/00, F02G 3/00, H05B 37/02, H05B 39/04.
27. Патент США №5148084, МПК F02P 3/08, F02P 3/10, F02P 9/00, F02P 15/00, F02P 15/10, F02P 3/02, F02P 17/12, F02P 3/00, F02P 15/08, H01K 7/00, H05B 37/02.
28. Н.А.Шарлыгин, В.Г.Шахвердов. Конструкция и эксплуатация авиационных двигателей. М.: Машиностроение, 1960, 370 с. (см. с.340).

Claims (1)

  1. Способ розжига топливовоздушной смеси в камере сгорания авиационного газотурбинного двигателя, заключающийся в том, что в системе зажигания от источника питания проводят подкачку энергии в накопительный конденсатор, после достижения на нем установленного заданного значения напряжения выполняют коммутацию энергии накопительного конденсатора на искровой промежуток свечи зажигания, при этом обеспечивают в искровом промежутке свечи генерацию искрового разряда, используемого для воспламенения топливовоздушной смеси в камере сгорания газотурбинного двигателя, обеспечивают непрерывные циклы заряда-разряда накопительного конденсатора с генерацией искровых разрядов в искровом промежутке свечи в первый интервал времени с повышенной частотой за счет увеличения мощности подкачки энергии в накопительный конденсатор в этот интервал времени, а в последующий интервал времени, до прекращения подачи энергии в систему зажигания, с пониженной частотой по сравнению с первым интервалом времени, отличающийся тем, что в первый интервал времени одновременно с началом подкачки энергии в накопительный конденсатор уменьшают установленное заданное для второго интервала времени напряжение, до которого накачивают накопительный конденсатор при его коммутации на искровой промежуток свечи.
RU2011114164/06A 2011-04-11 2011-04-11 Способ розжига камеры сгорания авиационных газотурбинных двигателей RU2463522C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2011114164/06A RU2463522C1 (ru) 2011-04-11 2011-04-11 Способ розжига камеры сгорания авиационных газотурбинных двигателей

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011114164/06A RU2463522C1 (ru) 2011-04-11 2011-04-11 Способ розжига камеры сгорания авиационных газотурбинных двигателей

Publications (1)

Publication Number Publication Date
RU2463522C1 true RU2463522C1 (ru) 2012-10-10

Family

ID=47079617

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011114164/06A RU2463522C1 (ru) 2011-04-11 2011-04-11 Способ розжига камеры сгорания авиационных газотурбинных двигателей

Country Status (1)

Country Link
RU (1) RU2463522C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104617782A (zh) * 2014-12-25 2015-05-13 广东美的制冷设备有限公司 防浪涌电流装置、防浪涌电流方法及家用电器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5148084A (en) * 1988-11-15 1992-09-15 Unison Industries, Inc. Apparatus and method for providing ignition to a turbine engine
US5224015A (en) * 1990-12-19 1993-06-29 Labo Industrie High energy ignition generator in particular for a gas turbine
US5399942A (en) * 1988-11-15 1995-03-21 Unison Industries Limited Partnership Apparatus and method for providing ignition to a turbine engine
RU2106518C1 (ru) * 1995-01-11 1998-03-10 Уфимское агрегатное конструкторское бюро "Молния" Конденсаторная система зажигания для газотурбинных двигателей
RU2134816C1 (ru) * 1992-12-24 1999-08-20 Орбитал Энджин Компани (Аустралиа) ПТИ Лимитед Система зажигания и способ подачи заряда от множества зарядных средств к множеству средств накопления заряда в системе зажигания
KR20030046695A (ko) * 2001-12-06 2003-06-18 현대자동차주식회사 하이브리드 전기자동차의 엔진 제어장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5148084A (en) * 1988-11-15 1992-09-15 Unison Industries, Inc. Apparatus and method for providing ignition to a turbine engine
US5399942A (en) * 1988-11-15 1995-03-21 Unison Industries Limited Partnership Apparatus and method for providing ignition to a turbine engine
US5224015A (en) * 1990-12-19 1993-06-29 Labo Industrie High energy ignition generator in particular for a gas turbine
RU2134816C1 (ru) * 1992-12-24 1999-08-20 Орбитал Энджин Компани (Аустралиа) ПТИ Лимитед Система зажигания и способ подачи заряда от множества зарядных средств к множеству средств накопления заряда в системе зажигания
RU2106518C1 (ru) * 1995-01-11 1998-03-10 Уфимское агрегатное конструкторское бюро "Молния" Конденсаторная система зажигания для газотурбинных двигателей
KR20030046695A (ko) * 2001-12-06 2003-06-18 현대자동차주식회사 하이브리드 전기자동차의 엔진 제어장치

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104617782A (zh) * 2014-12-25 2015-05-13 广东美的制冷设备有限公司 防浪涌电流装置、防浪涌电流方法及家用电器

Similar Documents

Publication Publication Date Title
US7768767B2 (en) Triggered pulsed ignition system and method
CN102052197B (zh) 一种利用喷嘴间隙放电点火的小推力发动机头部喷注器
CN101463764B (zh) 燃气轮机高能等离子点火器
CN107642435A (zh) 一种推力可调、可多次启动电控固体推进剂火箭发动机
US8925532B2 (en) Power supply control for spark plug of internal combustion engine
US2811676A (en) Jet engine or gas turbine with electric ignition
EP2924263B1 (en) Ignition exciter system with silicon carbide discharge switch
Matveev et al. Non-equilibrium plasma igniters and pilots for aerospace application
CN102678339B (zh) 一种阴极可重复利用的等离子点火器
US10030584B2 (en) Solid state spark device and exciter circuit using such a device
EP2551888A2 (en) Electric discharge apparatus
RU2463522C1 (ru) Способ розжига камеры сгорания авиационных газотурбинных двигателей
RU2460895C1 (ru) Способ розжига камеры сгорания авиационных газотурбинных двигателей
US7095601B2 (en) High energy primary spark ignition system for a gas turbine engine
RU2494314C1 (ru) Способ розжига камеры сгорания авиационных газотурбинных двигателей
CN2883947Y (zh) 脉冲等离子点火器
RU2339840C2 (ru) Способ зажигания топливной смеси в камере сгорания двигателя и устройство для его осуществления
CN112963249A (zh) 一种航空用高能点火器
Busby et al. Effects of corona, spark and surface discharges on ignition delay and deflagration-to-detonation times in pulsed detonation engines
US20150260146A1 (en) Method and apparatus of charging an engine ignition system
CN210267325U (zh) 智能新能源空气等离子体射流打火机
US10590887B2 (en) Spark exciter operational unit
RU2767663C1 (ru) Устройство контроля емкостной системы зажигания газотурбинных двигателей воздушных судов
Gizatullin et al. Determination of oscillators parametres in gas turbine engine plasma ignition systems
CN113464313B (zh) 并联式多路滑动弧等离子体点火器及超燃冲压发动机

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner